commonlywallbase

wallbase  时间:2021-01-28  阅读:()
PeriodicaPolytechnicaCivilEngineering60(3),pp.
421–426,2016DOI:10.
3311/PPci.
8522CreativeCommonsAttributionRESEARCHARTICLEDesignChartsforCircular-ShapedSheetedExcavationPitsagainstSeepageFailurebyHeaveSerdarKoltuk,RagAzzamReceived25-08-2015,revised28-01-2016,accepted01-02-2016AbstractDuringtheconstructionofanexcavationpit,themainprob-lemisoftendominatedbyseepageowintotheexcavationpit.
Theporewaterpressuredevelopedbytheseepageowmaylifttheexcavationbase,andthus,mayleadtothestabilitylossoftheexcavationpit,whichisknownasseepagefailurebyheave.
Inthisstudy,basedontheresultsofthree-dimensionalsteady-stategroundwaterowanalyses,designchartsaregiventoeval-uatethesafetyagainstheaveofcircular-shapedsheetedexca-vationpitsconstructedwithinhomogeneousisotropicsoillay-ersoflimitedorunlimitedthicknesses.
Thegivendesignchartsconsiderthevariousconditionsofwaterlevelonbothup-anddownstreamsideofanexcavationpit.
Itmeansthattheycanbeusedforexcavationpitsconstructedinbothurbanareasandopenwater.
KeywordsCircular-shapedsheetedexcavationpits·seepagefailurebyheave·designchartsSerdarKoltukDepartmentofEngineeringGeologyandHydrogeologyRWTHAachenUniver-sityLochnerstr,4-20,D-52064,Aachen,Germanye-mail:koltuk@lih.
rwth-aachen.
deRagAzzamDepartmentofEngineeringGeologyandHydrogeologyRWTHAachenUniver-sityLochnerstr,4-20,D-52064,Aachen,Germanye-mail:azzam@lih.
rwth-aachen.
de1IntroductionCircular-shapedsheetedexcavationpitsareverycommonfortheconstructionsofsewers,shafts,bridgepiersandabutments.
Duetoappearingringstresses,theearthpressureactingonthewallsofacircular-shapedexcavationpitislessthanthatinasquare-orrectangular-shapedexcavationpit.
Therefore,theycanbeconstructedwithoutusingstrutsortie-backanchors,whichreducesconstructioncosts,andprovideslargeworkingarea.
Aftertheconstructionofsheetpiles,thewaterinsidetheex-cavationpitispumpedoutwhichcausesareductioninboththeporewaterpressureandthetotalstressbelowtheexcavationbase.
Additionally,afurtherreductionofthetotalstressappearsduetoexcavationprocesses.
Aseepagefailurebyheaveoccurswhentheporewaterpressuredevelopedbytheseepageowovercomesthetotalpressurebelowtheexcavationbase.
AscanbeseeninFig.
1a,theamountofsoildeformationsaroundthepartitionpanelincreaseswithincreasinghydraulicheaddier-enceH,andconsequently,thesedeformationsleadtothelossofthesoilstabilityand/orthelossofthepartitionpanel.
Forthevericationagainstseepagefailurebyheave,variousmethodshavebeendeveloped,themostwell-knownofwhicharemen-tionedbelow.
Terzaghietal.
determinedfrommodelteststhatheaveoccurswithinadistanceofaboutD/2fromthepartitionpanel(whereDistheembedmentdepthofthepartitionpanel),andthecriti-calsectionpassesthroughthebaseofthepartitionpanel[1,2].
Baumgart&Davidenkomethod,whichhasrstlypresentedinRussianlanguagein1929,considersthemaximumporewaterpressurethatdevelopsatthewalltiponthedownstreamside[3].
Harzastatedthattheexithydraulicgradientonthedownstreamsideisdecisivewithregardtoheave[4].
Marslandidentiedtwotypesofseepagefailurethroughmodeltests:pipingandheave.
Pipingoccursindensesandswhentheexithydraulicgradientadjacenttothepartitionpanelbecomesequaltocriti-calhydraulicgradientofthesoilwhereasheaveoccursinloosesandswhentheporewaterpressureatthebaseofthepartitionpanelbecomesequaltothetotalstressatthesamelevel[5].
