sequencingwallbase

wallbase  时间:2021-01-28  阅读:()
SPECIALISSUEAscomycetefungiondimensionstoneofthe''BurgGleichen'',ThuringiaChristineHallmannDianaFritzlarLorenaStannekMichaelHoppertReceived:7January2011/Accepted:22April2011/Publishedonline:13May2011TheAuthor(s)2011.
ThisarticleispublishedwithopenaccessatSpringerlink.
comAbstractInthepresentstudy,thediversityofascomycetefungiwasinvestigatedontwowallareasofthe''BurgGleichen'',Thuringia(Germany),madeofvarioustypesofsandstones,travertineandGrenzdolomit.
FromaW-exposed,shadedwallarea,free-livingascomycetes(mainly''blackfungi'')andgreenalgaecouldberetrievedfromsandstonelithologies.
SandstonefromanESE-exposedareawasmainlycolonizedbylichenascomycetesandthelichenalgaTrebouxia.
Bothareasshareasmallnumberofgeneralistspecies,relatedtotheascomyceteblackfungiSarcinomycespetricola,PhaeococcomyceschersonesosandStichococcusmirabilis.
Free-livingblackfungiwereisolatedandcharacterizedwithrespecttocellwallmorphologyandmelanincontent.
Aremarkablyrigidmelaninlayer,incorporatedinthecellwallofaCladosporiumisolateispresentedindetail.
KeywordsDimensionstoneBiolmAscomycetefungiGreenalgaeCellwallMelaninIntroductionAscomycetefungalorganismsaremostsuccessfulcolo-nizersofallterrestrialhabitats,suchasrockandsoil(e.
g.
GorbushinaandKrumbein2000;AndersonandCairney2004).
Theyinteractindifferentwayswithotherorgan-isms,assymbionts(inmycorrhizaorlichensymbiosis),aspathogensorasimportantdestruentsofmostorganiccompounds,especiallyofplantlitter(Hattenschwileretal.
2005).
Althoughtheyareheterotrophic,i.
e.
theydependonorganicsubstratesproducedbyotherorganisms,manyofthemareadaptedtolowavailabilityofnutrients(Wainrightetal.
1993).
Moreover,fungalsporesareresistanttodes-iccationandradiation.
Owingtotheirsmallsize,thesporesaredispersedbyavarietyofvectors,inparticularbywind,butalsobyanimalsandbyplantdiaspores.
Fungalhyphaepenetratesurfacesandgrowinsidesoil,butalsoinvarioustypesofclasticrocks(e.
g.
sandstone)andhomogeneousmaterial,e.
g.
dolomiticlimestone(Gorbushinaetal.
1993,Hoppertetal.
2004,Gorbushina2007).
Thefungalhyphaisamongthefastestgrowingcellinnature:hyphaegrowwithavelocitybetween10and40lm/min(TrinciandSaunders1977).
Anactivegrowthzoneof10–15lmextendsbehindtheapex(Steinberg2007).
Theactivegrowthzoneisalsoimportantforsurfaceadhesion,theexcretionoflyticenzymes(e.
g.
forpenetrationofwood)andtheexertionofmechanicalforcesonthesurface.
Forendo-lithicgrowth,activedissolutionofcalciticmatricesbyorganicacids(e.
g.
Ascasoetal.
1998)isoneimportantmechanismforactivepenetration.
Fungalhyphaendapathinsedimentarymaterial(cf.
Fig.
1)bygrowingaroundsmallparticles.
Thisfeatureisbroughtaboutbyfastchangesinthegrowthdirectionofthehyphaltipandcouldalsobeobservedinorganismsofotherphyla,suchasplantroothairsorstreptomycetes(GeitmanandEmons2000;Fla¨rdh2003).
C.
HallmannAbt.
ExperimentellePhykologieundSammlungfu¨rAlgenkulturen,Albrecht-von-Haller-Institutfu¨rPanzenwissenschaften,Georg-August-Universita¨tGo¨ttingen,UntereKarspu¨le2,37073Go¨ttingen,GermanyD.
FritzlarL.
StannekM.
Hoppert(&)Institutfu¨rMikrobiologieundGenetik,Georg-August-Universita¨tGo¨ttingen,Grisebachstrae8,37077Go¨ttingen,Germanye-mail:mhopper@gwdg.
deM.
HoppertCourantResearchCentreGeobiology,Georg-August-Universita¨tGo¨ttingen,37077Go¨ttingen,Germany123EnvironEarthSci(2011)63:1713–1722DOI10.
1007/s12665-011-1076-yAscomycetefungionbuildingstonearewellknownandhavebeenfrequentlydescribed,mostlyincontexttobio-deterioration(e.
g.
Gorbushinaetal.
1993;Diakumakuetal.
1995,Steringeretal.
1997;GorbushinaandKrumbein2000;Simonovicovaetal.
2004).
Oneimportantgroupofcolonizers,theDematiaceae,producemelanininvegetativehyphae(Cooke1961;Wollenzienetal.
1995).
Thoughallfungiproducevarioustypesofpigments,melaninispre-dominantincellwallsofreproductivestructures,suchasconidiaorfruitingbodies,includingalltypesofspores(BellandWheeler1986).
ThemelanisationofvegetativecellsinDematiaceaeleadstoaheavyblackpigmentationofallcolonizedsurfaces(Saiz-Jimenez1995).
