approachncsetting
ncsetting 时间:2021-02-21 阅读:(
)
PublishedforSISSAbySpringerReceived:March16,2017Revised:May9,2017Accepted:June7,2017Published:June20,2017NoncommutativedualityandfermionicquasinormalmodesoftheBTZblackholeKumarS.
Gupta,aTajronJuricb,candAndjeloSamsarovbaTheoryDivision,SahaInstituteofNuclearPhysics,1/AFBidhannagar,Kolkata700064,IndiabRudjerBoˇskovicInstitute,Bijeniˇckac.
54,HR-10002Zagreb,CroatiacInstitutodeFisica,UniversidadedeBrasilia,CaixaPostal04455,70919-970,Brasilia,DF,BrazilE-mail:kumars.
gupta@saha.
ac.
in,tjuric@irb.
hr,asamsarov@irb.
hrAbstract:WeanalyzethefermionicquasinormalmodesoftheBTZblackholeinthepresenceofspace-timenoncommutativity.
Ouranalysisexploitsadualitybetweenaspin-lessandspinningBTZblackhole,thespinbeingproportionaltothenoncommutativedeformationparameter.
UsingtheAdS/CFTcorrespondenceweshowthatthehorizontemperaturesinthedualCFTaremodiedduetononcommutativecontributions.
Wedemonstratetheequivalencebetweenthequasinormalandnon-quasinormalmodesforthenoncommutativefermionicprobes,whichprovidesfurtherevidenceofholographyinthenoncommutativesetting.
FinallywepresentananalysisoftheemissionofDiracfermionsandthecorrespondingtunnelingamplitudewithinthisnoncommutativeframework.
Keywords:ModelsofQuantumGravity,Non-CommutativeGeometry,AdS-CFTCorre-spondence,BlackHolesArXivePrint:1703.
00514OpenAccess,cTheAuthors.
ArticlefundedbySCOAP3.
https://doi.
org/10.
1007/JHEP06(2017)107Contents1Introduction12NCduality23FermionicQNM54QNMandholography115QuantumtunnelingofDiracparticlesinthepresenceofnoncommuta-tivityandHawkingtemperature136Finalremarks16ADerivationofκ-deformedKGequation17BAnotherdualpicture(Mf(a),Jf=0)211IntroductionQuasinormalmodes(QNM)ofblackholes[1–8]providekeysignaturesofthegravitationalwaves.
TheQNM'sarisingfromtheperturbationofablackholedependonlyontheparametersoftheblackholeandnotonthedetailsoftheperturbation.
ItisthisfeaturethatmakestheQNM'safundamentalquantityinexploringpropertiesofblackholes.
Therecentexperimentaldiscoveryofgravitationalwavesincludingtheringdownphasearisingfromblackholemergers[9]haveopenedupnewpossibilitiesfortheobservationsoftheQNM'sanditprovidesanimpetustotheideathatgravitationalwaveastronomymayinthefuturebeusedtoprobetheprimordialuniverseatthePlanckscale.
Itiswidelybelievedthatpropertiesofthespace-timeatthePlanckscalecouldbeverydierentfromwhatweobservetoday.
Therearevariousmodelsofsuchspace-timesinclud-ingstringtheory[10],loopgravity[11]andnoncommutativegeometry[12],allofwhichsuggestthatthespace-timemighthavesomediscretestructureatthequantumgravityscale.
Inparticular,itisknownthatgeneralrelativityandthequantumuncertaintyprin-cipletogetherpredictaverygeneralclassofnoncommutativespace-times[13–15].
Further-moreithasbeenshownthatthespace-timesassociatedwithavarietyofblackholesatthePlanckscalecouldbedescribedbyaκ-Minkowskialgebra[16–18].
Inthispaperweshalltaketheκ-Minkowskialgebra[19–28]astheprototypeofaspace-timeatthePlanckscaleandshallinvestigatevariousfeaturesofQNM'sandassociatedphysicsinthatbackground.
Inaprevioussetofworks[29,30],thepropertiesofanoncommutative(NC)κ-MinkowskiscalareldinthebackgroundofaBTZblackhole[31]wereinvestigatedand–1–elaboratedfurtherin[32].
