domainwallbase

wallbase  时间:2021-01-28  阅读:()
Therelativeroleofpatientphysiologyanddeviceoptimisationincardiacresynchronisationtherapy:AcomputationalmodellingstudyOnlineSupplementThissupplementprovidesadetailedaccountofthecomputationalmodelusedintheabovearticle,andtheprocessforitspersonalisationtoclinicaldata.
1ComputationalModelWedevelopedaweaklycoupled[1]modelofcardiacelectromechanics,combiningfourmaincomponents:amonodomainmodelofelectrophysiology,usingthetenTusschercellmodel[2]ahyperelasticrepresentationofmechanics,usingtheGuccioneconstitutivelaw[3]aphenomenologicalmodelofactivecontraction,basedonthatbyKerckhosetal.
[4]athreeelementWindkesselmodelofafterloadinejection1.
1ElectrophysiologyModelWeusedaspecialisedelectrophysiologyniteelementsoftware,theCardiacArrhythmiaRe-searchPackage(CARP)[5],forthesimulationofcardiacelectrophysiology.
CARPisamatureandhighlyoptimisedsoftwareforbidomainandmonodomainsimulationofcardiacelectro-physiology,developedattheMedicalUniversityofGraz(Graz,Austria)andtheUniversityofBordeaux(Bordeaux,France).
CardiacelectrophysiologywasmodelledinCARPusingthemonodomainequationχCmVt+Iion=·(σV)(1)1whereχisthecellmembranesurfacetovolumeratio,Cmisthecapacitanceofthecellmem-braneperunitarea,Visthetransmembranepotential,Iionistheioniccurrent,andσisthetissueconductivitytensor.
ThetransmembraneioniccurrentIionwasmodelledwiththetenTusschercardiaccellmodel[2].
Thiswasusedasalthoughitisnotthesimplestavailable,isasucientlydetailedhumanmodelthatiscomputationallytractableonanorganscalewhenusinganecientsimulationpackageandhighperformancecomputing(HPC)resource[6].
Atetrahedralmeshrepresent-ingtheanatomyofthemyocardiumwasrequired,withaspatialresolutionof250m.
Thisresolutionrepresentedacompromisebetweentractablemeshsizeandsolutionaccuracy[7,8].
Tissueconductivitywasdenedinthemodelashomogeneousacrosstheventriclesandtrans-verselyisotropicwithrespecttothemyobreorientations.
1.
1.
1InitialConditionsToaccountforthefrequencydependenceofthecellmodel,wepacedanindividualcelltoalimitcycleat1Hzfor500beats.
Theisolatedcelllimitcyclewasusedasanapproximationforthelimitcycleintissue.
Thelimitcyclereachedbythiscellmodelwasusedastheinitialstateofthecellmodelsinthewholeheartsimulation.
Stimuliweredenedas1mm3cubesinthemyocardium,representingboththeintrinsicstimuliintherightventricle(RV)andseptumforleftbundlebranchblock(LBBB)sinusrhythmandthepacingleadsincardiacresynchronisationtherapy(CRT).
Withinthedenedvolumes,astimuluscurrentof100Acm3isaddedtothemonodomainequations,initiatingdepolarisationofthecellmodel.
1.
1.
2SimulationSetupandExecutionSimulationswereinitiallyrunusingCARPonARCHER(http://www.
archer.
ac.
uk/),theUnitedKingdomnationalHPCresource,using288coresfor2.
54hours.
Activationtimes,asde-terminedbythetimeofmaximumgradientofthethetransmembranepotential,wereexportedbythesimulationsoftware.
1.
2MechanicsModelThemodelofcardiacmechanicsincorporatedahyperelasticrepresentationofpassivetissuebehaviourusingtheGuccioneconstitutivelaw[3],aphenomenologicalmodelofactiveten-2siongenerationbasedonthemodelbyKerckhosetal.
[4]andathreeelementWindkesselmodeltorepresenttheafterloadboundaryconditions.
Underthisquasi-staticapproximation,theequationsofmotiontobesolvedare·σ+f=0(2)whereσistheCauchystresstensor,andfisthebodyforceperunitvolume.
ItisconvenienttosubstituteinthesecondPiola-KirchhostresstensorS,whichisrelatedtoσbyσ=J1FSFT(3)whereF=xXisthedeformationgradienttensorandJ=detFistheJacobeandetermi-nant.
InthedenitionofF,thereferencecongurationXisthecongurationinwhichthebodyisstressfree,oftenreferredtoastheunloadedconguration,andxisthedeformed,orloaded,congurationofthebody.
ThesymbolsXandxhererepresentthestatevectorsofthedescribedcongurations[9].
Smaythenbecalculatedasthesumofapassivecomponent,determinedbyastrainenergyfunctionW(E),andanactivecomponentSabyS=12WE+WETPC1+Sa(4)whereC=FTFistherightCauchy-Greendeformationtensor,E=12(CI)istheGreen-LagrangestraintensorandPisthehydrostaticpressure[9].
SimulationswereimplementedusingContinuumMechanics,Imageanalysis,Signalpro-cessingandSystemIdentication(CMISS)(http://www.
cmiss.
org/),developedattheUniver-sityofAuckland(Auckland,NewZealand).
CMISSisamature,parallelisedcode,andwasalreadycapableofsolvinglargedeformationcardiacmechanicswiththeGuccionemodel.
CardiacmechanicsweresolvedusingtricubicHermitebasisfunctionstodescribethege-ometryanddisplacementsofthemyocardium.
CubicHermiteelementsprovideasuccinct,C1continuousdescriptionofthecardiacanatomy.
Inaddition,whentheincompressibilityconstraintisaddedtothemodel,anadditionalhydrostaticpressureeldmustbeintroducedtotheconstitutiveequations.
Theinterpolationschememustbeofalowerorderthanthatofthegeometry,soacubicbasispermitsuseofalinearbasisforthehydrostaticpressurevariable,andthuscontinuousstressesacrosselementboundaries[10].
31.
2.
1PassiveTissueModelTomodelthepassivebehaviourofthemyocardium,weusedamodiedGuccioneconstitu-tivelaw[11],whichconsidersmuscletissuetobehyperelasticandanisotropicwithprincipalcomponentsalignedwiththemyobrestructure.
ThestrainenergyWisgivenbyW=C1eQ1(5a)whereQ=C2E2+C3E2ss+E2nn+2E2ns+2C4E2fs+E2nf(5b)E,EssandEnnarethecomponentsoftheGreen-LagrangestraintensorEinthebre,sheetandsheetnormaldirections,respectively,andEns,EfsandEnfarethecorrespondingshearstrains.
Ci(i∈{1,2,3,4})arethemodelparameters.
1.
2.
2ActiveTensionWeusedaphenomenologicalmodelofactivetension,originallydevelopedbyKerckhosetal.
[4],andmodiedtoreducethenumberofparameterswhilemaintainingrelevancetoten-siongenerationandsystolicfunction[12].