ThefrequentlydescribedmeristematicgrowthformofDematiaceaewithsphericalinsteadoflamentouscellsmaybeanadditionaladaptationtoadversegrowthconditionsinrockandstonehabitats,e.
g.
desiccationstress(Wollenzienetal.
1995).
ThepresentedstudyispartofacomparativeanalysisofmicrobialcommunitiesfromtwonaturalstonewallsfromtheBurgGleichen(cf.
Stu¨cketal.
2011[thisissue]).
Certaindifferencesintheabundanceofcyanobacteriaonwallsectionshavealreadybeendescribed(Hoppertetal.
2010).
Here,weshowtheoccurrenceofascomycetefungiontwowallsec-tions.
Typically,thefungalisolatesproducemelanininvege-tativecells.
Thesemelanindepositsformdistinctlayers,extractablefromcellwallsofoneCladosporiumisolate.
MaterialsandmethodsSamplingThesamplingsiteswereseveralwallsectionsoftheBurgGleichen,nearGotha,Thuringia(50°5204900N,10°5002000E).
Samples(approx.
100lldryvolumepersample)werecollectedinMay2009fromESE(wallareaA)andW-exposed(wallareaB)wallswithdifferentlithologies(Fig.
2).
Thesampleswerescrapedoffwithasterilescalpelandcollectedinsterile2-mlreactiontubes.
Samplesforclonelibrarieswererandomlytakenfromsites,wheresufcientmaterialcouldberemovedwithascalpel.
AllsamplesinareaAweretakenfromthewallbase(Fig.
2)madeofeitherGleichenbergerRa¨tsandsteinorSem-ionotussandstein.
Walljointsweremostlyclosed,i.
e.
lledwithmortar.
AreaBexhibitedavarietyoflithologies(travertine,Grenzdolomit,Ra¨tsandstein).
Mostwalljointswereopen.
SamplesfromRa¨tsandsteinfromthewallbaseweretakenintoconsiderationforthisstudy.
EachsamplewaslabeledwitheitherAorB(accordingtothewallsection)andwitharespectiverunningcodenumber.
Thesubsetofsamplesfromsandstonelithologieswasprocessedforthedetectionoffungalclones.
CultivationandisolationFortheenrichmentandisolationoflamentousfungi,smallamountsofthebiolmsampleswereusedtoinoculateculturemediapreparedaccordingtoStaley1968,withmodications(peptone/yeastextract/glucosemedium,PYG):Bacto-peptone0.
25g/l,yeastextract0.
25g/l,glucose0.
25g/l,basalsaltsolution19ml/l,traceelementsolution1ml/l(basalsaltsolutionin500ml:nitrilotriaceticacid3.
0g,MgSO497H2O7.
2g,CaCl292H2O1.
7g(NH4)6Mo7O2494H2O3.
0mg,FeSO497H2O49.
5mg.
Traceelementsolutionin100ml:EDTA250.
0mg,ZnSO497H2O1.
1mg,MnSO491H2O154.
0mg,FeSO497H2O500.
0mg,CuSO495H2O39.
2mg,CoSO397H2O19.
6mg,Na2B4O79.
34mg).
Forsolidmedia,1.
5%(w/v)Bacto-Agarwasadded.
Isolationofrepresentativestrainswasperformedbyrepeatedstreakingeithersinglecoloniesorconidiaonagarplatesuntilapparentmacro-scopicandmicroscopichomogeneityofcoloniesandconidia.
Isolateswereincubatedabout2weeksatroomtemperatureunderambientlight.
Liquidcultureswereincubatedinashakingwaterbathinthedark.
Forsomegrowthexperiments,apieceofSeebergerSandsteinwasgroundedinamortarandsterilizedbyautoclaving.
EqualvolumesofisolatedstrainsweremixedwithPYGagarmedium(keptliquidat95°C).
Themixturewasappliedonasterilemicroscopicslideandinoculatedaftersolidication.
Thesampleswereinspectedbylightmicroscopy(Axioscope40,includingAxiocamMRm,CarlZeissMicro-imaging,Go¨ttingen).
DNAextraction,PCR,cloningandsequencingForisolationofenvironmentalDNAaswellasDNAfromfungalisolates,cloningandsequencingstepswereper-formedasalreadydescribed(Hallmannetal.
2010[thisissue])withfollowingmodications:Fortwosamples(A1-4andB18)celldisruptionfor30sand50sofbeatFig.
1GrowthexperimentwithaCladosporiumisolate.
aGrowthinagarmediumwithoutsolidparticles.
bGrowthinagarmediummixedwithofsandstoneclasts.
Hyphaearetraced(whitelines).
Notetherapidchangesofgrowthdirectionsascomparedwitha1714EnvironEarthSci(2011)63:1713–1722123beatingwasapplied(ifnotespeciallymentioned,resultsof30sbeatbeatingwereshown).
Foridenticationofascomycetes,theprimerpairITS1(50-TCCGTAGGTGAACCTGCGG)andITS4(50-TCCTCCGCTTATTGATATGC)fortheITS(inter-naltranscribedspacer)wereused(AndersonandCairney2004).
Accessionnumbersofsequencesrelatedtothisstudyaredepositedonline(GenBankTM:http://www.
ncbi.
nlm.
nih.
gov/genbank)withthispublicationasareference.
ElectronmicroscopyForelectronmicroscopy,vegetativelamentswereeithertakenfromsolidorliquidcultures,concentratedbylteringovera0.