Tanaka'sfailureconcept,whichisanextensionofTerzaghi'sDesignChartsforCircular-ShapedSheetedExcavationPitsagainstSeepageFailurebyHeave4212016603method,considersthefrictionalforcesonthesidesofvariousprismaticfailurebodiesadjacenttothesheetpile.
Theprismgivingminimumfactorofsafetyisdecisiveagainstheave[6].
Forthecasethatahorizontalstraticationexistsbetweentheexcavationbaseandthewalltip,variousvericationmethodsagainstheavecanalsobefoundintheliterature[2,7,8].
Thepresentstudyfocusesontheseepagefailurebyheaveinho-mogeneoussoillayersinwhichnohorizontalstraticationispresentbetweentheexcavationbaseandthewalltip.
Fig.
1.
Seepagefailurebyheave:a)developmentofheaveintwo-dimensionalmodeltests,b)vericationagainstheaveThemostcommonlyusedmethodtoevaluatethesafetyagainstheavewasintroducedbyTerzaghietal.
[2].
Inhismethod,limitstateconditionisobtainedbyequatingtheaver-ageporewaterpressureatthebottomoftheheavezonewiththeconstruction-relatedtotalstressatthesamelevel(seeFig.
1b):h·γw+D·γsat=(hav+h+D)·γw(1)Substituting(γsat=γ'+γw)intoEq.
(1)givesD·γ=hav·γw(2)γγw=havD(3)icr=iav(4)whereγsatandγarethesaturatedandsubmergedunitweightsofthesoilrespectively,γwistheunitweightofthewater,havistheaveragehydraulicheadatthebottomoftheheavezone,histheheightofthewaterlevelontheexcavationbase,Distheembedmentlengthofthewallbelowthewaterlevel,asshowninFig.
1b.
Theratiosofhav/Dandγ/γwarecalledtheaveragehydraulicgradientiavandthecriticalhydraulicgradientofthesoilicr,respectively.
Thesafetyagainstheaveisassuredwhenicrisgreaterthaniav.
However,theactualeldconditions,namelythesoilandtheowconditions,maydierfromtheassumedtheoreticalmodel.
Therefore,thestabilitycomputationsareonlyapproximateandshouldbecompensatedusingasafetyfactor(FS=icr/iav).
Asafetyfactorof1.
5isrecommendedagainstseepagefailurebyheave[9].
Butitisoftenuncertainwhetherthepartsofem-beddedwallsbelowtheexcavationbaseare100%waterproofornot.
Insuchcases,ahighersafetyfactorshouldbeusedsinceadefectonthewallendangersthesafetyagainstseepagefailure[10].
Todeterminetheaveragehydraulicgradientiavintheheavezone,thedistributionofporewaterpressurewithinthesoilshouldbeknown.
ThetheoryofseepageowthroughsaturatedsoilsisbasedonLaplace'sequation,whichisobtainedbyin-troducingDarcy'slawintothecontinuityequation.
Commonly,two-dimensionalLaplace'spartialdierentialequationisusedtodeterminethedistributionofporewaterpressurewithinthesoil:kx·2hx2+kz·2hz2=0(5)wherekxandkzarethehydraulicconductivitiesofsoil,h/xandh/zarethehydraulicgradientsinanypointwithinthesoilinhorizontal(x)andvertical(z)directions,respectively.
ThesolutionofEq.
(5)iscommonlyobtainedusingagraphreferredtoasownet.
However,itisnoteasytodrawaownetincomplexowconditions(e.
g.
instratiedsoils),whichismostlythecaseinpracticalseepageproblems.
Furthermore,theexperimentalandnumericalstudiesdemonstratedthattheporewaterpressuresobtainedfromthree-dimensionalmodelscanbetoolargerthanthoseobtainedfromtwo-dimensionalmodels[6,11–13].
Inthepresentstudy,three-dimensionalLaplace'spartialdif-ferentialequationissolvedbyusingtheniteelementsoftwareABAQUS6.
12[14].
Basedontheresultsofthree-dimensionalsteady-stategroundwaterowanalyses,whichalsocorrespondtoaxisymmetricanalyses,designchartsaregiven.