ItwasshownthatprobingaspinlessBTZblackholewithaκ-MinkowskiscalareldisequivalenttoprobingaspinningBTZblackholewithacom-mutativescalareld[30].
ThisresultwasestablishedbyshowingthattheKlein-GordonequationsinthesetwosituationsareidenticaluptotherstorderintheNCdeformationparameter.
TheeectivespinofthedualBTZblackholewasobtainedfromthecorre-spondingblackholeentropy[30],whichdependsontheNCparameterandcapturesthebackreactionoftheNCscalareldontheBTZspace-time.
Therestrictionoftheanalysisonlyuptotherstorderinthedeformationparameterispromptedbytwomainconsid-erations.
First,thenoncommutativityisaPlanckscaleeect,whichinthepresentepochwouldbeverysmall.
Hencefromaphenomenologicalpointofview,therstorderef-fectswouldbemostdominant.
Furthermore,thefullnoncommutativeequationsofmotionareextremelycomplicated[29],andonlybyrestrictingtheanalysisuptotherstorderwecouldobtainanalyticalresults.
InthispaperweexplorefurtherconsequencesofthisdualityandanalyzethefermionicQNM'sinthisdualBTZspace-time.
InadditiontotraditionalderivationofHawkingradiation[33],thereexistsanalterna-tiveapproachtowardsunderstandingblackholeradiationandthephysicalprocessesthatliebehind.
Thisapproachisbasedonasemi-classicalmethodofmodelingHawkingradiationasatunnelingeectfromtheinsidetotheoutsideofthehorizon[34–37].
Theprocedureamountstocalculatingtheimaginarypartoftheclassicalactionwhichcanbeshowntoxthetunnelingprobabilityamplitude.
Ontheotherhandtheclassicalactionitselfcanbecalculatedeitherbynull-geodesicmethod[37]orbyHamilton-Jacobimethod[38–40].
InthispaperweapplythetunnelingframeworkinordertoinvestigatetheimpactthatNCnatureofspace-timemighthaveonthetunnelingprobabilityfortheclassicallyforbiddentrajectoryoffermionspassingfromtheinsidetotheoutsideofthehorizon.
Thepaperisstructuredasfollows.
InsectionII,theNCdualityispresented.
ItisbasedontheobservationthattheequationofmotionforaNCscalareldinthebackgroundofaspinlessBTZblackholecanberewritteninaformofaKG-equationforacommutativescalareld,butnowmovinginthebackgroundofadualBTZblackholewithnon-zerospinorangularmomentum.
SectionIIIdiscussesaderivationofDiracequationinNCsettingbytakingthe"square-root"ofNCKG-equationthroughtheuseofNCduality.
Furthermore,newcontributionstothefermionicQNM'sarefoundfromtheNCeects.
InsectionIVwediscusstherelevanceofholographyandQNM'swithintheNCframework.
InsectionV,wecalculatetheprobabilityamplitudeforquantumtunnelingusingtheWKBwhichallowsustoobtainthecorrespondingHawkingtemperature.
WeconcludethepaperinsectionVIwithsomecomments.
2NCdualityAsmentionedintheIntroduction,aspinlessBTZblackholebeingprobedwithaκ-NCscalareldisdualtoaspinningBTZblackholeprobedwithacommutativescalareld[30].
ThisequivalencetogetherwiththeexpressionofthecorrespondingBTZblackholeentropyallowsustoidentifythespinofthedualBTZblackholewhichdependson–2–theNCparameter.
Webrieyreviewhowtoderivethespinofthedualblackholewhichwillbeusedlaterinthispaper.
AmasslessNCscalarparticleinthebackgroundg′ν=Mr2l20001r2l2M000r2,(2.
1)oftheBTZblackholewithmassMandangularmomentumJ=0isdescribedbytheequationwhichcanbesymbolicallypresentedas(g′+O(a))Φ=0.
(2.
2)TheparameterlisrelatedtothecosmologicalconstantΛasl=1Λandaisthedeformationparameter,a=1κ,thatsetsuptheNCscale,commonlyrelatedtothePlancklength.
g′istheKGoperatorinthemetric(2.