45-lmsizeporelterandembeddedinresinaccordingtoSpurr(1969).
Agarblockswerechemicallyxedovernightin2.
5%(v/v)glutaraldehyde(gradeIforelectronmicroscopy,Sigma–Aldrich,St.
Louis,MO,USA)andfor2hinosmiumtetroxide(1%,w/v,aqueoussolution,ScienceServices,Munich).
SamplesweredehydratedinagradedethanolseriesandinltratedwithSpurrresinover48hbeforepolymerizationat70°Cfor12h.
Ultrathinsectionsof80-nmthicknesswerecutwithglassknives.
Post-stainingofsectionswasperformedwith1.
5%(w/v)phosphotungsticacidfor5min(Hoppert2003).
ElectronmicroscopywasperformedwithaZeissEM902transmissionelectronmicroscope,equippedwitha1Kdigitalcamera(CarlZeissNTS,Oberkochen).
Fig.
2WallareasoftheBurgGleichenselectedforsampling.
aWallareaA(RomanesqueHall).
bWallareaB(sectionoftheringwall).
Samplingsitesaremarkedbyredsquares.
Theschematicdrawing(originalgure:WanjaWedekind)showsthelocationofthewallsinthecastlecomplexEnvironEarthSci(2011)63:1713–17221715123ForimmunogoldlabelingwiththelectinconcanavalinA(ConA),theprotocolaccordingtoHallmannetal.
2010(thisissue)wasapplied.
Goldmarkersinimagesweredigitallyenhancedasdescribed(HoppertandHolzenburg1998).
Melaninpreparationforelectronmicroscopywasper-formedaccordingtoRosasetal.
2000,withmodications.
AmelanisedCladosporiumisolatewasculturedonPYG-mediumandthencentrifugedfor30minat3,0009g.
Thecellswerewashedin100mMpotassium-phosphatebuffer,supplementedwith0.
9%(w/v)sodiumchloride(phos-phate-bufferedsaline,PBS).
Then,cellswereresuspendedin1.
0Msorbitol/0.
1Msodiumcitratesolution(pH5.
5),containing10mg/mllysisenzymefromTrichodermaharzianum(Sigma–Aldrich)andincubatedatroomtem-peratureovernight.
Cellswereagaincentrifuged,resus-pendedinPBSandincubatedin4Mguanidiniumthiocyanatesolutionfor12hatroomtemperature.
AfterwashingthecellsinPBSbycentrifugationandresuspen-sioninreactionbuffer(10mMTris,1mMCaCl2,0.
5%,w/vSDS),1mg/mlnalconcentrationproteinaseKwasadded.
Thesuspensionwasincubatedfor4hat65°C.
CellswereagainwashedinPBSandboiledfor6hin6MaqueousHClsolution.
Theremainingmelaninpreparationwasdialyzedfor2daysagainstdistilledwater(Viskingdialysistubing,molecularweightcutoff12,000–14,000,Serva,Heidelberg).
Thepreparedmelaninwasthensub-jectedtoembeddinginSpurrresinasdescribedabove.
ResultsBothareassampled(Fig.
2)exhibitedobviouscolonizationbygreenalgae(inaddition,cyanobacteriaonareaA)andepilithicorendolithiclichens(cf.
Fig.
3).
Approximately,one-thirdofthecollectedsampleswasusefulforcloningoffungalgenera.
Forgenerationoffungalclonelibraries,sequencingwithITSprimersturnedouttobemostappropriate(AndersonandCairney2004).
FromareasAandB,65(48)and30(75)fungal(algal)cloneswereretrieved,respectively.
IthastobekeptinmindthattheorganismswereidentiedbytheirsequencesofclosestknownrelativebyBLASTnanalysis(NationalCenterforBiotechnologyInformation,Bethesda,MD,USA).
ThegenusandspeciesnamesgiveninTables1and2representtheclosestknownrelativeaccordingtothesesequencesimilarities.
Table1liststhefungiidentiedfromtheclonelibraries,alongwiththealgalclones.
Mostly,theapparentcoloni-zationcorrelateswithclonebankdata.
AllsitesfromareaAwereapparentlycolonizedbyendolithiclichens.
Accordingly,amajorpartofalgaeandfungiretrievedfromtheclonebankswere,infact,lichenassociated.
SamplesB13,B14andB18weretakenfromsitesapparentlycolo-nizedbygreenalgae.
The(non-lichenassociated)algaeStichococcusandPseudochlorellacouldalsoberetrievedfromtheclonebanks.
Inaddition,numerousSarcinomycesandPhaeococcomyces-relatedfungalcloneswerepresent.
Becausethecelldisruptionmethodmayhavedetri-mentaleffectsonthequalityofclonelibraries(i.
e.
withrespecttospeciesrichness),differentintensitiesofbeadbeatingwereappliedontwosamples.
ThedatainTable1(sampleB1830sand50sbeatbeatingtime;sampleA1-430sand50s)documentaminorvariationintheretrievedclones,butdonotshowtheoccurrenceofessentiallydif-ferentspeciesgroups.
Thus,bothpairsofsamplescouldbeassignedtoeitherwallareaAorwallareaB-typicalgroupsofclones.
Althoughtheretrievedclonebanksalsodifferfromsampletosample,twogroupsofspeciestypicalforeitherofthewallareascanbeclearlydistinguished.
ItisobviousthatthefungaldiversityonareaAishigherwhencom-paredwithareaB,wheremorealgalthanfungalspeciescouldbeidentied.