TheactivetensioninthedirectionofthemyocardialbresTawasgivenbyTa=T0φtanh2tctrtanh2tmaxtctdif0(6a)wheretcisthetimeaftertheonsetofcontraction,φisthenonlinearlengthdependentfunctionφ=tanh(a6(λa7))(6b)inwhichλisthestretchratiointhebredirection,andtr,whichregulatestherisetimeofthetensiontransient,isgivenbytr=tr0+a4(1φ)(6c)Thereare7parametersinthismodel;thepeakisometrictensionT0,thedurationoftensiongenerationtmax,thebaselineupstroketimeconstanttr0,thedownstroketimeconstanttd,thelengthdependenceoftheupstroketimeconstanta4,thedegreeoflengthdependencea6,andtherelativesarcomerelengthwherenoactivetensionisgenerateda7.
4Thetimeofmechanicalcontractionwasdeterminedbymappinglocalactivationtimesfromthemodelofcardiacelectrophysiologytothemechanicsmesh,plusaxedelectromechanicaldelay,whichisthedelayfromthedepolarisationofthemyocytecellmembranetothestartoftensiongenerationinthemyobres.
Thelocaltimerelativetotheonsetofmechanicalcontractiontcwasthereforecalculatedbytc=t(ta+tdelay)(7)wheretaisthelocalactivationtime,tdelayistheelectromechanicaldelay,andtisthecurrenttimeinthesimulationrelativetotheonsetofventriculardepolarisation.
LocalactivationtimestaweremappedfromthenodesofthetetrahedralmeshusedforelectrophysiologytotheGaussianquadraturepointsofthecubicHermitemeshusinganearestneighbourapproach.
ActivetensionwasincludedinthelargedeformationmechanicsequationsbyaddingitintothesecondPiola-KirchhostresstensorasshownaboveinEq.
4.
1.
2.
3BoundaryConditionsIsovolumetricconstraintswereimposedontheventricularcavitiesduringtheisovolumetriccontraction(IVC)andisovolumetricrelaxation(IVR)phases.
Inejection,thethreeelementWindkesselmodelwasusedtoregulateoutowinaphysiologicalway.
Thismodelisde-scribedbytheordinarydierentialequation(ODE)dUdt=PZRC+1ZdPdt1ZC+1RCU(8)whereUistheowrateofbloodoutoftheventricle,Pistheventricularpressure,Zistheaorticresistance,andRandCaretheresistanceandcomplianceoftheperipheralarterialcirculationrespectively.
Aswewereprimarilyinterestedinsystolicfunctioninthisstudy,weadoptedasimpliedandfastmodelofdiastoletoallowustocompletethefullheartcycle.
Theventricularpressureissetwithaprescribedfunctionalform.
Inadditiontotheaboveventricularcavityboundaryconditions,werestrictthemotionofthenodesatthebaseofthecomputationalmesh.
Withthemeshalignedsuchthatthebaseliesinthexyplane,motionofthebaseinthezdirectionispreventedbyconstrainingboththenodaldisplacementsandoutofplanederivativesofthedisplacementeld.
Thisrepresentstheeectofthestivalveplaneoncardiacmechanicsandsignicantlyimprovesthenumericalstabilityofthemodel.
Twonodesarealsorestrictedintheirmotionwithintheplane,toprevent5arbitraryrigidbodymotionandrotation,withoutimposingarticialconstraintsonthesolvedstate.
1.
2.
4SolutionProcedureSimulationsofcardiacmechanicswithCMISSwereexecutedontheHPCresourceattheDepartmentofBiomedicalEngineeringatKing'sCollegeLondon,using4coresfor1420hours.
2PersonalisationWorkowThepersonalisationofourmodelofcardiacelectromechanicsinvolvedmanysteps,butcangenerallybebrokendownintothreemajorsections;generationofapersonalisedcardiacgeometry,personalisationofelectrophysiologymodelinputsandparameters,andttingofmechanicsmodelinputsandparameters.
AbreakdownofthewholeworkowcanbeseenvisuallyinFig.
1.
2.
1GeometryPersonalisationOurmodelofcardiacelectromechanics,asintroducedinSection1,usedtheniteelementmethodtosolvetheequationsdescribingcardiacelectrophysiologyandmechanicalcontrac-tion.
Therstpartofourpersonalisationworkowwasthereforethegenerationofacomputa-tionalmeshwhichisanatomicallyaccurateandpatientspecic.
Asdescribedinthissection,thiswasderivedfromthepatient'sanatomicalmagneticresonanceimaging(MRI),whichprovidesadetaileddescriptionoftheventricularanatomy.
2.
1.
1MRISegmentationTheanatomicalMRIwassegmented,producingabinaryimagestackoftheventricles.
Seg-mentationwasperformedeitherusingitk-SNAP[13],anopensourceapplicationformanualorsemi-automaticsegmentationof3Dmedicalimages,orlaterintheprojectwasperformedusingafullyautomaticsegmentationsoftwaredevelopedbyourcollaboratorsatUniversityCollegeLondon[14].
AscanbeseeninFig.
2,theautomatedtoolsegmentedoutmanyotherregionsoftheheart,butasimplepostprocessingstepallowedabinaryimageofthemyocardialvolumetobegenerated.
6Figure1:Aowchartofthepersonalisationworkowusedinthisproject.
Ascanbeseenhere,thevariousclinicaldatawereprocessedbeforeintegrationintothemodel.
SeeSections2.
1,2.
2and2.
3fordetailofprocessingstepsingeometry,electrophysiologyandmechanicspersonalisationrespectively.
7Figure2:AutomatedsegmentationofcardiacMRI[14].
Predenedanatomicalregionswereassigneddierenttags(a),resultinginadetailedstructuralmodeloftheheart(b).
2.
1.
2MechanicsMeshGenerationThenextstepinthegeometrypersonalisationprocesswasthegenerationofaniteelementmesh.
Inourworkow,weusedacubicHermitemeshforthesimulationofcardiacmechanics.
MeshesweregeneratedusingtheautomatedcubicHermitettingapplicationdevelopedbyLamataetal.
[15,16].
Briey,atemplatemeshwitharegularellipsoidalshapewasalignedwiththesegmentationofthemyocardium.
Thistemplatewasthenwarpedtomatchthesegmentation,asillustratedinFig.
3.
Thiswasachievedbycreatingabinaryimagestackofthedomainofthemesh,thencalcu-latingawarpingeldbetweentherasterisedmeshvolumeandthebinarysegmentationusingtheSheeldImageRegistrationToolkit(ShIRT)[17].
Thiswarpingeldwasthenassim-ilatedbackontothetemplatemeshusingavariationaltechniquedescribedin[15].
Thisprocesswasrepeatedseveraltimesinaniterativeapproach,successivelyimprovingthematchbetweenmeshandsegmentation.
Oncethispersonalisationprocesswascomplete,analpost-processingstepcroppedthemeshtoensureaatbaseplane,facilitatingthelaterimpositionofboundaryconditionsinsimulations.
2.
1.
3ElectrophysiologyMeshGenerationRelativelycoarse,highordermeshescreatedbythemethoddescribedinSection2.
1.
2aresuitableforthesimulationoflargedeformationmechanics,wherestressandstraineldsare8Figure3:Customisationofatemplatemeshtothebinarysegmentation.
