commonlywallbase

wallbase  时间:2021-01-28  阅读:()
PeriodicaPolytechnicaCivilEngineering60(3),pp.
421–426,2016DOI:10.
3311/PPci.
8522CreativeCommonsAttributionRESEARCHARTICLEDesignChartsforCircular-ShapedSheetedExcavationPitsagainstSeepageFailurebyHeaveSerdarKoltuk,RagAzzamReceived25-08-2015,revised28-01-2016,accepted01-02-2016AbstractDuringtheconstructionofanexcavationpit,themainprob-lemisoftendominatedbyseepageowintotheexcavationpit.
Theporewaterpressuredevelopedbytheseepageowmaylifttheexcavationbase,andthus,mayleadtothestabilitylossoftheexcavationpit,whichisknownasseepagefailurebyheave.
Inthisstudy,basedontheresultsofthree-dimensionalsteady-stategroundwaterowanalyses,designchartsaregiventoeval-uatethesafetyagainstheaveofcircular-shapedsheetedexca-vationpitsconstructedwithinhomogeneousisotropicsoillay-ersoflimitedorunlimitedthicknesses.
Thegivendesignchartsconsiderthevariousconditionsofwaterlevelonbothup-anddownstreamsideofanexcavationpit.
Itmeansthattheycanbeusedforexcavationpitsconstructedinbothurbanareasandopenwater.
KeywordsCircular-shapedsheetedexcavationpits·seepagefailurebyheave·designchartsSerdarKoltukDepartmentofEngineeringGeologyandHydrogeologyRWTHAachenUniver-sityLochnerstr,4-20,D-52064,Aachen,Germanye-mail:koltuk@lih.
rwth-aachen.
deRagAzzamDepartmentofEngineeringGeologyandHydrogeologyRWTHAachenUniver-sityLochnerstr,4-20,D-52064,Aachen,Germanye-mail:azzam@lih.
rwth-aachen.
de1IntroductionCircular-shapedsheetedexcavationpitsareverycommonfortheconstructionsofsewers,shafts,bridgepiersandabutments.
Duetoappearingringstresses,theearthpressureactingonthewallsofacircular-shapedexcavationpitislessthanthatinasquare-orrectangular-shapedexcavationpit.
Therefore,theycanbeconstructedwithoutusingstrutsortie-backanchors,whichreducesconstructioncosts,andprovideslargeworkingarea.
Aftertheconstructionofsheetpiles,thewaterinsidetheex-cavationpitispumpedoutwhichcausesareductioninboththeporewaterpressureandthetotalstressbelowtheexcavationbase.
Additionally,afurtherreductionofthetotalstressappearsduetoexcavationprocesses.
Aseepagefailurebyheaveoccurswhentheporewaterpressuredevelopedbytheseepageowovercomesthetotalpressurebelowtheexcavationbase.
AscanbeseeninFig.
1a,theamountofsoildeformationsaroundthepartitionpanelincreaseswithincreasinghydraulicheaddier-enceH,andconsequently,thesedeformationsleadtothelossofthesoilstabilityand/orthelossofthepartitionpanel.
Forthevericationagainstseepagefailurebyheave,variousmethodshavebeendeveloped,themostwell-knownofwhicharemen-tionedbelow.
Terzaghietal.
determinedfrommodelteststhatheaveoccurswithinadistanceofaboutD/2fromthepartitionpanel(whereDistheembedmentdepthofthepartitionpanel),andthecriti-calsectionpassesthroughthebaseofthepartitionpanel[1,2].
Baumgart&Davidenkomethod,whichhasrstlypresentedinRussianlanguagein1929,considersthemaximumporewaterpressurethatdevelopsatthewalltiponthedownstreamside[3].
Harzastatedthattheexithydraulicgradientonthedownstreamsideisdecisivewithregardtoheave[4].
Marslandidentiedtwotypesofseepagefailurethroughmodeltests:pipingandheave.
Pipingoccursindensesandswhentheexithydraulicgradientadjacenttothepartitionpanelbecomesequaltocriti-calhydraulicgradientofthesoilwhereasheaveoccursinloosesandswhentheporewaterpressureatthebaseofthepartitionpanelbecomesequaltothetotalstressatthesamelevel[5].