1).
Thesecondtermintheaboveequationisagenericexpressionrepresentingawholesetofcorrectionsinducedbythenoncommutativenatureofspacetime.
Itwasshownin[30]thatequation(2.
2)mayberewrittenintheform(gm2)Φ=0,(2.
3)wheregistheKlein-Gordonoperatorforthemetricgν=Mdr2l20Jd201r2l2+(Jd)24r2Md0Jd20r2,(2.
4)describingageometricbackgroundoftheBTZblackholewithmassMdandangularmomentumJ=Jd.
Moreover,inthecommutativedualpicturethescalarparticlehasacquiredthemassm(seeappendixAand[32]formoredetails).
DierentblackholeparametersinthedualpictureindicatethattheblackholeinthenewsettingwassetintoarotationalmotionwithangularmomentumJ=Jd.
Thisappearstobepossibleduetotheeectsofnoncommutativegeometrywhichenableanoncommutativeprobetoinuencethegeometrythroughwhichitpropagates,thusmakingtheinstanceforthebackreactionmechanisminthisparticularsituation.
Ithastobenotedthatthetermbackreactionhereappearsinthesamesenseasforexamplein[73]whereitrepresentsasituationwherethepropagatingmattermodiesthegeometrythatitprobes.
However,thereisalsoanimportantdierence.
Whilein[73],amaterialcontentofthepropagatingparticlesitselfisasourceofthegeometrymodication,inourcasethereasonforthechangeinthegeometryiscontainedwithinanoncommutativenatureofspacetimeatthePlanckscale.
Inthisway,NCnatureofspacetime,inparticularitsgrainlikestructure,actsasanagentthatmediatestheinuenceofthepropagatingmattertowardablackholebackground,withoutmodifyingtheenergy-momentumtensor.
–3–InordertoobtainthespecicexpressionforJd,considertheentropyofthespinlessBTZblackholeasprobedbytheNCscalareld[29],whichisgivenbySNC=A04G1+aβ√M8πζ(2)3lζ(3),(2.
5)whereA0=2πl√MistheareaofthespinlessBTZwithmassM.
TheentropyofablackholecanbeobtainedfromthesolutionsofthecorrespondingKlein-Gordonequation[29,41].
ThemainstepsleadingtotheentropyarealsodescribedinappendixA.
SincetheKlein-GordonequationsforthespinlessBTZanditsspinningdualareidentical,wecanpostulatetheequivalenceSNC=Sd,whereSd=Ad4G,Ad=2πr+,(2.
6)whereSdistheentropyofthedualBTZblackholeandr+=l√M√21+1(Jd)2M2l2,(2.
7)istheouterhorizonofthedualBTZblackhole.
TheseconditionsimplythatAd=2πl√M1+aβ√M8πζ(2)3lζ(3),(2.
8)whichgives(Jd(a))2=λ643πζ(2)ζ(3)lM5/2+O(a2),(2.
9)wheretheabbreviationλ=aβhasbeenused.
Sinceaβ∈R\{0},werestrictrealizations1tobeofthosetypeswhereaβ0,(2.
11)1Fordetailssee[29,30].
–4–whichleadstoλ(a)0,sshouldbexedsuchthatk(r,s,ω)isrealandhandLareultravioletandinfraredregulators,respectively(inwhatfollowswetakethelimitL→∞andseth≈0andwekeeponlythemostdivergenttermsinh).
Thetotalnumberν(ω)ofsolutionswithenergynotexceedingωisthengivenbyν(ω)=s0s0n(ω,s)=s0s0dsn(ω,s)=1πs0s0dsLr++hk(r,s,ω)dr.
(A.
12)ThefreeenergyatinversetemperatureβToftheblackholeisF=∞0ν(ω)dωeβTω1=1π∞0dωeβTω1Lr++hdrs0s0dsk(r,s,ω).
(A.
13)Aftercarryingouttheintegrationsandkeepingthemostdivergenttermsinh,onegetsF=l52(8GM)14ζ(3)β3T1√2h2aβ(8GM)34√l√2hζ(2)β2T,(A.
14)whichistheexactresultinthesenseoftheWKBmethodandζistheEuler-Riemannzetafunction.