Anellipsoidaltem-platemesh(a)wasalignedwiththesegmentation(b),thenwarpedtomatchitsgeometryusingthetechniquedescribedin[15,16](c).
Thettedmeshisshowninpanel(d).
generallysmoothlyvarying,butsimulationofcardiacelectrophysiologyrequiresameshwithamuchnerspatialresolution.
Closetothewavefrontofelectricalactivation,therearesharpspatiotemporalgradientsinthetransmembranepotentialwhichmustberesolved.
Previousstudieshaveshownthatsub-millimetrespatialresolutionisrequiredtoachieveconvergenceinthesimulationresultwhenusingthemonodomainequations[8,18].
Forthisreason,wegeneratedaseparate,highresolutionmeshtailoredforsimulationofcardiacelectrophysiol-ogy.
MeshesweregeneratedbyrstrenderingthettedcubicHermitemeshasabinaryimagevolumewitharesolutionof200m.
ThemeshingpackageTarantula(http://www.
meshing.
at/)usedthisbinaryimagevolumetocreateahighresolution(mean250medgelength)tetra-hedralmeshoftheventricles.
AsTarantulaalsomeshedtheventriclecavitiesandtheregionsurroundingtheheart,wenallypostprocessedtheoutputmeshtoremovenon-myocardium9elements,leavingahighqualitytetrahedralmeshoftheventricles.
2.
1.
4FibreMappingImagingofmyobreorientationsinvivowasnotavailableinourpatientcohort.
Toapproxi-matetheheterogeneousbredistributionthathasbeenobservedacrossthemyocardium,weintroducedrulebasedbreeldorientationsbasedonhuman[19]andcanine[20–22]mea-surements.
Settingupbredirectionsinthemodelwasthereforenotinthetruesenseapersonalisationstep,butthebreorientationwasdependentonthepatientgeometryandsoapersonalisedrulebasedbreeldhadtobegeneratedforeachpatient.
Inthemechanicsmesh,breorientationsweredenedbyanglesrelativetothelocalξcoordinatesoftheniteelementmesh,correctedtoensureorthonormality.
TheanglesusedaregivenbelowinTab.
1.
Theseangleswereinterpolatedacrosstheelementsofthemeshwithlinearbasisfunctions.
InterpolatinganglesrelativetolocalξcoordinatesratherthanusingCartesianvectorshastheadvantagethattheirorientationcanalsobeeasilyevaluatedindeformedcongurations.
Table1:Genericbreanglesfromhumanandcaninedata[19–22]usedinthemodel.
Thebredirectionwasdenedatthefollowinganglestotheanticlockwisecircumfer-entialdirection(ξ1),whenviewedfromthebasaldirection.
Positiveanglesindicatebredirectionstowardsthebase.
RegionAngle(degrees)EndoMidEpiLVfreewallbase60060LVfreewallapex832435LVseptumbase60--LVseptumapex83--RVfreewallbase60-60RVfreewallapex60-35RVseptumbase60--RVseptumapex60--Ontheelectrophysiologymesh,breorientationsweremappedfromthemechanicsmesh.
Todeterminethebredirectionforeachelement,itscentroidwasevaluatedandthecorre-spondingelementandlocalξcoordinateinthemechanicsmeshcalculated.
ThebreanglesweretheninterpolatedatthatpointandthecorrespondingCartesianvectorevaluated.
102.
2ElectrophysiologyPersonalisationWepersonalisedandsolvedourmodelofcardiacelectrophysiologyindependentlyofmechan-ics.
Thisthereforeformsthesecondmajorpartofourpersonalisationworkow.
Beforetheinputsandparametersofthemodelwerepersonalised,theclinicaldatatobeusedforthisprocesswasprocessedintoamoredirectlyusefulformat.
2.
2.
1X-Ray–MRImageFusionWeusedX-rayimagesfromangiographytodeterminethepositionsofpacingandnon-contactmapping(NCM)studycatheters.
ThespecialisedX-ray–MRI(XMR)setupusedintheseclinicalcasesallowedcatheterlocationstobetransformedintotheMRIscannercoordinatespace,andthuswithourcomputationalmeshes.
ThisregistrationworkwasdonepreviouslybyourcolleaguesintheBiomedicalEngineer-ingdepartmentatKCL[23–25].
ProvidedwithcatheterpositionsfromtheX-rayimages,andtheappropriatetransformationmatricestoMRIscannercoordinates,thepacingcathetersandNCMpotentialmapscanbevisualisedalongwithourcomputationalmesh,asillustratedinFig.
4.
2.
2.
2Non-ContactMappingProcessingTheEnSiteNCMsystem(St.
JudeMedical,St.
Paul,MN,USA)providedthefunctionalityofexportingvirtualendocardialpotentialtracesandendocardialgeometry,butnotmapsofdepolarisationtime.
However,duetopreviouslycompletedworkonthisdataset[26],wewereabletocalculatetheseactivationtimemapsfromthepotentialtraces.
Thevirtualpotentialtraceswereprocessedusingoneoftwoalgorithms.
Therstcalculatedtheactivationtimeforeachvirtualpotentialtraceinisolationbyndingthetimeofthemax-imumpositivegradientofthesignal.
Thiswasknownastheunipolarmethod.
Thesecondalgorithm,knownastheLaplacianmethod,constructedadiscreteLaplacianoperatorusingtheNCMgeometryandappliedittothevirtualpotentialsignals.
ThetimeofthemaximumLaplacianofthesignalwastakenastheactivationtime.
Fig.
5illustratestheoutcomeofthisprocessing.
WheretheLaplacianalgorithmproducedreasonableresults,withanactivationpatterncon-sistentwithavisualinspectionofthepotentialmapsovertime,theywereusedintheremainderoftheworkow.
Otherwise,theunipolaralgorithmwasused,whichgenerallyproducedless11Figure4:RegistrationofcatheterlocationsandvirtualendocardialsurfacefromNCMwithapersonalisedniteelementmesh(red,anteriorwallremoved).
Sucharegistrationallowedtheintegrationofrealpacingsitesandendocardialpotentialinformationintothemodel.
ColoursshownontheNCMgeometryrepresentthevirtualunipolarpotential,tunedtohighlightthepropagatingdepolarisationwavefrontfromlefttoright.
spatiallysmoothresultsbutwasmorerobustinmatchingtheobservedactivationpattern.
2.
2.
3StimuliElectricalstimuliwereaddedtothemodelforbothintrinsicandpacedactivationsites,andweredenedassmall(1mm3)cubesembeddedintheappropriatesideoftheventriclewall.
Thelocationandrelativetimingofthesestimuliweredeterminedasdetailedbelow.
Stimulustimesweredeterminedrelativetosinoatrial(SA)activationasareferencepoint,althoughaswedidnotmodeltheatriaonlytherelativetimingofthestimuliwasincludedinthesimulation.
IntrinsicActivationForintrinsicactivation,wedidnotexplicitlymodelthePurkinjenetwork,butinsteaddenedactivationsitesatlocationsintheRVfreewallandseptumbelievedtocaptureitseect.