Tanaka'sfailureconcept,whichisanextensionofTerzaghi'sDesignChartsforCircular-ShapedSheetedExcavationPitsagainstSeepageFailurebyHeave4212016603method,considersthefrictionalforcesonthesidesofvariousprismaticfailurebodiesadjacenttothesheetpile.
Theprismgivingminimumfactorofsafetyisdecisiveagainstheave[6].
Forthecasethatahorizontalstraticationexistsbetweentheexcavationbaseandthewalltip,variousvericationmethodsagainstheavecanalsobefoundintheliterature[2,7,8].
Thepresentstudyfocusesontheseepagefailurebyheaveinho-mogeneoussoillayersinwhichnohorizontalstraticationispresentbetweentheexcavationbaseandthewalltip.
Fig.
1.
Seepagefailurebyheave:a)developmentofheaveintwo-dimensionalmodeltests,b)vericationagainstheaveThemostcommonlyusedmethodtoevaluatethesafetyagainstheavewasintroducedbyTerzaghietal.
[2].
Inhismethod,limitstateconditionisobtainedbyequatingtheaver-ageporewaterpressureatthebottomoftheheavezonewiththeconstruction-relatedtotalstressatthesamelevel(seeFig.
1b):h·γw+D·γsat=(hav+h+D)·γw(1)Substituting(γsat=γ'+γw)intoEq.
(1)givesD·γ=hav·γw(2)γγw=havD(3)icr=iav(4)whereγsatandγarethesaturatedandsubmergedunitweightsofthesoilrespectively,γwistheunitweightofthewater,havistheaveragehydraulicheadatthebottomoftheheavezone,histheheightofthewaterlevelontheexcavationbase,Distheembedmentlengthofthewallbelowthewaterlevel,asshowninFig.
1b.
Theratiosofhav/Dandγ/γwarecalledtheaveragehydraulicgradientiavandthecriticalhydraulicgradientofthesoilicr,respectively.
Thesafetyagainstheaveisassuredwhenicrisgreaterthaniav.
However,theactualeldconditions,namelythesoilandtheowconditions,maydierfromtheassumedtheoreticalmodel.
Therefore,thestabilitycomputationsareonlyapproximateandshouldbecompensatedusingasafetyfactor(FS=icr/iav).
Asafetyfactorof1.
5isrecommendedagainstseepagefailurebyheave[9].
Butitisoftenuncertainwhetherthepartsofem-beddedwallsbelowtheexcavationbaseare100%waterproofornot.
Insuchcases,ahighersafetyfactorshouldbeusedsinceadefectonthewallendangersthesafetyagainstseepagefailure[10].
Todeterminetheaveragehydraulicgradientiavintheheavezone,thedistributionofporewaterpressurewithinthesoilshouldbeknown.
ThetheoryofseepageowthroughsaturatedsoilsisbasedonLaplace'sequation,whichisobtainedbyin-troducingDarcy'slawintothecontinuityequation.
Commonly,two-dimensionalLaplace'spartialdierentialequationisusedtodeterminethedistributionofporewaterpressurewithinthesoil:kx·2hx2+kz·2hz2=0(5)wherekxandkzarethehydraulicconductivitiesofsoil,h/xandh/zarethehydraulicgradientsinanypointwithinthesoilinhorizontal(x)andvertical(z)directions,respectively.
ThesolutionofEq.
(5)iscommonlyobtainedusingagraphreferredtoasownet.
However,itisnoteasytodrawaownetincomplexowconditions(e.
g.
instratiedsoils),whichismostlythecaseinpracticalseepageproblems.
Furthermore,theexperimentalandnumericalstudiesdemonstratedthattheporewaterpressuresobtainedfromthree-dimensionalmodelscanbetoolargerthanthoseobtainedfromtwo-dimensionalmodels[6,11–13].
Inthepresentstudy,three-dimensionalLaplace'spartialdif-ferentialequationissolvedbyusingtheniteelementsoftwareABAQUS6.
12[14].