Justasmallnumberofidenticalspecies(representedbytherespectiveclones)werepresentinbothFig.
3Macroscopicappearanceof(microbially)colonizedsandstonesurfaces.
aEndolithiclichensinconjunctionwithscalingandbackweatheringofthesurface.
bLayerofgreenalgae1716EnvironEarthSci(2011)63:1713–1722123areas:representativesoftwoascomycetefungi,Sarcino-mycespetricola-andPhaeococcomyceschersonesos-aswellasStichococcusmirabilis-clones(greenalgae)wereretrievedwithhighclonenumbers.
Onelichenascomycete(fromCaloplacadecipiens)andaTrebouxiasp.
lichenalgawerefoundinsamplesfrombothwalls,butjustinlownumbers.
Inparticular,thefungalclonesinbothgroupsofsamplesaredifferent(Fig.
4).
OnareaA,mostascomy-cetesarerelatedtogeneraknownfromlichensymbiosis(cf.
Wirth1995).
Alsothepresenceofseverallichenalgaclones(Trebouxia)reectsthisfeature.
Thisisalsoinaccordancewiththeobservationthatmainlyatthewallbase,thesandstonewasintensivelycolonizedbyendolithiclichens.
AlthoughalsoareaBexhibitedcolonizationbyendo-lithiclichensatthewallbase,mainlynon-lichenizedorganismscouldberetrieved:Here,justonecloneofthetypicallichenalgaandtwolichenfungiclonescouldbefound.
Amongthefungalorganisms,especiallySarcino-mycesandPhaeococcomycescloneswereretrieved,Table1DistributionoffungalandalgalclonesonwallsectionsClosestrelativespeciesA2-1A1-4A1-4(50s)A1-8B13B14B17B18B18(50s)B22%sequencesimilaritytoclosestrelativespeciesSarcinomycespetricola*111652597-98Phaeococcomyceschersonesos*223141196-97UnculturedCladosporiumclone*1199-100Caloplacadecipiens1299Capnobotryellasp.
.
*6399Cladosporiumcladosporioides*1199Phaeobotrysphaeriacitrigena190UnculturedDothideomycetes31082-83Anisomeridiumpolypori16186-88Dolichousnealongissima196Phaeophysciaciliata889-90Pseudocyphellariafimbriatoides183Umbilicariaarctica185Erysiphealphitoides199Pleosporaherbarum1100Stichococcusmirabilis1741675158789-96Trebouxiasp.
1198-99UnculturedTrebouxiaphotobiont411193-100Trebouxiaarboricola197Chlorellasp.
192Stichococcusrelated12185179-82Pseudochlorellasp.
112286-89Blackfungiaremarkedbyan(*),lichenalgaeandlichenfungiaremarkedinredBoxedareasindicatespeciespresentinbothwallareas(green),exclusivelypresentinareaA(blue)orinareaB(beige)ThepredominanceofSarcinomycespetricolainareaAisindicatedbyadarkgreencolorTable2BLASTsearchresultsoffungalisolatesSampleno.
Closestrelativespecies,accessionno.
PercentagesequencesimilaritytoclosestrelativespeciesB1-2Beauveriabassiana,GQ302680100A1-2,B1-3,B12,B2-5,B10CladosporiumcladosporioidesstrainF12,HQ38076699–100B1-8,B14Phaeococcomyceschersonesos,AJ50732396EnvironEarthSci(2011)63:1713–17221717123i.
e.
representativesoffree-living,non-lichenizedblackfungi.
Theoveralldiversitywasconsiderablylower(10differentblastresponses)thanonareaA(19differentblastresponses).
Severalascomycetousblackfungicouldbeisolatedfromthesamples,especiallyfromareaB,aslistedinTable2.
AlthoughthediversityofascomycetecloneswashigheronareaA,justonefungalisolatecouldbeobtainedfromthisarea.
SincetheabundantlichenascomycetesfromareaAareratherdifculttocultureinstandardmedia,theycouldnotberetrievedaspurecultures.
SeveralClado-sporiumandPhaeococcomyces-relatedisolatescouldbeobtainedfromareaB.
ThoughjustoneCladosporium-relatedclonecouldberetrievedfromclonebanks,severalCladosporiumstrainscouldbeisolated,accountingforahighabundanceofdiaspores,butalownumberofactivelygrowingorganismsatthetimeofsampling.
Allisolatesbelongtotheblack(melanised)fungiandservedasmodelorganismsforfurtherstudieslikeobser-vationofmelaninproductionandgrowthexperiments.
The0%10%20%30%40%50%60%70%80%90%100%wallareaAwallareaBascomyceteslichenfungilichenalgaegreenalgaeFig.
4RelativeamountsofclonenumbersoflargephylogeneticgroupsinwallareasAandBFig.
5MelaninproductioninCladosporiumandPhaeococcomycesstrains.
Cladosporium(a)andPhaeococcomyces(b)onsolidmedium.
cCladosporiumstraininliquidculture;vegetativehyphaeformglobulesduetoculturingconditionsandshowadarkstain.
dGrowthofCladosporiumwithoutformationofmelaninafterseveralculturepassages1718EnvironEarthSci(2011)63:1713–1722123growthexperimentinFig.
1illustratesthatCladosporium,likeallotherisolates,isabletogrowinvasiveinagarmediacontainingasuspendedfractionofcrushedsand-stone.