12Figure5:ExampleNCMreconstructionsurfacewith(a)samplepotentialmapsatsuccessivetimepoints(redindicatingdepolarisation)and(b)thecorrespondingprocessedactivationtimemap,usingtheLaplacianalgorithm(colourspectrumwithorangeindicatingearlyacti-vationandbluelateactivation).
PatientspecicinformationdescribingthelocationoftheearliestsiteofactivationintheRVwasnotavailable,sotheintrinsicRVfreewallactivationsitewasestimatedfromanelectrophysiologicalstudyofisolatedhumanheartsintheliterature[27].
InourmodelthetimeofstimulationofthispointwaschosentocorrespondtothebeginningoftheQRScomplexonelectrocardiogram(ECG),whichindicatesventriculardepolarisation.
Intheseptum,weaddedastimulusattheearliestlocationandtimeofdepolarisation,asseenonNCMatsinusrhythm.
PacingLeadsThelocationsofpacingleadsfromXMRimagefusionwereusedtochooseappropriatestim-ulussitesinthemodel.
Duringstandardbiventricularpacing,thecoronarysinus(CS)andrightventricleapex(RVA)leadswerepaced100msafterSAnodepacingbythehighrightatrium(HRA)lead.
TherelativetimingoftheventricularpacingleadswiththeHRAleadallowedsynchronisationofthepacedandintrinsicstimuli.
13AnexampleofpersonalisedintrinsicandpacedstimuluslocationsisshowninFig.
6.
Figure6:Stimulusvolumesweredenedassmall(1mm3)cubes(blue)embeddedinthemyocardium(red).
TheseptumandRVintrinsicactivationsiteswerederivedfromNCMandliteraturerespectively,whiletheLVandRVpacinglocationswereplacedbasedonX-rayderivedcatheterlocations(yellow).
2.
2.
4ConductionBlockNoneofthepatientsinthismodellingstudyexhibitedscaronMRI,sothisdidnotneedtobeincorporatedintothemodel.
However,insomecasesNCMrevealedalong,narrowregionontheanteriorwalloftheLVthroughwhichtheactivationwavedidnotpropagate.
Instead,theactivationwavehadtotaketheslowerpatharoundthisblockregion.
Theseregionsappearedtobeconsistentbetweenthevariousactivationmodesforwhichdatawasavailable.
Inordertocharacterisethisbehaviourinourmodel,wedenedthintransmuralregionsofverylowtissueconductivity.
AnexampleofsuchablockregionisshowninFig.
7.
2.
2.
5TissueConductivityInordertopersonalisethemodelofcardiacelectrophysiologytoeachpatient,wettedthetissueconductivitytotheavailableelectrophysiologicaldata.
Activationmapsdidnotshowcontinuousprogressionoftheactivationwave,howevernoiseinthesignalattributableto14Figure7:AnexampleofalowconductionregiontoreplicateelectricalblockobservedonNCM.
Allelementsinsidetheblueslabwereassignedaverylowconductivity.
cathetermotionartefactsanddilatedLVsizemeantthatwedidnothavesucientcondenceinthemeasurementstotaregionalconductionvalue.
Tomitigatetheimpactofsignalnoiseasingleconductivityvaluewasttedacrossthemyocardium.
Wemodelledthetissueconductivityastransverselyisotopicwithrespecttothemyobreorientations.
Weassumedaxedratioofbretocrossbreconductivitybasedonpreviousmeasurementsin[28],asttingbothconductivitiesledtoanunderconstrainedoptimisationproblem.
TheQRSduration(QRSd)wasmeasuredmanuallyfromtheECGrecordedbytheNCMsystem,usingthecalliperfeatureinthesoftwareinterface.
ThestartofthecalliperwasplacedatthelocalminimumimmediatelybeforetheQRScomplex,orimmediatelybeforethebe-ginningoftheprincipalupstrokeifnominimumwasidentied.
TheendofthecalliperwasplacedbythesamecriteriaimmediatelyfollowingtheQRScomplex,andthetimedurationcalculatedbytheNCMsystemwasrecorded.
QRSdurationsweremeasuredforthreerepre-sentativebeatsofeachactivationmode,andtheaveragewasusedfortting.
Thexedratioconductivitieswerethenttedbyasimplealgorithmbasedonsuccessivelinearinterpolation:1.
Twoinitialsimulationswererunwithlongitudinalconductivitiesof0.
3and0.
5Sm1,encompassingareasonablephysiologicalrange.
2.
Thetotalactivationtimeoftheventricleswascalculatedfromthesesimulationswithanautomaticpostprocessingstep,andcomparedwiththetargetvalue(theQRSduration).
153.
Anewtrialvalueoftheconductivitywasestimatedbyinterpolationbetweenthetwosimulationsboundingthetargettotalactivationtime,orextrapolationfromtheclosesttwoifthetargetwasnotbounded.
4.
Thistrialvaluewasthensimulatedandthecorrespondingtotalactivationtimecalcu-lated.
5.
Steps3and4wererepeateduntiltheestimatedtrialvaluewasequaltothepreviousonetothreesignicantgures.
2.
2.
6ValidationSimulatedactivationtimemapsfortheLVendocardiumwerecomparedqualitativelywiththeactivationtimemapsfromNCM.
WesimulatedthefourpacingmodalitiesmentionedinSection2.
2.
3,usingtheconductivitiesttedatsinusrhythm.
WealsocheckedforagreementbetweenthesimulatedandmeasuredtotalandtotalLVendocardialactivationtimes.
2.
3MechanicsPersonalisationCardiacmechanics,includingtissuepassivestiness,Windkesselmodelboundaryconditionsandactivecontractionmodelparameters,werettedtoavailableclinicaldata.
However,someofthisdatawasnotdirectlyusableinthemodelttingprocesssorsthadtobeprocessedintoamoredirectlyusableformat.
2.
3.
1VentricularVolumeVolumetransientswerederivedfromasegmentationofthepreclinical3Dechocardiogram(ECHO).
ThiswasdonebyexperiencedcliniciansusingtheTomTecanalysissoftware(TomTecImagingSystems,Unterschleissheim,Germany),whichallowedforrapidsemi-automatictrackingoftheLVendocardiumacrossthewholeheartcycle.
TheTomTecsoftwarepro-videdusefulclinicalmetricssuchasejectionfraction,butimportantlyalsoprovidedatraceoftheventriclevolumeovertime.
2.
3.
2VentricularPressureVentricularpressurewasrecordedduringsinusrhythmandeachpacingprotocol,withsev-eralrecordingsmadeforeachmodeofactivation.
ThePhysioMonsoftware(RadiMedical16Systems,Uppsala,Sweden)savesthisdatainaneasilyparsableformat.
Eachpressurerecordingwasrstsplitupintoseparatepressurebeats,usingmarkersde-terminedbyPhysioMonandexportedalongwiththepressuredata.
Anyectopicbeats,char-acterisedbyearly/delayedonsetofsystoleorbyabnormallyhighorlowpeakpressure,werediscarded,alongwiththetheprecedingandfollowingbeats.