Basedontheresultsofthree-dimensionalsteady-stategroundwaterowanalyses,whichalsocorrespondtoaxisymmetricanalyses,designchartsaregiven.
Thechartsenableuserstoevaluatethestabilityagainstheaveofcircular-shapedsheetedexcavationpitsconstructedinhomogeneousisotropicsoillayersoflimitedorunlimitedthicknesses.
2NumericalAnalysesThenumericalmodelsusedinthisstudyconsideronlyaquar-terofcircular-shapedsheetedexcavationpitstakingadvantageofsymmetry.
ThehorizontaldistancefromthewalltotheouterboundariesofthesoilmodelRischosensuchthatitseectontheresultsisnegligiblysmallwhereastheverticaldistancefromthewallbasetothetopsurfaceofthelowersoillayerTisvar-iedbetween0.
0625·Dand8D(seeFig.
2a).
Thethicknessofthelowersoillayerischosensuchthatitseectonthehy-draulicgradientisnegligiblysmall.
Thewaterlevelsontheup-anddownstreamsides,whichareshownwiththeblue-coloredsurfaces,lieonthetopsurfaceoftheuppersoillayerandontheexcavationbase,respectively.
ThesymbolHinFig.
2brep-resentstheverticaldistancebetweenthelevelontheupstreamside,wherethewaterbeginstoowthroughthesoil,andthelevelonthedownstreamside,wherethewaterowsoutofthePeriod.
Polytech.
CivilEng.
422SerdarKoltuk,RagAzzamsoil.
ThesymbolsDandbrepresenttheembedmentlengthofthewallbelowthewaterlevel,andtheradiusoftheexcavationpitrespectively.
Fig.
2.
Numericalmodel:(a)entiremodel;(b)zoomoftheexcavationpitThesheetpilesaremodelledusingagapwithanignorablethickness.
Thesurfacesofthesheetpilesareimpermeablebydefault.
Theverticalboundariesandthebottomboundaryofthesoilmodelsarealsoimpermeable.
Thedeformationsofthemod-elsthatresultfromthegroundwaterow,inotherwordsfromthechangeofeectivestresses,areprevented.
Thesoillay-ersaremodelledwith8-nodebricktrilineardisplacement/porepressureelements(C3D8P).
Themeshisrenednearthewallwheretheowgradientsareconcentrated.
Thenumberofele-mentsinthemodelsischosensuchthatitseectontheresultsisnegligiblysmall.
Accordingly,thenumberofelementsvariesbetweenabout20,000and100,000dependingonthemodelsize.
Thewaterlevelonthedownstreamside,namelytheleveloftheexcavationbaseisconsideredasreferencelevel.
Accordingly,theporepressureboundaryconditionontheupstreamsideissetequaltothepotentialheadH,andonthedownstreamsideissetequaltozero.
3ResultsandDiscussionsInthegivendesigncharts,itisdistinguishedbetweentwoba-siccases:Intherstcase,theuppersoillayerisassumedtobemorepermeablethanthelowersoillayerkupper/klower>1whilethelowerlayerisassumedtobemorepermeablethantheupperlayerkupper/klower1Fig.
4.
Baseoftheassumedthree-dimensionalfailurebodyFig.
3showstheequipotentiallines(surfaces)forcircular-shapedsheetedexcavationpitsconstructedwithinhomogeneoussoillayersoflimited(kupper/klower1)andunlimitedthick-nesses(kupper/klower=1).
Inthecaseofkupper/klower1(seeFig.
3c).
Athree-dimensionalbodywiththewidthsuggestedbyTerza-ghifortwo-dimensionalcasesisconsideredasfailurebody.
Thewhite-coloreddashedlinewithadistanceofD/4fromthewallinFig.
4indicatesthelocationoftheaverageporewaterpressureatthebottomofthefailurebody.
DesignChartsforCircular-ShapedSheetedExcavationPitsagainstSeepageFailurebyHeave4232016603(a)(b)(c)Fig.
5.
Designchartsagainstseepagefailurebyheaveinthecaseofkupper/klower:a)100/1,b)10/1,c)2.
5/1(a)(b)(c)Fig.
6.