Oneascomycete(Beauveriabassiana)couldbeobtainedinpureculture,butnotfromtheclonebanks.
TheformationofmelanininsolidandliquidculturesisshowninFig.
5a–c.
Themelanisedisolatesexhibitthick,multi-layeredcellwalls(Fig.
6).
InPhaeococcomyces,twochemicallydistinctcellwalllayerscouldbeobserved:theinnerlayerislabeledbythelectinmarkerconcanavalinA(cf.
Hallmannetal.
2010[thisissue]),i.
e.
theConA-goldparticlesbindtothisfeature.
Anoutermostlayerconsistsoflessdenselypackedextracellularpolymers(exopolymers;Fig.
6a,b).
InCladosporiumisolates,thicklayersofexopolymersbetweenadjacentcellscouldbeobserved(Fig.
6c).
Thewallsareapproximately400nminthick-ness(Fig.
6d).
AliquidcultureshowninFig.
5dillustratesthatmelaninproductionmayalsogetlostafterseveralpassagesofculturinginthelaboratory.
Thereisastrikingdifferenceincellwallthicknessbetweenmelanisedandnon-melanisedCladosporiumisolates(Fig.
7).
Thenon-melanizedcellwallappearsbyafactorof10thinner,withoutanysignofexopolymerformation(Fig.
7b).
Althoughthemelanisedcellwallappearsthick,themelaninitselfrepresentsjustasmall,butveryrigidpro-portionofthecell.
WhileitwasnotpossibletoextractmelaninfromtheCladosporiumisolates,distinctmelanincellwallfragments(''melaninghosts'')fromPhaeococc-omycescouldberetrieved.
Here,themelaninrepresentsonedistinctlayerofthecellwallthatcouldbeisolatedafterharshtreatmentwithproteolyticandglycolyticenzymesaswellasboilinginhydrochloricacid.
Evenafterthistreatment,theoriginalshapeofthecellwallwasstillpreserved(Fig.
8).
Fig.
6PhaeococcomycesandCladosporiumcellwalls;transmissionelectronmicroscopyofultrathinsections.
a,bPhaeococcomycesshowingamultilayeredcellwall(arrows)withanoutermostexopolymerlayer.
bDetailwithaConA-goldlabeledwall(arrows;goldlabelencircled)andanunlabeledoutermostexopolymerlayer(asterisk).
Cladosporiumstrain:crosssectionsofthreecells(c),embeddedinanextracellularmatrix(asterisks).
Multilayeredcellwallofasinglecell(d)EnvironEarthSci(2011)63:1713–17221719123DiscussionThisstudyisfocusedonascomycetefungi,buttheclonelibrariesrevealedalsogreenalgalclones.
TheselectedprimerpairexhibitsabroadspecicityforITSsequencesoffungal(aswellasalgal)organismsandhasalreadybeensuccessfullyappliedforasimilarstudy(BerdoulayandSalvado2009).
However,aphylogeneticanalysiscom-prisingallphylotypeswithinfungi(andothereukaryoticmicroorganisms)wouldrequireawholesetofprimers(AndersonandCairney2004andreferencestherein).
Thus,thoughwecouldstatecleardifferencesbetweenthewallareas,thewholediversityofpresentphylotypes,ase.
g.
analyzedinastudyofrock-inhabitingfungirelatedtoDothideomycetes,couldnotberetrieved(Ruibaletal.
2009).
Itshouldbenotedthatalsothelackofsequenceinformationfromwell-characterizedisolatesinthepublicdatabaseslimitsthe''taxonomicresolution''inourapproach(cf.
AndersonandCairney2004).
Hence,some-timesjustlowsequencesimilaritiesofthecloneswithalreadyknownrelativespeciescouldberetrieved(cf.
Table1).
Especially,thedataonlichenascomycetegeneramustbeinterpretedcarefullyandshallbetakenasanindicatorforthepresenceofascomycetesinvolvedinlichensymbiosis,butnotnecessarilyfortheoccurrenceofadenedlichenspecies.
Generally,thesignicantdifferencesbetweenascomy-cetefungiondifferentwallsectionsofthe''BurgGlei-chen''areobvious.
Thoughallsamplesinthisstudyweretakenfromsandstones,someimpactfromsurroundinglimestonelithologies(inareaB),nesoilinwalljointsandmortarsmayinuencedirectlyorindirectlythesituation(pH,availablenutrientsorions)forcolonizingmicroor-ganisms.
Particularly,gypsum-containingmortarinwallareaA(cf.
Hoppertetal.
2010)mayhaveinuencedspeciesdiversityonthissite.
Moreover,openwalljointsinareaBprovidenumeroussmallnichesfordepositionsofsoil,moisture,birddroppingsandothernutrientsourcesthatmayinuencemicrobialgrowth.
Theseeffectscannotbecompletelyexcludedinmost''eld''situations,andaredifculttoquantify.
Thereis,however,nodirectevidencefortheinuenceofthelimestoneinareaB.
Otherwise,morelichenfungalclonesderivingfromcalcicolousandornitrophilouslichensshouldbeexpected(cf.
Arinoetal.
1997),whichis,infact,notthecase.
Generally,wallareaAisdirectlyexposedtosunlight,andisthereforemoresubjectedtodesiccationstressthantheW-exposedwallareaB,directlylocatedintheshadowofanadjacenttower(cf.
Fig.
2).
Clearly,lichenfungiandlichenalgaerepresentamajorpartofthemicrobialoraonthesun(ESE)-exposedwallsurface.