Theremainingbeatswerere-sampledandaveragedforeachrecording,providingasmoothed,representativebeatforthatactivationmode.
2.
3.
3Pressure–VolumeSynchronisationPressuredatawasrstsynchronisedwithECGbyuseofdatarecordedintheNCMstudy.
Fromamanualinspectionofthe3DECHOdatafromwhichthevolumetraceswerecalcu-lated,anosetwiththepeakoftheRwaveonECGwasdetermined.
OncepressureandvolumeweresynchronisedwitheachotherthroughtheECG,apressure-volume(PV)loopwasplotted.
AnexampleofthisisshowninFig.
8.
Figure8:Resultofpressure–volumedatasynchronisationforonepatient.
Oncethepressureandvolumetraceshavebeensynchronisedintime(a),aPVloopcanbeplotted(b).
2.
3.
4WindkesselModelTheWindkesselmodelwastdirectlytoPVdata.
Usingthepressuretransientduringtheejectionphaseasaninput,thecorrespondingventricularvolumewascalculatedbyintegrating17thethethree-elementWindkesselmodelODE(Eq.
8)andtherelationofoutowUtoven-tricularvolumeU=dVdt.
TheseequationsweresolvednumericallyusingtheODEintegratorfromtheSciPy(http://www.
scipy.
org/)scienticPythonlibrary.
ThethreeparametersoftheWindkesselmodelwerettedbycalculatingaresidualbe-tweenthesimulationandclinicalvolumetrace.
Thisresidualwasthel2normoftheerrorsbetweenthesimulationandclinicalvolumetransients,augmentedbyadditionalconstraintsontheejectionfractionanddurationofejection.
Importantly,aconstraintforcingretrogradeowattheendofejectionwasintroduced.
Thisensuredphysiologicalbehaviourinthefullcoupledmodelofelectromechanicsattheendofejection,whensuchaowreversalisdetectedandthesimulationmovestotheIVRphase.
AnexampleofamodelttedusingtheaugmentedconstraintcanbeseeninFig.
9.
Figure9:ExampleofaWindkesselmodelsimulationwithparametersttedusingtheim-provedcostfunctionenforcingthepredictionofretrogradeowattheendofejec-tion.
Ascanbeseenonthesimulatedvolumetrace(a)andPVloop(b),themodelpredictstheowofbloodbackintotheventriclefromtheaorta,asindicatedbythedashedline.
Thisreverseowisnotseeninarealheartcycle,astheaorticvalveclosestopreventretrogradeow,andtheheartenterstheisovolumetricrelaxationphase.
TheWindkesselmodelparametersandthetimeofthestartofejectionwerettedtotheclinicalvolumetracewithacombinationofparametersweepsandlocalrenementusingtheimplementationofthedownhillsimplexalgorithmintheSciPyscienticPythonlibrary.
Weranalargesetofoptimisationsfromdierentinitialguesses,whichwerechosenusingafull18factorialexperimentaldesign.
Usingthisapproach,WindkesselmodelparameterswerettedfortheLV,takingaround15minutespercaseusingasinglecoreonaworkstationcomputer.
RVparameterswerenotpersonalisedduetothelackofavailablepressuredata,soweredenedrelativetotheLVparametersusingratiossourcedfromcanineandporcineexperiments[29–31].
Theseratioswere0.
35forZ,0.
125forRand4.
5forC.
2.
3.
5TissueStiffnessAsintroducedinSection1.
2.
1,themodiedGuccioneconstitutivelawbyOmensetal.
[11]has4parameters,C1toC4,whichgovernthematerial'spassivedeformation.
Wedidnothaveenoughdatatouniquelyconstraintheconstitutiveparameters,soinsteadassumedxedanisotropyratiosbasedonpreviousexperimentalmeasurementsinordertoimprovetheiden-tiabilityoftheparameterestimation[12].
TheseratioswerexedatC3=12C2andC4=14C2.
Thisallowedustorecastthestrainenergyfunction(Eq.
5)asW=C(eαQ1)(9a)whereC=C1andQ=E2+12E2ss+E2nn+E2fs+E2fn+E2ns(9b)WethenonlyneededtotthetworemainingparametersCandα.
ThiswasachievedbyttingtheLVpressure-volumerelationshiptoclinicaldatainlatediastole,whenthemyocar-diumisassumedtobequiescentandwecanneglecttheeectsofactivetension.
PersonalisedReferenceGeometryInSection2.
1wegeneratedapatientspecicmodelgeometrybasedontheenddiastolicstate.
However,whenmodellingcardiacdeformationswerequireanunloaded,orstressfree,geometry.
Toaccountforthenon-zeroenddiastolicpressureload,weperformedadeationsteptoestimatethestressfreeconguration.
Areformulationoftheniteelementequationsasdescribedin[32]wasusedtocalculatethereferencestatefromadeformedstate.
Inthisformulation,theresidualfunctionwasposedintermsofthereferencestateratherthanthedeformedstate,whichwasthensolvednumerically.
ImposingthebaseplaneboundaryconditionsintroducedinSection1.
2.
3,thereferencestatewascalculatedusingtheabovemethod.
PressuredatawasonlyavailablefortheLVsoRV19pressurewasapproximatedas50%oftheLVpressure.
Thiswasbasedontheratioofdiastolicpressuresinthetwoventriclesrecordedincanineexperiments[33,34]andintheclinic[35].
Thesolvedreferencecongurationdependedonthetissuestinessparameters,sothisstepmustberepeatedforeachstinessweexaminewhiletting.
PassiveInationCalculationofthepassivepressure-volumerelationshipfortheventricleswasdonebyapas-siveinationsimulation.
Startingfromthereferencestate,weincreasedthecavitypressurein0.
2kPaincrementsuptotheenddiastolicpressure.
Ateachpressurelevel,thevolumeoftheventriclecavitieswascalculated,andtheresultingpressure-volumerelationshipwasrecordedforlateranalysis.
AllreferencestateandsubsequentpassiveinationsimulationswererunusingCMISSonaworkstationcomputer,using4cores.
ParameterFittingTottheconstitutivelawparametersinEq.
9,weranparametersweepsonCandα.
Foreachsampledpairofparameters,wecalculatedtheassociatedreferenceconguration,andranapassiveinationsimulationuptotheenddiastolicstate.
AcostfunctionwasevaluatedwhichsampledthePVrelationshipuniformlybetween95%and100%oftheenddiastolicvolume,andcomputedthel2normofthedierencebetweentheclinicalandsimulatedpres-sures.
WealsoincludedaconstrainttoenforceaminimumLVcavityvolumeinthereferencecongurationofV50%,thevolumeat50%ejection(12VIVC+12VIVR).
A5*5fullfactorialparametersweeponCandαwasrun,withvaluesevenlyspacedontheranges10kPato20kPaand10to20respectively.
Ifasuitablematchwasnotfoundontherstsweep,extensionsorrenementsofthesweepwererun.
2.
3.
6ActiveTensionActivetensionmodelparameterswerettedtotheclinicalpressureandvolumedata.
UsingthesetupdescribedinSection1.
2.