Designchartsagainstseepagefailurebyheaveinthecaseofkupper/klower:a)1/2.
5,b)1/10,c)1/100Period.
Polytech.
CivilEng.
424SerdarKoltuk,RagAzzamInFig.
5andFig.
6,thedesignchartsaregiventoevaluatethesafetyagainstheaveofcircular-shapedsheetedexcavationpits.
Inthecharts,theaveragehydraulicgradientsweredeterminedforsixvariousratiosofb/D=0.
25,0.
5,1,2,4,8andeightvariousratiosofT/D=0.
625,0.
125,0.
25,0.
5,1,2,4,8.
Forotherratiosofb/DandT/Dthatlyingbetweenthevaluesgivenabove,iavcanbedeterminedusingalinearinterpolation.
AscanbeseeninFigs.
5and6,thelowersoillayerlosesitseectontheaveragehydraulicgradientdevelopedinthefail-urebodyfortheratiosofT/Daboveacertainvaluedepend-ingontheratioofb/D.
Inthiscase,theuppersoillayercanbeassumedasahomogeneousisotropicsoillayerofunlimitedthickness.
Accordingly,allchartsgivethesamevalueofiavforasameratioofb/D.
Itshouldbementionedthat:1thegivendesignchartsarevalidforH/D=1.
Inordertode-terminetheaveragehydraulicgradientiavfortheotherratiosofH/D,thevaluesofiavobtainedfromthechartsmustbemultipliedbyH/D.
InthecasethatHisequaltozero,thevaluesofiavobtainedfromthechartsmustbemultipliedbytheratioofpotentialdierencetoembedmentdepthH/D.
Anaveragehydraulicgradientthatisobtainedinthiswaycontainsamaximumerrorof±5%;2thegivendesignchartsarevalidforexcavationpits,whichcorrespondtothecaseinFig.
7a.
Whenthewaterlevelonthedownstreamsideliesabovetheexcavationbaseand/orthewaterlevelontheupstreamsideliesabovethegroundsur-face,theaveragehydraulicgradientiavobtainedfromFig.
5orFig.
6mustbemultipliedbyH/H.
ThesymbolsH,HareshowninFig.
7forthevariousconditionsofthewaterlevel;Fig.
7.
Useofthegivenchartsforvariouswaterlevelconditions3Equation(3),icr=γ'/γw,isvalidwhenthegroundwaterlevelonthedownstreamsideliesonorabovetheexcavationbase.
Ifthegroundwaterleveliskeptbelowtheexcavationbaseforsafetyreasons,thecriticalhydraulicgradienticrisgivenas:icr=d·γ+D(γsatγw)D·γw(6)whereγisthemoistureunitweightofsoil,disthedistancebetweentheexcavationbaseandthepumpedgroundwaterlevelonthedownstreamside,andDistheembedmentlengthofthewallbelowthepumpedgroundwaterlevel(seeFigures7aand7c).
Inthefollowing,theuseofthegivendesignchartsisex-plainedthroughtwoexamples.
Forthispurpose,acircular-shapedsheetedexcavationpitwiththedimensionsgiveninFig.
8isexaminedrst.
Theexcavationpitisconstructedwithinasiltynesand,whichisunderlainbyagravellysandwithapermeabilitycoe-cientof4.
5x104m/s,inanurbanarea.
Thesiltynesandhasapermeabilitycoecientof5x106m/s.
Themoistureandsatu-ratedunitweightsofthesiltynesandare19and19.
5kN/m3re-spectively.
Theunitweightofwaterisassumedtobe10kN/m3.
FromFig.
8,theratiosofH/D,b/DandT/Daredeter-minedas8/4=2,4/4=1,2/4=0.
5respectively.
Theratioofkupper/klowerisequalto1/90,sothattheaveragehydraulicgra-dientiavisdeterminedas0.
74fromFig.
6c.
ButthisvalueisvalidforH/D=1,sothatitmustbemultipliedbyH/D=2.
Finally,iaviscalculatedas0.
74x2=1.
48.
ThecriticalhydraulicgradientiscalculatedbyEq.
(6):icr=0.
5*19+4*(19.
510)4*10=1.