AttheW-exposedwallsurface(areaB),thenon-lichenizedblackfungiSarcinomycespetricolaandPhae-ococcomyceschersonesosaswellasStichococcusmirabilisandotherStichococcus-relatedalgalclonescouldberetrievedinhighabundance,butclonesofnon-lichenizedascomycetesaswellaslichen-associatedgenerawererare.
SarcinomycesandPhaeococcomyceswerealsopresentinareaAaccountingforbroadecologicalamplitudesoftheseorganisms(cf.
Wollenzienetal.
1997;BogomolovaandMinter2003;Michailyuk2008;Hallmannetal.
2010[thisissue]).
Sarcinomyces,however,couldonlyberetrievedinlowabundancefromareaA.
IthastobediscriminatedbetweentheStichococcusmirabilis-relatedclones(abun-dantinbothareas),andclones,moredistantlyrelatedtothegenusStichococcus(''Stichococcus-related''inTable1).
ThelattergroupcouldbeclearlyassignedexclusivelytowallareaB(cf.
Table1).
Fig.
7Cellwallswithandwithoutmelaninincomparison;trans-missionelectronmicroscopyofultrathinsections.
Cladosporiumstrain,liquidculture.
aMelanin-producingcellincrosssectionwithamultilayeredcellwall(arrows)ofseveral100nminthickness(cf.
Fig.
5c).
bThincellwall(betweenbotharrows)ofsometensofnm(non-melanisedvariant,cf.
Fig.
5d)1720EnvironEarthSci(2011)63:1713–1722123Thesedataimplythatlichenizedorganismsaresuc-cessfulcompetitorsonareaA,comparedwithsomenon-lichenizedgreenalgae,butalsocomparedwiththeblackfungusSarcinomyces.
TheequaldistributionofPhaeo-coccomyceschersonesos-andStichococcusmirabilis-rela-tedclonesinbothareasindicatethatsomespeciesremainobviouslycompletelyunaffected.
InwallareaB,althoughlichencolonizationwasobservable,non-lichenizedfungiandalgaedominated.
Itmaybepossiblethattherathermoistandnutrient-richconditionsaremorefavor-ablefornon-lichenizedgeneralists(cf.
HoppertandKo¨nig2006).
Mostoftheascomycetes,eitheridentiedbytheirsequencesorisolatedfromthestonesurfaceareknownasmelanisedstrains.
Althoughmelanisationisalsoknownfromlichenascomycetes,thenon-lichenizedgenerahavebeenintensivelystudiedwithrespecttotheirpigmentation(e.
g.
Diakumakuetal.
1995).
Besidesendolithicgrowth(inparticular,theformationofmicropits),pigmentationisanobvioushazardonstonesurfacescausedbytheseorgan-ismsonstonesurfaces.
Thiseffectisratherimportantfortheappearanceofsmoothsculpturedsurfaces(especiallymarble)thanforthenaturalbuildingstoneaspresentedhere.
However,ithastobekeptinmindthatanysurfacecolorofabuildingstoneisdarkenedbythemelanisedorganisms.
Incontrasttothegreencolorofalgae(andsomebrightcolorsofcrustoselichens),thisdarkeningisnotperceivedasa''biogenic''stain,butratherasanaturalcolorofthestoneorasasuccessivedarkeningbyotherfactors,e.
g.
sootdeposits.
Melanizationisanessentialfeatureforprotectionagainsthighlightintensities,ultravioletandevenionizingradiation(BellandWheeler1986;DadachovaandCasa-devall2008.
However,melaninisnotessentialforgrowthinthedarkandmaybenotexpressedinisolatesgrownunderlaboratoryconditions(Fig.
5).
Accordingly,inlaboratoryculturesofCladosporiumisolates,justverythincellwallscouldbeobserved.
TheisolationprocedureofmelaninsfromcellwallsofPhaeococcomycesillustratestherigidityofthemelan-isedcellwall.
Evenboilingindilutedhydrochloridesolutionoverseveralhoursdidneitherdestroythemel-anisedcellwalllayernorthemoleculeitself.
Allotherfeaturesofthecell,includingallstructuresofthecellenvelopeweredestroyed(Fig.
8).
Onbuildingstone,aftercelldeathanddecayofallotherorganiccom-pounds,themelanisedcellwallfragmentsremainonthesiteforrelativelylongtimes.
Sincethelamentousfungiareendolithic,theseparticlesarenotjustattachedtothebuildingsurface,butaredepositedindeeperlayersofthematerial.
ConclusionAlthoughcolonizationofbuildingsurfacesbymicroor-ganismsandtheircontributiontobiogenicweatheringisawellknownfact,differencesinthespeciescompositionorinspeciesdiversityhasbeenrarelyaddressed.
Thepre-sentedstudyshowsacleardistinctionbetweencertainspecialists,justpresentineitherofthebothwallareasunderinvestigationandalownumberofgeneralists.
Organismsfrombothgroupsmayaffectthebuildingmaterial.
Somelichensmaytakepartintheformationoflargescales(cf.
Fig.
3a)onsandstonesubstrata.
Algaeandparticularlyblackfungicontributesurfacestains.
Itislikelythatexpositionandmoistureregimestronglyinu-encethedominanceofeitherofthesegroups,butdoesnotnecessarilyreduceorevenexcludealgalorfungalgrowth.