4,simulationsofcardiacelectromechanicswererunforgivensetsofactivetensionparametervalues.
Thesimulationseachgeneratedalewithventriclepressuresandvolumesovertime,facilitatingacomparisonwithclinicaldatasuchasthatseeninFig.
10.
Notethatthedierenceinclinicalandsimulatedvolumesintherst150msinFig.
10bistobeexpected,asduringthisperiodtheLVisstillindiastole.
Sincewesimulatedonlya20Figure10:Comparisonofclinicalandsimulated(a)pressuretransients,(b)volumetransientsand(c)correspondingPVloops.
singlebeat,theLVwasplacedinitsenddiastolicstateatt=0,andremainedquiescentforsometimeduetothedyssynchronouscontractionofLBBB.
ThesimulationwasterminatedattheendofIVRasdiastolicpassivellingdoesnotaectthecalculatedcostfunctionforactivetensionmodeltting.
CostFunctionDesignAcostfunctionwasdevelopedbasedonthecalculationofmetricsdescribinggeometricalfeaturesofthepressureandvolumetransients.
Thecostfunctiontargetedglobalfeaturesofthepressureandvolumetransientsasana¨vel2normofthedierencebetweensimulatedandclinicaltransientswasfoundtobeoverlysensitivetospecicfeatures,forexampletheearlyupstrokeofthepressuretransient.
Thecalculatedmetrics,asseeninFig.
11,weredenedinasucientlyrobustwaysothatthesamealgorithmcouldbeappliedtobothclinicalandsimulationdata.
Our'geometric'costfunctioncombinedthesemetrics{pi}togetherusingthefractionaldierenceofthesimulationvaluewiththeclinicalvaluetomitigatetheeectofverydierent21Figure11:Calculatedmetricsusedinthe'geometric'costfunction.
Fromthepressuretran-sient(a),peakpressureandpeakdPdtontheupstrokewerecalculated,inadditiontoupstrokeanddownstroketimes,startingandnishingfromthetimeatwhichpressurewas5%betweenthestartingpressureandpeakpressure.
Onthevolumetransient(b),ejectionfractionandtimewerecalculated,similarlystartingfromthetimeof5%ejection.
magnitudes.
ItwascomputedasRg=r(10a)whereri=ωipclinicalipsimipclinicali(10b)and{ωi}areasetofweightsthatweremanuallyadjustedtoprioritisefeaturesdeemedmoreimportant.
TheweightsusedaregiveninTab.
2.
Table2:Componentweights{ωi}ofthe'geometric'costfunction(Eq.
10).
Residualcompo-nentsarethoseshowninFig.
11.
ComponentWeightωPeakPressure5.
0UpstrokeTime1.
0DownstrokeTime1.
0PeakdPdt1.
0EjectionFraction5.
0EjectionTime5.
0Itwasfoundnecessarytoaddanadditionalconstrainttothecostfunction,includingpres-suredatafrompacedactivationmodes.
Modelsttedwithoutthisdataexhibitedagoodt22atsinusrhythm,butfailedtoshowanysignicantchangeonpacing.
Tobringourmodelstoparametervaluesreplicatingtheresponseofthehearttopacing,simulationsofcontrac-tionunderstandardbiventricular(BiVSIM)pacingwererunandtheacutehaemodynamicresponse(AHR)calculated.
AHRiscomputedasAHR=maxdPdtpacedmaxdPdtbaselinemaxdPdtbaseline(11)wheremaxdPdtisthepeakrateofchangeofpressureontheupstroke,asseeninFig.
11.
Weposedaresponsecostwhichwasagainthefractionaldierencebetweensimulationandclini-caldataRr=AHRclinicalAHRsimAHRclinical(12)andcombineditwiththegeometriccostRgtoreachthefullcostfunctionR=αRg+(1α)Rr(13)withthenewparameterαprovidingcontrolovertherelativeweightsofthegeometricandresponsecosts.
ParameterSweepsOfthe7parametersintheactivetensionmodel(seeSection1.
2.
2fordetails),6werettedtoclinicaldata(specicallyT0,tr0,td,tmax,a4anda6),whilea7wasxedtoanexperimentallyvalidatedvalueof0.
7[36].
WesampledtheparameterspaceusingLatinhypercubesampling(LHS)[37].
LHSdesignshaveanadvantageovermoreconventionalfullfactorialdesignsinthattheyprovideagoodcoverageofallparameters'ranges,andalsohaveanadvantageoversimplerandomsamplingastheyensureamorehomogeneoussamplingdensity.
LHSalsooersthepracticaladvantagethatthenumberofsamplesisindependentofthedimensionalityoftheparameterspace.
Fittingoftheactivetensionmodelwasdoneusinganiterativeapproach.
Initialsweepswith150sampleswererunusingtheparameterrangesgiveninTab.
3,withlaternarrowersweepsreningthesearch.
23Table3:InitialactivetensionparametersweeprangesusingtheLHSdesign.
ParameterRangeUnitsT080200kPatr010100mstd80150mstmax450600msa42001000msa63712.
3.
7ValidationOncethettingprocessesoutlinedinthissectionwerecompleted,validationwasperformedbycheckingforagreementbetweenthesimulateddeformationoftheheartatsinusrhythmandthepre-implantationcineMRI.
ShortaxiscineMRIstackswereregisteredwiththemodelgeometryusingtheembeddedscannerorientationinformation.
Animageslicehalfwaybetweentheapexandbasewasse-lectedforcomparisonwithsimulationresults,andatissueboundarycontourwasgeneratedfromthemodelinthesameplaneandoverlayedontheimage.
Frameswerethengeneratedat100msintervals,andavisualcomparisondonetovalidatethatthemodelaccuratelyrepro-ducedventriculardeformationsatsinusrhythm.
2.
4EnsuringUniquenessofFitAsourcomputationalmodelofcardiacelectromechanicshasalargenumberofparametersandinputs,wemustbecarefultoensureauniquettomodeldatawhenperformingthemodelpersonalisation.
Thenecessarycomplexityofthemodelresultsinalargeandnonlinearparameterspacewithinwhichitisnotfeasibletoguaranteeuniqueness.
Ourpersonalisationapproachthereforeexploitstheabilitytoseparateseveralpartsofthemodelandtthemtodierentdataorphasesoftheheartcycle.
Asexplainedinthissupplement,tissueconductivityisttedusingECGdata(Section2.
2.
5),theWindkesselmodelisttedusingpressureandvolumetransientsduringejection(Section2.
3.
4),passivetissuestinessisttedusingthelatediastolicpressure-volumerelation(Section2.
3.
5),andthemodelofactivecontractionisttedtosystolicpressureandvolumetransients(Section2.
3.
6).
Thistargeteduseofdatawiththecomponentsforwhichtheyhavegreatestrelevanceincreasedourcapacitytoachieveaconstrainedparameterset.
24Furthermore,ourapproachfocusesonttingthoseparametersthatarepertinenttoourapplication.
Wheredatawasinsucienttopersonaliseallmodelparameters,valuesweredeterminedusingliteraturebasedmeasurementsorratiostootherparametersinordertoensureauniquet.