TheentropyfortheNCmasslessscalareldnowfollowsfromS=β2TFβT,yieldingS=3l52(8GM)14ζ(3)β2T1√2h+4aβ(8GM)34√l√2hζ(2)βT=S01+43aβ8GMl2ζ(2)ζ(3)βT.
(A.
15)–20–BAnotherdualpicture(Mf(a),Jf=0)Sofarwehaveusedtheentropy-equivalenceinsectionIItoobtainthedualpicturewhereonlythespinwasrescaledJf∝√aβ.
But,wecandemandthatonlythemassMfofdualsettingchanges.
Indoingso,wegetrf+=l√Mf,rf=0,Mf=M1+aβ√Ml16π3ζ(2)ζ(3)+O(a2).
(B.
1)Thesurfacegravityisgivenbyκf=rf+l2=κ01+aβ√Ml8π3ζ(2)ζ(3)+O(a2)=κNC,(B.
2)withκ0=√MlbeingthesurfacegravityoftheundeformedspinlessBTZblackhole.
Moreover,thetunnelingprobabilityisΓNC=Γ01+aβ4π2l3ζ(2)ζ(3)(B.
3)andHawkingtemperatureisgivenbyTNC=T01+aβ√M2π3ζ(2)ζ(3),(B.
4)whereT0=κ02πistheHawkingtemperatureforaBTZblackholeintheabsenceofdefor-mationandΓ0=exp2πωκ0.
TheNCcorrectionstofermionicQNMmodesareinferredfromωL=ω(0)Li16π3aβMlζ(2)ζ(3)n+14+lm2+O(a2),ωR=ω(0)Ri16π3aβMlζ(2)ζ(3)n+34+lm2+O(a2),(B.
5)whereω(0)R,ω(0)Laretheundeformedfrequenciesgivenby(3.
31).
Weseethatinthisdualpicturethecorrectionsareevenmoresuppressed.
OpenAccess.
ThisarticleisdistributedunderthetermsoftheCreativeCommonsAttributionLicense(CC-BY4.
0),whichpermitsanyuse,distributionandreproductioninanymedium,providedtheoriginalauthor(s)andsourcearecredited.
References[1]T.
ReggeandJ.
A.
Wheeler,StabilityofaSchwarzschildsingularity,Phys.
Rev.
108(1957)1063[INSPIRE].
[2]C.
V.
Vishveshwara,ScatteringofgravitationalradiationbyaSchwarzschildblack-hole,Nature227(1970)936[INSPIRE].
–21–[3]W.
H.
Press,Longwavetrainsofgravitationalwavesfromavibratingblackhole,Astrophys.
J.
170(1971)L105[INSPIRE].
[4]S.
ChandrasekharandS.
L.
Detweiler,Thequasi-normalmodesoftheSchwarzschildblackhole,Proc.
Roy.
Soc.
Lond.
A344(1975)441[INSPIRE].
[5]V.
CardosoandJ.
P.
S.
Lemos,Scalar,electromagneticandWeylperturbationsofBTZblackholes:quasinormalmodes,Phys.
Rev.
D63(2001)124015[gr-qc/0101052][INSPIRE].
[6]D.
Birmingham,ChoptuikscalingandquasinormalmodesintheAdS/CFTcorrespondence,Phys.
Rev.
D64(2001)064024[hep-th/0101194][INSPIRE].
[7]E.
Berti,V.
CardosoandA.
O.
Starinets,Quasinormalmodesofblackholesandblackbranes,Class.
Quant.
Grav.
26(2009)163001[arXiv:0905.
2975][INSPIRE].
[8]R.
A.
KonoplyaandA.
Zhidenko,Quasinormalmodesofblackholes:fromastrophysicstostringtheory,Rev.
Mod.
Phys.
83(2011)793[arXiv:1102.
4014][INSPIRE].
[9]VirgoandLIGOScientificcollaborations,B.
P.
Abbottetal.
,Observationofgravitationalwavesfromabinaryblackholemerger,Phys.
Rev.
Lett.
116(2016)061102[arXiv:1602.
03837][INSPIRE].
[10]O.
Aharony,S.