19Thenthesafetyfactoriscalculatedas:FS=icriav=1.
191.
48=0.
8Fig.
8.
Amodelexampletouseofthegivendesignchartsforcircular-shapedexcavationpitsinurbanareasDesignChartsforCircular-ShapedSheetedExcavationPitsagainstSeepageFailurebyHeave4252016603Inthesecondexample,acircular-shapedsheetedexcavationpitwiththedimensionsgiveninFig.
9isstudied.
Theexca-vationpitisconstructedwithinagravelysand,whichisun-derlainbyacohesivesoilwithapermeabilitycoecientof1.
25x108m/s,inopenwater.
Thegravelysandhasaperme-abilitycoecientof2x106m/sandasaturatedunitweightof20kN/m3.
Theunitweightofwaterisassumedtobe10kN/m3.
Fig.
9.
Amodelexampletouseofthegivendesignchartsforcircular-shapedexcavationpitsinopenwaterFromFig.
9,theratiosofH/D,b/DandT/Daredeter-minedas2/4=0.
5,12/4=3,8/4=2,respectively.
Theratioofkupper/klowerisequalto160,sothattheaveragehydraulicgradientiavisdeterminedas0.
45fromFig.
5a.
ButthisvalueisvalidforH/D=1,sothatitmustbemultipliedbyH/D=0.
5.
Furthermore,thevaluesobtainedfromthegivendesignchartsarevalidforexcavationpits,whichcorrespondtothecaseinFig.
7a.
However,thewaterlevelconditionsinthisexamplecorrespondtothecaseinFig.
7d,sothatthedeterminedvaluemustalsobemultipliedbyH/H=4.
2/2=2.
1.
Finally,iaviscalculatedas0.
45x0.
5x2.
1=0.
47.
ThecriticalhydraulicgradientiscalculatedbyEq.
(3):icr=γsatγwγw=201010=1Thenthesafetyfactoriscalculatedas:FS=icriav=10.
47=2.
14ConclusionsTheaveragehydraulicgradientsonthedownstreamsidesofcircular-shapedsheetedexcavationpitswithvariousdimen-sionsaredetermined,andtheresultsarepresentedintheformofcharts.
Utilizingthegivencharts,thesafetyfactoragainstheaveofcircular-shapedsheetedexcavationpits,whicharecon-structedwithinhomogeneousisotropicsoillayersoflimitedorunlimitedthicknessesinopenwaterorurbanareas,canbeeasilyandquicklyevaluated.
References1TerzaghiK,ErdbaumechanikaufbodenphysikalischerGrundlage,FranzDeuticke-Verlag;Leipzig/Wien,1925.
2TerzaghiK,PeckRB,Soilmechanicsinengineeringpractice,JohnWiley&Sons;NewYork,1968.
3EAU,Recommendationsofthecommitteeforwaterfrontstructures,harboursandwaterways;Berlin,2012.
4HarzaLF,Upliftandseepageunderdamsinsand,TransactionsoftheAmer-icanSocietyofCivilEngineering,100(1),(1935),1352–1385.
5MarslandA,Modelexperimentstostudytheinuenceofseepageonthestabilityofasheetedexcavationinsand,Géotechnique,3(6),(1953),223–241.
6TanakaT,SongS,ShibaY,KusumiS,InoueK,Seepagefail-ureofsandinthreedimensions-experimentsandnumericalanal-yses,6thInternationalConferenceonScourandErosion,(August27-31,2012),http://scour-and-erosion.
baw.
de/icse6-cd/data/articles/000144.
pdf.
7SchoberP,BoleyC,DerEinusseinesAuastltersaufdenBruchvor-gangbeimhydraulischenVersagennichtbindigerBden,Geotechnik,37(4),(2014),250–258.
(inGerman).
8PaneV,CecconiM,NapoliP,HydraulicheavefailureinEC7:SuggestionsforVerication,GeotechnicalandGeologicalEngineering,33(3),(2015),739–750,DOI10.
1007/s10706-014-9834-8.
9EN1997-1:Eurocode7,Geotechnicaldesign-Part1:Generalrules,Euro-peanCommitteeforStandardisation;Brussels,2004.