Thiswasthecasefortheanisotropyratioofthetissueconductivityσx/σf(Section2.
2.
5)andthesarcomerelengthratioatwhichnoactivetensionisgenerateda7(Section2.
3.
6).
AcronymsAHRacutehaemodynamicresponseCARPCardiacArrhythmiaResearchPackageCMISSContinuumMechanics,Imageanalysis,SignalprocessingandSystemIdenticationCRTcardiacresynchronisationtherapyCScoronarysinusECGelectrocardiogramECHOechocardiogramHPChighperformancecomputingHRAhighrightatriumIVCisovolumetriccontractionIVRisovolumetricrelaxationLBBBleftbundlebranchblockLHSLatinhypercubesamplingLVleftventricleMRImagneticresonanceimagingNCMnon-contactmappingODEordinarydierentialequation25QRSdQRSdurationRVrightventricleRVArightventricleapexSAsinoatrialShIRTSheeldImageRegistrationToolkitReferences[1]StevenANiedererandNicolasPSmith.
Animprovednumericalmethodforstrongcouplingofexcitationandcontractionmodelsintheheart.
ProgressinBiophysicsandMolecularBiology,96(1-3):90–111,2008.
[2]KHWJtenTusscherandAVPanlov.
Alternansandspiralbreakupinahumanventric-ulartissuemodel.
AmericanJournalofPhysiology:HeartandCirculatoryPhysiology,291(3):H1088–100,2006.
[3]JMGuccione,ADMcCulloch,andLKWaldman.
PassiveMaterialPropertiesofIntactVentricularMyocardiumDeterminedFromaCylindricalModel.
JournalofBiomechan-icalEngineering,113(1):42,February1991.
[4]RCPKerckhos,PHMBovendeerd,FWPrinzen,KSmits,andTArts.
Intra-andinterventricularasynchronyofelectromechanicsintheventricularlypacedheart.
JournalofEngineeringMathematics,47(3-4):201–216,2003.
[5]EdwardJVigmond,MattHughes,GPlank,andLJoshuaLeon.
ComputationalToolsforModelingElectricalActivityinCardiacTissue.
JournalofElectrocardiology,36(Suppl.
):69–74,January2003.
[6]StevenANiederer,LawrenceMitchell,NicolasSmith,andGernotPlank.
Simulatinghumancardiacelectrophysiologyonclinicaltime-scales.
FrontiersinPhysiology,2:14,January2011.
26[7]RHClaytonandAVPanlov.
Aguidetomodellingcardiacelectricalactivityinanatom-icallydetailedventricles.
ProgressinBiophysicsandMolecularBiology,96(1-3):19–43,January2008.
[8]StevenANiederer,EricKerfoot,AlanPBenson,MiguelOBernabeu,OlivierBernus,ChrisBradley,ElizabethMCherry,RichardClayton,FlavioHFenton,AlanGarny,ElvioHeidenreich,SanderLand,MaryMaleckar,PrasPathmanathan,GernotPlank,JoseFRodrguez,IshaniRoy,FrankBSachse,GunnarSeemann,OlaSkavhaug,andNicPSmith.
VericationofcardiactissueelectrophysiologysimulatorsusinganN-versionbenchmark.
PhilosophicalTransactionsoftheRoyalSocietyA,369(1954):4331–4351,November2011.
[9]JavierBonetandRichardDWood.
NonlinearContinuumMechanicsforFiniteElementAnalysis.
CambridgeUniversityPress,1997.
[10]MartynNash.
MechanicsandMaterialPropertiesoftheHeartusinganAnatomicallyAccurateMathematicalModel.
PhDThesis,UniversityofAuckland,1998.
[11]JeHOmens,DeidreAMacKenna,andAndrewDMcCulloch.
MeasurementofStrainandAnalysisofStressinRestingRatLeftVentricularMyocardium.
JournalofBiome-chanics,26(6):665–676,1993.
[12]StevenANiederer,GernotPlank,PhaniChinchapatnam,MatthewGinks,PabloLamata,KawalSRhode,ChristopherAldoRinaldi,RezaRazavi,andNicolasPSmith.
Length-dependenttensioninthefailingheartandtheecacyofcardiacresynchronizationther-apy.
CardiovascularResearch,89(2):336–43,February2011.
[13]PaulAYushkevich,JosephPiven,HeatherCodyHazlett,RachelGimpelSmith,SeanHo,JamesCGee,andGuidoGerig.
User-guided3Dactivecontoursegmentationofanatomicalstructures:Signicantlyimprovedeciencyandreliability.
NeuroImage,31(3):1116–28,July2006.
[14]MariaAZuluaga,MJorgeCardoso,MarcModat,andSebastienOurselin.
Multi-atlasPropagationWholeHeartSegmentationfromMRIandCTAUsingaLocalNormalisedCorrelationCoecientCriterion.
InFIMH2013,pages174–181.
27[15]PabloLamata,StevenNiederer,DavidNordsletten,DavidCBarber,IshaniRoy,DRodHose,andNicSmith.
Anaccurate,fastandrobustmethodtogeneratepatient-speciccubicHermitemeshes.
MedicalImageAnalysis,15(6):801–13,December2011.
[16]PabloLamata,MatthewSinclair,EricKerfoot,AngelaLee,AndrewCrozier,BojanBlazevic,SanderLand,AdamJLewandowski,DavidBarber,SteveNiederer,andNicSmith.
Anautomaticserviceforthepersonalizationofventricularcardiacmeshes.
Jour-naloftheRoyalSocietyInterface,11(91):20131023,February2014.
[17]DCBarber,EOubel,AFFrangi,andDRHose.
Ecientcomputationaluiddy-namicsmeshgenerationbyimageregistration.
MedicalImageAnalysis,11(6):648–62,December2007.
[18]RHClayton,OBernus,EMCherry,HDierckx,FHFenton,LMirabella,AVPanlov,FrankBSachse,GSeemann,andHZhang.
Modelsofcardiactissueelectrophysiology:Progress,challengesandopenquestions.
ProgressinBiophysicsandMolecularBiology,104(1-3):22–48,2011.
[19]RAGreenbaum,SYHo,DGGibson,AEBecker,andRHAnderson.
Leftventricularbrearchitectureinman.
BritishHeartJournal,45(3):248–63,March1981.
[20]IJLeGrice,PJHunter,andBHSmaill.
Laminarstructureoftheheart:amathematicalmodel.
TheAmericanJournalofPhysiology,272(5Pt2):H2466–76,May1997.
[21]TPUsyk,RMazhari,andADMcCulloch.
EectofLaminarOrthotropicMyoberArchitectureonRegionalStressandStrainintheCanineLeftVentricle.
JournalofElasticity,61(1-3):143–164,July2000.
[22]YasuoTakayama,KevinDCosta,andJamesWCovell.
Contributionoflaminarmy-oberarchitecturetoload-dependentchangesinmechanicsofLVmyocardium.
Ameri-canJournalofPhysiology:HeartandCirculatoryPhysiology,282(4):H1510–20,April2002.