S.
Gubser,J.
M.
Maldacena,H.
OoguriandY.
Oz,Large-Neldtheories,stringtheoryandgravity,Phys.
Rept.
323(2000)183[hep-th/9905111][INSPIRE].
[11]C.
RovelliandL.
Smolin,Spinnetworksandquantumgravity,Phys.
Rev.
D52(1995)5743[gr-qc/9505006][INSPIRE].
[12]A.
Connes,Noncommutativegeometry,AcademicPress,U.
S.
A.
,(1994).
[13]D.
V.
Ahluwalia,Quantummeasurements,gravitationandlocality,Phys.
Lett.
B339(1994)301[gr-qc/9308007][INSPIRE].
[14]S.
Doplicher,K.
FredenhagenandJ.
E.
Roberts,Space-timequantizationinducedbyclassicalgravity,Phys.
Lett.
B331(1994)39[INSPIRE].
[15]S.
Doplicher,K.
FredenhagenandJ.
E.
Roberts,Thequantumstructureofspace-timeatthePlanckscaleandquantumelds,Commun.
Math.
Phys.
172(1995)187[hep-th/0303037][INSPIRE].
[16]B.
P.
Dolan,K.
S.
GuptaandA.
Stern,NoncommutativeBTZblackholeanddiscretetime,Class.
Quant.
Grav.
24(2007)1647[hep-th/0611233][INSPIRE].
[17]B.
P.
Dolan,K.
S.
GuptaandA.
Stern,Noncommutativityandquantumstructureofspacetime,J.
Phys.
Conf.
Ser.
174(2009)012023[INSPIRE].
[18]T.
OhlandA.
Schenkel,Cosmologicalandblackholespacetimesintwistednoncommutativegravity,JHEP10(2009)052[arXiv:0906.
2730][INSPIRE].
[19]J.
Lukierski,H.
Ruegg,A.
NowickiandV.
N.
Tolstoi,QdeformationofPoincarealgebra,Phys.
Lett.
B264(1991)331[INSPIRE].
[20]J.
LukierskiandH.
Ruegg,QuantumkappaPoincareinanydimension,Phys.
Lett.
B329(1994)189[hep-th/9310117][INSPIRE].
[21]S.
MajidandH.
Ruegg,BicrossproductstructureofkappaPoincaregroupandnoncommutativegeometry,Phys.
Lett.
B334(1994)348[hep-th/9405107][INSPIRE].
[22]J.
Kowalski-GlikmanandS.
Nowak,DoublyspecialrelativitytheoriesasdierentbasesofkappaPoincarealgebra,Phys.
Lett.
B539(2002)126[hep-th/0203040][INSPIRE].
–22–[23]J.
Kowalski-GlikmanandS.
Nowak,Noncommutativespace-timeofdoublyspecialrelativitytheories,Int.
J.
Mod.
Phys.
D12(2003)299[hep-th/0204245][INSPIRE].
[24]M.
Dimitrijevic,L.
Jonke,L.
M¨oller,E.
Tsouchnika,J.
WessandM.
Wohlgenannt,Deformedeldtheoryonkappaspace-time,Eur.
Phys.
J.
C31(2003)129[hep-th/0307149][INSPIRE].
[25]S.
MeljanacandM.
Stojic,NewrealizationsofLiealgebrakappa-deformedEuclideanspace,Eur.
Phys.
J.
C47(2006)531[hep-th/0605133][INSPIRE].
[26]S.
Kresic-Juric,S.
MeljanacandM.
Stojic,Covariantrealizationsofkappa-deformedspace,Eur.
Phys.
J.
C51(2007)229[hep-th/0702215][INSPIRE].
[27]A.
BorowiecandA.
Pachol,Kappa-MinkowskispacetimeastheresultofJordaniantwistdeformation,Phys.
Rev.
D79(2009)045012[arXiv:0812.
0576][INSPIRE].
[28]S.
Meljanac,A.
Samsarov,M.
StojicandK.
S.
Gupta,Kappa-Minkowskispace-timeandthestarproductrealizations,Eur.
Phys.
J.
C53(2008)295[arXiv:0705.
2471][INSPIRE].