Thus,alsointerventioninmoistureregimesonbuildingsurfacesmaychange,butnotnecessarilyreducemicrobialgrowthonbuildingmaterial.
Fig.
8''Melaninghosts''ofPhaeococcomyces,transmissionelectronmicroscopyofultrathinsections.
aCrosssection.
bSagittalsection,depictingtheareaofaformerseptum(asterisk)EnvironEarthSci(2011)63:1713–17221721123AcknowledgmentsFundingofthisprojectbytheDBU(DeutscheBundesstiftungUmwelt)isgratefullyacknowledged.
OpenAccessThisarticleisdistributedunderthetermsoftheCreativeCommonsAttributionNoncommercialLicensewhichper-mitsanynoncommercialuse,distribution,andreproductioninanymedium,providedtheoriginalauthor(s)andsourcearecredited.
ReferencesAndersonIC,CairneyJWG(2004)Diversityandecologyofsoilfungalcommunities:increasedunderstandingthroughtheappli-cationofmoleculartechniques.
EnvironMicrobiol6:769–779ArinoX,Gomez-BoleaA,Saiz-JimenezC(1997)Lichensonancientmortars.
IntlBiodeteriorBiodegrad40:217–224AscasoC,WierzchosJ,CastelloR(1998)Studyofthebiogenicweatheringofcalcareouslitharenitestonescausedbylichenandendolithicmicroorganisms.
IntlBiodeteriorBiodegrad42:29–38BellAA,WheelerMH(1986)Biosynthesisandfunctionsoffungalmelanins.
AnnuRevPhytopathol24:411–451BerdoulayM,SalvadoJC(2009)Geneticcharacterizationofmicro-bialcommunitieslivingatthesurfaceofbuildingstones.
LettApplMicrobiol49:311–316BogomolovaEV,MinterDW(2003)Phaeococcomyceschersonesos,anewmicrocoloniallithobionticfungusfrommarbleinCher-sonesus(Crimea,Ukraine).
Mycotaxon86:195–204CookeWB(1961)Ataxonomicstudyinthe''blackyeasts''.
Mycopathologia17:1–43DadachovaK,CasadevallA(2008)Ionizingradiation.
Howtocope,adapt,andexploitwiththehelpofmelanin.
CurrOpinMicrobiol11:525–531DiakumakuE,GorbushinaAA,KrumbeinWE,PaninaL,Sou-kharjevskiS(1995)Blackfungiinmarbleandlimestones-anaesthetical,chemicalandphysicalproblemfortheconservationofmonuments.
SciTotalEnviron167:295–304Fla¨rdhK(2003)GrowthpolarityandcelldivisioninStreptomyces.
CurrOpinMicrobiol6:564–571GeitmanA,EmonsAMC(2000)Thecytoskeletoninplantandfungalcelltipgrowth.
J.
Microscopy198:218–245GorbushinaAA(2007)Lifeontherocks.
EnvironMicrobiol9:613–631GorbushinaAA,KrumbeinWE(2000)Rockdwellingfungalcommunities:diversityoflifestylesandcolonystructure.
In:SeckbachJ(ed)Journeytodiversemicrobialworlds.
Kluwer,Amsterdam,pp317–334GorbushinaAA,KrumbeinWE,HammanCH,PaninaL,Soukharjev-skiS,WollenzienU(1993)Roleofblackfungiincolourchangeandbiodeteriorationofantiquemarbles.
GeomicrobiolJ11:205–221HallmannC,Ru¨drichJ,EnseleitM,FriedlT,HoppertM(2010)Microbialdiversityonamarblemonument—acasestudy.
EnvironEarthSci(thisissue).
doi:10.
1007/s12665-010-0772-3)HattenschwilerS,TiunovAV,ScheuS(2005)Biodiversityandliterdecompositionsystemsinterrestrialecosystems.
AnnRevEcolEvolSyst36:191–218HoppertM(2003)Microscopictechniquesinbiotechnology.
Wiley-VCH,WeinheimHoppertM,HolzenburgA(1998)Electronmicroscopyinmicrobi-ology.
SpringerPublications,HongkongHoppertM,Ko¨nigS(2006)Thesuccessionofbiolmsonbuildingstoneanditspossibleimpactonbiogenicweathering.
In:FortR,AlvarezdeBuergoM,Gomez-HerasM,Vazquez-CalvoC(eds)Heritage,weatheringandconservation.
Taylor&Francis,London,pp311–315HoppertM,FliesC,PohlW,Gu¨nzlB,SchneiderJ(2004)Colonizationstrategiesoflithobionticorganismsoncarbonaterocks.
EnvironGeol46:4212–4428HoppertM,HallmannC,StannekL,FritzlarD,EnseleitM(2010)Makro-undMikroorainFugeundGestein.
In:SiegesmundS,HoppertM(eds)DieDreiGleichen—Baudenkma¨lerundNaturraum.
EditionLeipzig,Leipzig,pp254–263MichailyukTI(2008)TerrestriallithophilicalgaeinagranitecanyonoftheTeterivRiver(Ukraine).
Biologia63:824–830RosasAL,NosanchukJD,GomezBL,EdensWA,HensonJM,CasadevallA(2000)Isolationandserologicalanalysesoffungalmelanins.
JImmunolMethods244:69–80RuibalC,GueidanC,SelbmanL,GorbushinaAA,CrousPW,GroenewaldJZ,MuggiaL,GrubeM,IsolaD,SchochCL,StaleyJT,LutzoniF,DeHoogGS(2009)Phylogenyofrock-inhabitingfungirelatedtoDothideomycetes.