[23]KawalSRhode,MaximeSermesant,DavidBrogan,SanjeetHegde,JohnHipwell,PierLambiase,EricRosenthal,CliordBucknall,ShakeelaQureshi,JaswinderSGill,RezaRazavi,andDerekLGHill.
ASystemforReal-TimeXMRGuidedCardiovascularIntervention.
IEEETransactionsonMedicalImaging,24(11):1428–40,November2005.
28[24]MatthewRGinks.
AddressingNon-responsetoCardiacResynchronizationTherapy:UnderlyingMechanismsandNewTherapeuticApproaches.
MDThesis,King'sCollegeLondon,2011.
[25]MichaelVNTruong.
2D-3DRegistrationofCardiacImages.
PhDThesis,King'sCollegeLondon,2014.
[26]PhaniChinchapatnam,KawalSRhode,MatthewGinks,ChristopherAldoRinaldi,PierLambiase,RezaRazavi,SimonArridge,andMaximeSermesant.
Model-BasedImagingofCardiacApparentConductivityandLocalConductionVelocityforDiagnosisandPlanningofTherapy.
IEEETransactionsonMedicalImaging,27(11):1631–1642,2008.
[27]DDurrer,RTvanDam,GEFreud,MJJanse,FLMeijler,andRCArzbaecher.
TotalExcitationoftheIsolatedHumanHeart.
Circulation,41(6):899–912,June1970.
[28]BryanJCaldwell,MarkLTrew,GregoryBSands,DarrenAHooks,IanJLeGrice,andBruceHSmaill.
ThreeDistinctDirectionsofIntramuralActivationRevealNonuniformSide-to-SideElectricalCouplingofVentricularMyocytes.
Circulation:ArrhythmiaandElectrophysiology,2(4):433–440,2009.
[29]WPSantamoreandDBurkho.
Hemodynamicconsequencesofventricularinteractionasassessedbymodelanalysis.
TheAmericanJournalofPhysiology,260(1Pt2):H146–57,January1991.
[30]PMHeerdt,CDGandhi,andMLDickstein.
DisparityoflsouraneEectsonLeftandRightVentricularAfterloadandHydraulicPowerGenerationinSwine.
AnesthesiaandAnalgesia,87(3):511–21,September1998.
[31]MustafaKaramanogluandTomDBennett.
ARightVentricularPressureWaveformBasedPulseContourCardiacOutputAlgorithminCanines.
CardiovascularEngineer-ing,6(3):83–92,September2006.
[32]VijayaraghavanRajagopal,Jae-HoonChung,DavidBullivant,PoulM.
F.
Nielsen,andMartynP.
Nash.
Determiningtheniteelasticityreferencestatefromaloadedcongura-tion.
InternationalJournalforNumericalMethodsinEngineering,72(12):1434–1451,December2007.
29[33]WCLittle,FRBadke,andRAO'Rourke.
EectofRightVentricularPressureontheEnd-DiastolicLeftVentricularPressure-VolumeRelationshipbeforeandafterChronicRightVentricularPressureOverloadinDogswithoutPericardia.
CirculationResearch,54(6):719–30,June1984.
[34]CharlesEBemis,JuanRSerur,DavidBorkenhagen,EdmundHSonnenblick,andCharlesWUrschel.
InuenceofRightVentricularFillingPressureonLeftVentricu-larPressureandDimension.
CirculationResearch,34(4):498–504,April1974.
[35]MMathison,JREdgerton,JLHorswell,JJAkin,andMJMack.
AnalysisofHemo-dynamicChangesDuringBeatingHeartSurgicalProcedures.
TheAnnalsofThoracicSurgery,70(4):1355–60;discussion1360–1,October2000.
[36]JCKentish,HEterKeurs,LRicciardi,JJBucx,andMINoble.
ComparisonbetweentheSarcomereLength-ForceRelationsofIntactandSkinnedTrabeculaefromRatRightVentricle.
CirculationResearch,58(6):755–68,June1986.
[37]MDMcKay,RJBeckman,andWJConover.
AComparisonofThreeMethodsforSelectingValuesofInputVariablesintheAnalysisofOutputfromaComputerCode.
Technometrics,21(2):239–245,February2000.
30

VoLLcloud7折月付$3,香港CMI云服务器原生IP解锁,香港VoLLcloud

vollcloud怎么样?vollcloud LLC创立于2020年,是一家以互联网基础业务服务为主的 技术型企业,运营全球数据中心业务。VoLLcloud LLC针对新老用户推出全场年付产品7折促销优惠,共30个,机会难得,所有产品支持3日内无条件退款,同时提供产品免费体验。目前所有产品中,“镇店之宝”产品性价比高,适用大部分用户基础应用,卖的也是最好,同时,在这里感谢新老用户的支持和信任,我们...

RackNerd:特价美国服务器促销,高配低价,美国多机房可选择,双E526**+AMD3700+NVMe

racknerd怎么样?racknerd今天发布了几款美国特价独立服务器的促销,本次商家主推高配置的服务器,各个配置给的都比较高,有Intel和AMD两种,硬盘也有NVMe和SSD等多咱组合可以选择,机房目前有夏洛特、洛杉矶、犹他州可以选择,性价比很高,有需要独服的朋友可以看看。点击进入:racknerd官方网站RackNerd暑假独服促销:CPU:双E5-2680v3 (24核心,48线程)内存...

CloudCone2核KVM美国洛杉矶MC机房机房2.89美元/月,美国洛杉矶MC机房KVM虚拟架构2核1.5G内存1Gbps带宽,国外便宜美国VPS七月特价优惠

近日CloudCone发布了七月的特价便宜优惠VPS云服务器产品,KVM虚拟架构,性价比最高的为2核心1.5G内存1Gbps带宽5TB月流量,2.89美元/月,稳定性还是非常不错的,有需要国外便宜VPS云服务器的朋友可以关注一下。CloudCone怎么样?CloudCone服务器好不好?CloudCone值不值得购买?CloudCone是一家成立于2017年的美国服务器提供商,国外实力大厂,自己开...

wallbase为你推荐
马云将从软银董事会辞职亚洲首富马云今年有多太岁数软银收购wework如何看待腾讯收购 Supercell电脑桌面背景图片如何在电脑桌面放两张背景图片?骁龙750g和765g哪个好骁龙730G和骁龙835、联发科Helio G90T哪个更好?华为p40和mate30哪个好荣耀30pro和华为p40对比。,哪个更值得入手?华为p40和mate30哪个好华为p40手机。跟荣耀30哪个好?压缩软件哪个好压缩软件那个最好,360压缩软件好?还是快压、好压软件好呢?录音软件哪个好什么软件用来录音更好?ps软件哪个好PS软件用哪种比较好?急用!看书软件哪个好手机读书软件哪个好用?
备案未注册域名 漂亮qq空间 美国主机推荐 pw域名 59.99美元 华为云主机 国外空间 php免费空间 申请个人网站 刀片服务器的优势 lol台服官网 域名接入 cdn加速是什么 789电视剧 空间购买 中国电信测速器 上海电信测速 东莞服务器托管 云销售系统 cdn加速技术 更多