[29]K.
S.
Gupta,E.
Harikumar,T.
Juric,S.
MeljanacandA.
Samsarov,Eectsofnoncommutativityontheblackholeentropy,Adv.
HighEnergyPhys.
2014(2014)139172[arXiv:1312.
5100][INSPIRE].
[30]K.
S.
Gupta,E.
Harikumar,T.
Juric,S.
MeljanacandA.
Samsarov,NoncommutativescalarquasinormalmodesandquantizationofentropyofaBTZblackhole,JHEP09(2015)025[arXiv:1505.
04068][INSPIRE].
[31]M.
Banados,C.
TeitelboimandJ.
Zanelli,Theblackholeinthree-dimensionalspace-time,Phys.
Rev.
Lett.
69(1992)1849[hep-th/9204099][INSPIRE].
[32]T.
JuricandA.
Samsarov,EntanglemententropyrenormalizationforthenoncommutativescalareldcoupledtoclassicalBTZgeometry,Phys.
Rev.
D93(2016)104033[arXiv:1602.
01488][INSPIRE].
[33]S.
W.
Hawking,Particlecreationbyblackholes,Commun.
Math.
Phys.
43(1975)199[Erratumibid.
46(1976)206][INSPIRE].
[34]P.
KrausandF.
Wilczek,SomeapplicationsofasimplestationarylineelementfortheSchwarzschildgeometry,Mod.
Phys.
Lett.
A9(1994)3713[gr-qc/9406042][INSPIRE].
[35]P.
KrausandF.
Wilczek,Selnteractioncorrectiontoblackholeradiance,Nucl.
Phys.
B433(1995)403[gr-qc/9408003][INSPIRE].
[36]P.
KrausandF.
Wilczek,Eectofselnteractiononchargedblackholeradiance,Nucl.
Phys.
B437(1995)231[hep-th/9411219][INSPIRE].
[37]M.
K.
ParikhandF.
Wilczek,Hawkingradiationastunneling,Phys.
Rev.
Lett.
85(2000)5042[hep-th/9907001][INSPIRE].
[38]M.
Angheben,M.
Nadalini,L.
VanzoandS.
Zerbini,Hawkingradiationastunnelingforextremalandrotatingblackholes,JHEP05(2005)014[hep-th/0503081][INSPIRE].
[39]K.
SrinivasanandT.
Padmanabhan,Particleproductionandcomplexpathanalysis,Phys.
Rev.
D60(1999)024007[gr-qc/9812028][INSPIRE].
[40]S.
Shankaranarayanan,T.
PadmanabhanandK.
Srinivasan,Hawkingradiationindierentcoordinatesettings:complexpathsapproach,Class.
Quant.
Grav.
19(2002)2671[gr-qc/0010042][INSPIRE].
–23–[41]G.
'tHooft,Onthequantumstructureofablackhole,Nucl.
Phys.
B256(1985)727[INSPIRE].
[42]A.
Dasgupta,EmissionoffermionsfromBTZblackholes,Phys.
Lett.
B445(1999)279[hep-th/9808086][INSPIRE].
[43]S.
DasandA.
Dasgupta,BlackholeemissionratesandtheAdS/CFTcorrespondence,JHEP10(1999)025[hep-th/9907116][INSPIRE].
[44]R.
KernerandR.
B.
Mann,Fermionstunnellingfromblackholes,Class.
Quant.
Grav.
25(2008)095014[arXiv:0710.
0612][INSPIRE].
[45]F.
Belgiorno,S.
L.
Cacciatori,F.
DallaPiazzaandO.
F.
Piattella,QuantumpropertiesoftheDiraceldonBTZblackholebackgrounds,J.
Phys.
A44(2011)025202[arXiv:1007.
4439][INSPIRE].
[46]R.
Becar,P.
A.
GonzalezandY.
Vasquez,DiracquasinormalmodesofChern-SimonsandBTZblackholeswithtorsion,Phys.
Rev.
D89(2014)023001[arXiv:1306.
5974][INSPIRE].
[47]D.
V.
SinghandS.
Siwach,FermioneldsinBTZblackholespace-timeandentanglemententropy,Adv.