Thechartsenableuserstoevaluatethestabilityagainstheaveofcircular-shapedsheetedexcavationpitsconstructedinhomogeneousisotropicsoillayersoflimitedorunlimitedthicknesses.
2NumericalAnalysesThenumericalmodelsusedinthisstudyconsideronlyaquar-terofcircular-shapedsheetedexcavationpitstakingadvantageofsymmetry.
ThehorizontaldistancefromthewalltotheouterboundariesofthesoilmodelRischosensuchthatitseectontheresultsisnegligiblysmallwhereastheverticaldistancefromthewallbasetothetopsurfaceofthelowersoillayerTisvar-iedbetween0.
0625·Dand8D(seeFig.
2a).
Thethicknessofthelowersoillayerischosensuchthatitseectonthehy-draulicgradientisnegligiblysmall.
Thewaterlevelsontheup-anddownstreamsides,whichareshownwiththeblue-coloredsurfaces,lieonthetopsurfaceoftheuppersoillayerandontheexcavationbase,respectively.
ThesymbolHinFig.
2brep-resentstheverticaldistancebetweenthelevelontheupstreamside,wherethewaterbeginstoowthroughthesoil,andthelevelonthedownstreamside,wherethewaterowsoutofthePeriod.
Polytech.
CivilEng.
422SerdarKoltuk,RagAzzamsoil.
ThesymbolsDandbrepresenttheembedmentlengthofthewallbelowthewaterlevel,andtheradiusoftheexcavationpitrespectively.
Fig.
2.
Numericalmodel:(a)entiremodel;(b)zoomoftheexcavationpitThesheetpilesaremodelledusingagapwithanignorablethickness.
Thesurfacesofthesheetpilesareimpermeablebydefault.
Theverticalboundariesandthebottomboundaryofthesoilmodelsarealsoimpermeable.
Thedeformationsofthemod-elsthatresultfromthegroundwaterow,inotherwordsfromthechangeofeectivestresses,areprevented.
Thesoillay-ersaremodelledwith8-nodebricktrilineardisplacement/porepressureelements(C3D8P).
Themeshisrenednearthewallwheretheowgradientsareconcentrated.
Thenumberofele-mentsinthemodelsischosensuchthatitseectontheresultsisnegligiblysmall.
Accordingly,thenumberofelementsvariesbetweenabout20,000and100,000dependingonthemodelsize.
Thewaterlevelonthedownstreamside,namelytheleveloftheexcavationbaseisconsideredasreferencelevel.
Accordingly,theporepressureboundaryconditionontheupstreamsideissetequaltothepotentialheadH,andonthedownstreamsideissetequaltozero.
3ResultsandDiscussionsInthegivendesigncharts,itisdistinguishedbetweentwoba-siccases:Intherstcase,theuppersoillayerisassumedtobemorepermeablethanthelowersoillayerkupper/klower>1whilethelowerlayerisassumedtobemorepermeablethantheupperlayerkupper/klower1Fig.
4.
Baseoftheassumedthree-dimensionalfailurebodyFig.
3showstheequipotentiallines(surfaces)forcircular-shapedsheetedexcavationpitsconstructedwithinhomogeneoussoillayersoflimited(kupper/klower1)andunlimitedthick-nesses(kupper/klower=1).
Inthecaseofkupper/klower1(seeFig.
3c).
Athree-dimensionalbodywiththewidthsuggestedbyTerza-ghifortwo-dimensionalcasesisconsideredasfailurebody.
Thewhite-coloreddashedlinewithadistanceofD/4fromthewallinFig.
4indicatesthelocationoftheaverageporewaterpressureatthebottomofthefailurebody.
DesignChartsforCircular-ShapedSheetedExcavationPitsagainstSeepageFailurebyHeave4232016603(a)(b)(c)Fig.
5.
Designchartsagainstseepagefailurebyheaveinthecaseofkupper/klower:a)100/1,b)10/1,c)2.
5/1(a)(b)(c)Fig.
6.
Designchartsagainstseepagefailurebyheaveinthecaseofkupper/klower:a)1/2.
5,b)1/10,c)1/100Period.
Polytech.
CivilEng.
424SerdarKoltuk,RagAzzamInFig.
5andFig.