10AhmedAshrafA,JohnstonHT,OyedeleL,Hydraulicstructureswithdefectivesheetpilewalls,DamsandReservoirs,23(1),(2013),29–37,DOI10.
1680/dare.
13.
00017.
11CaiF,UgaiK,TakahashiC,NakamuraH,OkakiI,Seepageanalysisoftwocasehistoriesofpipinginducedbyexcavationsincohesionlesssoils,TherstInternationalConferenceonConstruction,(August12-14,2004),www.
forum8.
co.
jp/english/icci/ICCI2004-analysis.
pdf.
12AulbachB,ZieglerM,Simplieddesignofexcavationsupportandshaftsforsafetyagainsthydraulicheave,GeomechanicsandTunnelling,6(4),(2013),362–374,DOI10.
1002/geot.
201300031.
13KoltukS,Fernandez-SteegerM,AzzamR,Anumericalstudyontheseepagefailurebyheaveinsheetedexcavationpits,GeomechanicsandEn-gineering,9(4),(2015),513–530,DOI10.
12989/gae.
2015.
9.
4.
513.
14Abaqusanalysisuser'smanual,Vol.
Vol.
1-5,Hibbitt,KarlssonandSoren-son,Inc.
,2012.
Period.
Polytech.
CivilEng.
426SerdarKoltuk,RagAzzam

Buyvm:VPS/块存储补货1Gbps不限流量/$2起/月

BuyVM测评,BuyVM怎么样?BuyVM好不好?BuyVM,2010年成立的国外老牌稳定商家,Frantech Solutions旗下,主要提供基于KVM的VPS服务器,数据中心有拉斯维加斯、纽约、卢森堡,付费可选强大的DDOS防护(月付3美金),特色是1Gbps不限流量,稳定商家,而且卢森堡不限版权。1G或以上内存可以安装Windows 2012 64bit,无需任何费用,所有型号包括免费的...

wordpress高级跨屏企业主题 wordpress绿色企业自适应主题

wordpress高级跨屏企业主题,通用响应式跨平台站点开发,自适应PC端+各移动端屏幕设备,高级可视化自定义设置模块+高效的企业站搜索优化。wordpress绿色企业自适应主题采用标准的HTML5+CSS3语言开发,兼容当下的各种主流浏览器: IE 6+(以及类似360、遨游等基于IE内核的)、Firefox、Google Chrome、Safari、Opera等;同时支持移动终端的常用浏览器应...

UCloud:美国云服务器,洛杉矶节点大促,低至7元起/1个月

ucloud美国云服务器怎么样?ucloud是国内知名云计算品牌服务商家,目前推出全球多地机房的海外云服务器。UCloud主打的优势是海外多机房,目前正在进行的2021全球大促活动参与促销的云服务器机房就多达18个。UCloud新一代旗舰产品快杰云服务器已上线洛杉矶节点,覆盖北美和亚太地区,火热促销中, 首月低至7元,轻松体验具备优秀性能与极高性价比的快杰云服务器。点击进入:ucloud美国洛杉矶...

wallbase为你推荐
笔记本1g内存条价格笔记本1G内存条多少钱一根?租车平台哪个好租车哪个平台最好?要稳定的p图软件哪个好用美图P图软件哪个好,你们用哪个浏览器哪个好大家用过的哪种浏览器最好用?用过多种浏览器的说视频制作软件哪个好手机短视频制作哪个软件好涡轮增压和自然吸气哪个好本田车自然吸气和涡轮增压哪个好手机浏览器哪个好手机什么浏览器最好用江门旅游景点哪个好玩的地方江门蓬江区有什么地方好玩?手动挡和自动挡哪个好自动挡手动挡哪个好?英语词典哪个好英语词典哪个好
vps租用 美国独立服务器 阿里云邮箱登陆首页 国外主机 安云加速器 丹弗 本网站服务器在美国 福建天翼加速 台湾谷歌地址 免费吧 免费cdn 支持外链的相册 超级服务器 服务器防火墙 空间服务器 免费获得q币 酷锐 塔式服务器 ncp是什么 globalsign 更多