HighEnergyPhys.
2015(2015)528762[arXiv:1406.
3799][INSPIRE].
[48]D.
Birmingham,I.
SachsandS.
N.
Solodukhin,Conformaleldtheoryinterpretationofblackholequasinormalmodes,Phys.
Rev.
Lett.
88(2002)151301[hep-th/0112055][INSPIRE].
[49]D.
Birmingham,I.
SachsandS.
Sen,ExactresultsfortheBTZblackhole,Int.
J.
Mod.
Phys.
D10(2001)833[hep-th/0102155][INSPIRE].
[50]G.
'tHooft,Dimensionalreductioninquantumgravity,Salamfest(1993)0284[gr-qc/9310026][INSPIRE].
[51]L.
Susskind,Theworldasahologram,J.
Math.
Phys.
36(1995)6377[hep-th/9409089][INSPIRE].
[52]J.
M.
Maldacena,Thelarge-Nlimitofsuperconformaleldtheoriesandsupergravity,Int.
J.
Theor.
Phys.
38(1999)1113[hep-th/9711200][INSPIRE].
[53]Y.
I.
ManinandM.
Marcolli,Holographyprincipleandarithmeticofalgebraiccurves,Adv.
Theor.
Math.
Phys.
5(2002)617[hep-th/0201036][INSPIRE].
[54]G.
T.
HorowitzandV.
E.
Hubeny,QuasinormalmodesofAdSblackholesandtheapproachtothermalequilibrium,Phys.
Rev.
D62(2000)024027[hep-th/9909056][INSPIRE].
[55]S.
KalyanaRamaandB.
Sathiapalan,OntheroleofchaosintheAdS/CFTconnection,Mod.
Phys.
Lett.
A14(1999)2635[hep-th/9905219][INSPIRE].
[56]D.
Birmingham,I.
SachsandS.
N.
Solodukhin,Relaxationinconformaleldtheory,Hawking-Pagetransitionandquasinormalnormalmodes,Phys.
Rev.
D67(2003)104026[hep-th/0212308][INSPIRE].
[57]D.
Sullivan,Ontheergodictheoryatinnityofanarbitrarydiscretegroupofhyperbolicmotions,inRiemannSurfacesandRelatedTopics:proceedingsofthe1978StonyBrookConference,I.
KraandB.
Maskiteds.
,Ann.
Math.
Studies97,PrincetonU.
S.
A.
,(1981).
[58]D.
Birmingham,C.
Kennedy,S.
SenandA.
Wilkins,Geometricalniteness,holographyandtheBTZblackhole,Phys.
Rev.
Lett.
82(1999)4164[hep-th/9812206][INSPIRE].
[59]K.
S.
Gupta,E.
Harikumar,S.
SenandM.
Sivakumar,Geometricniteness,holographyandquasinormalmodesforthewarpedAdS3blackhole,Class.
Quant.
Grav.
27(2010)165012[arXiv:0912.
3584][INSPIRE].
–24–[60]D.
BirminghamandS.
Carlip,Nonquasinormalmodesandblackholephysics,Phys.
Rev.
Lett.
92(2004)111302[hep-th/0311090][INSPIRE].
[61]K.
S.
GuptaandS.
Sen,Geometricnitenessandnon-quasinormalmodesoftheBTZblackhole,Phys.
Lett.
B618(2005)237[hep-th/0504175][INSPIRE].
[62]P.
Mitra,Hawkingtemperaturefromtunnellingformalism,Phys.
Lett.
B648(2007)240[hep-th/0611265][INSPIRE].
[63]R.
LiandJ.
-R.
Ren,DiracparticlestunnelingfromBTZblackhole,Phys.
Lett.
B661(2008)370[arXiv:0802.
3954][INSPIRE].
[64]J.
B.
HartleandS.
W.
Hawking,Pathintegralderivationofblackholeradiance,Phys.
Rev.
D13(1976)2188[INSPIRE].
[65]F.
Lizzi,S.
VaidyaandP.
Vitale,Twistedconformalsymmetryinnoncommutativetwo-dimensionalquantumeldtheory,Phys.
Rev.
D73(2006)125020[hep-th/0601056][INSPIRE].