StudMycol64:123–133Saiz-JimenezC(1995)Microbialmelaninsinstonemonuments.
SciTotalEnviron167:273–286SimonovicovaA,GodyovaM,SvecJ(2004)Airborneandsoilmicrofungiascontaminantsofstoneinahypogeancemetery.
IntBiodeterBiodegrad54:7–11SpurrAR(1969)Alow-viscosityepoxyresinembeddingmediumforelectronmicroscopy.
JUltrastructRes26:31–43StaleyJT(1968)ProsthecomicrobiumandAncalomicrobium:newprosthecatefreshwaterbacteria.
JBacteriol95:1921–1942SteinbergG(2007)Hyphalgrowth:ataleofmotors,lipids,andtheSpitzenko¨rper.
EukaryotCell6:351–360SteringerK,DeBaereR,deHoogGS,DeWachterR,KrumbeinWE,HaaseG(1997)ConiosporiumperforansandC.
apollinis,twonewrock-inhabitingfungiisolatedfrommarbleintheSanctuaryofDelos(Cyclades,Greece).
AntonievanLeeuven-hoek72:249–263Stu¨ckH,Ru¨drichJ,SiegesmundS(2011)WeatheringbehaviourandconstructionsuitabilityofdimensionstonesfromtheDreiGleichenarea(Thuringia,Germany)(thisissue)TrinciAPJ,SaundersPT(1977)Tipgrowthoffungalhyphae.
JGenMicrobiol103:243–248WainrightM,AliTA,BarakhF(1993)Areviewoftheroleofoligotrophicmicroorganismsinbiodeterioration.
IntBiodeterBiodegrad31:1–13WirthV(1995)DieFlechtenBaden-Wu¨rttembergs,2ndedn.
Ulmer,StuttgartWollenzienU,deHoogGS,KrumbeinWE,UrziC(1995)Onisolationofmicrocolonialfungioccurringonandinmarbleandothercalcareousrocks.
SciTotalEnviron167:287–294WollenzienU,deHoogGS,KrumbeinW,UijthofJMJ(1997)Sarcinomycespetricola,anewmicrocolonialfungusfrommarbleintheMediterraneanbasin.
AntonievanLeeuwenhoek71:281–2881722EnvironEarthSci(2011)63:1713–1722123

HostKvm5.95美元起,香港、韩国可选

HostKvm发布了夏季特别促销活动,针对香港国际/韩国机房VPS主机提供7折优惠码,其他机房全场8折,优惠后2GB内存套餐月付仅5.95美元起。这是一家成立于2013年的国外主机服务商,主要提供基于KVM架构的VPS主机,可选数据中心包括日本、新加坡、韩国、美国、中国香港等多个地区机房,均为国内直连或优化线路,延迟较低,适合建站或者远程办公等。下面分享几款香港VPS和韩国VPS的配置和价格信息。...

FBICDN,0.1元解决伪墙/假墙攻击,超500 Gbps DDos 防御,每天免费流量高达100G,免费高防网站加速服务

最近很多网站都遭受到了伪墙/假墙攻击,导致网站流量大跌,间歇性打不开网站。这是一种新型的攻击方式,攻击者利用GWF规则漏洞,使用国内服务器绑定host的方式来触发GWF的自动过滤机制,造成GWF暂时性屏蔽你的网站和服务器IP(大概15分钟左右),使你的网站在国内无法打开,如果攻击请求不断,那么你的网站就会是一个一直无法正常访问的状态。常规解决办法:1,快速备案后使用国内服务器,2,使用国内免备案服...

LOCVPS新上韩国KVM,全场8折,2G内存套餐月付44元起_网络传真服务器

LOCVPS(全球云)发布了新上韩国机房KVM架构主机信息,提供流量和带宽方式,适用全场8折优惠码,优惠码最低2G内存套餐月付仅44元起。这是一家成立较早的国人VPS服务商,目前提供洛杉矶MC、洛杉矶C3、和香港邦联、香港沙田电信、香港大埔、日本东京、日本大阪、新加坡、德国和荷兰等机房VPS主机,基于KVM或者XEN架构。下面分别列出几款韩国机房KVM主机配置信息。韩国KVM流量型套餐:KR-Pl...

wallbase为你推荐
自然吸气和涡轮增压哪个好汽车涡轮增压好还是自然吸气好电视直播软件哪个好电视直播软件哪个好绝地求生加速器哪个好玩绝地求生用什么加速器好啊?苹果手机助手哪个好苹果手机助手哪个好,苹果手机助手推荐?美国国际集团全球500强有哪些企业是美国的美国国际东西方大学凭高考成绩可以申请哪些海外大学?51空间登录51空间怎么进YunOSyunOS是手机里的什么软件系统啊?360云盘下载别人在百度知道给了你360云盘资源,怎么在360云盘使用????360云盘同步版360云盘和360云盘同步版有什么区别?哪个更好用?
域名商 dns是什么 xfce win8.1企业版升级win10 12306抢票助手 phpmyadmin配置 免费高速空间 33456 华为云盘 空间首页登陆 lick 免费的域名 杭州电信宽带优惠 美国迈阿密 alexa世界排名 ubuntu安装教程 asp简介 阿里云宕机故障 卡巴斯基免费版下载 游戏服务器 更多