[66]K.
S.
GuptaandS.
Sen,Blackholes,holographyandmodulispacemetric,Phys.
Lett.
B646(2007)265[hep-th/0610108][INSPIRE].
[67]N.
SeibergandE.
Witten,Stringtheoryandnoncommutativegeometry,JHEP09(1999)032[hep-th/9908142][INSPIRE].
[68]T.
R.
Govindarajan,K.
S.
Gupta,E.
Harikumar,S.
MeljanacandD.
Meljanac,Twistedstatisticsinkappa-Minkowskispacetime,Phys.
Rev.
D77(2008)105010[arXiv:0802.
1576][INSPIRE].
[69]T.
Juric,S.
MeljanacandR.
Strajn,Twists,realizationsandHopfalgebroidstructureofkappa-deformedphasespace,Int.
J.
Mod.
Phys.
A29(2014)1450022[arXiv:1305.
3088][INSPIRE].
[70]K.
D.
KokkotasandB.
G.
Schmidt,Quasinormalmodesofstarsandblackholes,LivingRev.
Rel.
2(1999)2[gr-qc/9909058][INSPIRE].
[71]Cosmologyandfundamentalphysicswebpage,http://www.
ast.
cam.
ac.
uk/research/cosmology.
and.
fundamental.
physics/gravitational.
waves.
[72]S.
-W.
Kim,W.
T.
Kim,Y.
-J.
ParkandH.
Shin,EntropyoftheBTZblackholein(2+1)-dimensions,Phys.
Lett.
B392(1997)311[hep-th/9603043][INSPIRE].
[73]C.
MartinezandJ.
Zanelli,Backreactionofaconformaleldonathree-dimensionalblackhole,Phys.
Rev.
D55(1997)3642[gr-qc/9610050][INSPIRE].
–25–
wordpress投资主题模版是一套适合白银、黄金、贵金属投资网站主题模板,绿色大气金融投资类网站主题,专业高级自适应多设备企业CMS建站主题 完善的外贸企业建站功能模块 + 高效通用的后台自定义设置,简洁大气的网站风格设计 + 更利于SEO搜索优化和站点收录排名!点击进入:wordpress投资主题模版安装环境:运行环境:PHP 7.0+, MYSQL 5.6 ( 最低主机需求 )最新兼容:完美...
特网云为您提供高速、稳定、安全、弹性的云计算服务计算、存储、监控、安全,完善的云产品满足您的一切所需,深耕云计算领域10余年;我们拥有前沿的核心技术,始终致力于为政府机构、企业组织和个人开发者提供稳定、安全、可靠、高性价比的云计算产品与服务。官方网站:https://www.56dr.com/ 10年老品牌 值得信赖 有需要的请联系======================特网云推出多IP云主机...
近日Friendhosting发布了最新的消息,新上线了美国迈阿密的云产品,之前的夏季优惠活动还在进行中,全场一次性45折优惠,最高可购买半年,超过半年优惠力度就不高了,Friendhosting商家的优势就是100Mbps带宽不限流量,有需要的朋友可以尝试一下。Friendhosting怎么样?Friendhosting服务器好不好?Friendhosting服务器值不值得购买?Friendho...
ncsetting为你推荐
人际关系网站人际关系?二叉树遍历写出二叉树的先序遍历、中序遍历、后序遍历。二层交换机什么是二层交换机和三层交换机???网管工具网吧工具有什么?微信电话本怎么用微信电话本怎么使用呀,我的电话号码是存在手机里面,用这个软件就读取不了电话,我是第一次使用网站排名靠前怎样才能做好一个网站?让网站排名靠前?新手求解中国杀毒软件排行榜中国杀毒软件排行南北互通从南方发往北方的产品一般是什么qq签名设置手机QQ签名能设置权限吗1258012580是什么意思
日本vps 3322动态域名 美国主机排名 edgecast securitycenter 主机评测 namecheap linode 海外服务器 主机屋免费空间 火车票抢票攻略 12306抢票助手 免费smtp服务器 中国智能物流骨干网 合租空间 工信部icp备案号 静态空间 电信虚拟主机 linode支付宝 华为云建站 更多