6,thedesignchartsaregiventoevaluatethesafetyagainstheaveofcircular-shapedsheetedexcavationpits.
Inthecharts,theaveragehydraulicgradientsweredeterminedforsixvariousratiosofb/D=0.
25,0.
5,1,2,4,8andeightvariousratiosofT/D=0.
625,0.
125,0.
25,0.
5,1,2,4,8.
Forotherratiosofb/DandT/Dthatlyingbetweenthevaluesgivenabove,iavcanbedeterminedusingalinearinterpolation.
AscanbeseeninFigs.
5and6,thelowersoillayerlosesitseectontheaveragehydraulicgradientdevelopedinthefail-urebodyfortheratiosofT/Daboveacertainvaluedepend-ingontheratioofb/D.
Inthiscase,theuppersoillayercanbeassumedasahomogeneousisotropicsoillayerofunlimitedthickness.
Accordingly,allchartsgivethesamevalueofiavforasameratioofb/D.
Itshouldbementionedthat:1thegivendesignchartsarevalidforH/D=1.
Inordertode-terminetheaveragehydraulicgradientiavfortheotherratiosofH/D,thevaluesofiavobtainedfromthechartsmustbemultipliedbyH/D.
InthecasethatHisequaltozero,thevaluesofiavobtainedfromthechartsmustbemultipliedbytheratioofpotentialdierencetoembedmentdepthH/D.
Anaveragehydraulicgradientthatisobtainedinthiswaycontainsamaximumerrorof±5%;2thegivendesignchartsarevalidforexcavationpits,whichcorrespondtothecaseinFig.
7a.
Whenthewaterlevelonthedownstreamsideliesabovetheexcavationbaseand/orthewaterlevelontheupstreamsideliesabovethegroundsur-face,theaveragehydraulicgradientiavobtainedfromFig.
5orFig.
6mustbemultipliedbyH/H.
ThesymbolsH,HareshowninFig.
7forthevariousconditionsofthewaterlevel;Fig.
7.
Useofthegivenchartsforvariouswaterlevelconditions3Equation(3),icr=γ'/γw,isvalidwhenthegroundwaterlevelonthedownstreamsideliesonorabovetheexcavationbase.
Ifthegroundwaterleveliskeptbelowtheexcavationbaseforsafetyreasons,thecriticalhydraulicgradienticrisgivenas:icr=d·γ+D(γsatγw)D·γw(6)whereγisthemoistureunitweightofsoil,disthedistancebetweentheexcavationbaseandthepumpedgroundwaterlevelonthedownstreamside,andDistheembedmentlengthofthewallbelowthepumpedgroundwaterlevel(seeFigures7aand7c).
Inthefollowing,theuseofthegivendesignchartsisex-plainedthroughtwoexamples.
Forthispurpose,acircular-shapedsheetedexcavationpitwiththedimensionsgiveninFig.
8isexaminedrst.
Theexcavationpitisconstructedwithinasiltynesand,whichisunderlainbyagravellysandwithapermeabilitycoe-cientof4.
5x104m/s,inanurbanarea.
Thesiltynesandhasapermeabilitycoecientof5x106m/s.
Themoistureandsatu-ratedunitweightsofthesiltynesandare19and19.
5kN/m3re-spectively.
Theunitweightofwaterisassumedtobe10kN/m3.
FromFig.
8,theratiosofH/D,b/DandT/Daredeter-minedas8/4=2,4/4=1,2/4=0.
5respectively.
Theratioofkupper/klowerisequalto1/90,sothattheaveragehydraulicgra-dientiavisdeterminedas0.
74fromFig.
6c.
ButthisvalueisvalidforH/D=1,sothatitmustbemultipliedbyH/D=2.
Finally,iaviscalculatedas0.
74x2=1.
48.
ThecriticalhydraulicgradientiscalculatedbyEq.
(6):icr=0.
5*19+4*(19.
510)4*10=1.
19Thenthesafetyfactoriscalculatedas:FS=icriav=1.
191.
48=0.
8Fig.
8.
Amodelexampletouseofthegivendesignchartsforcircular-shapedexcavationpitsinurbanareasDesignChartsforCircular-ShapedSheetedExcavationPitsagainstSeepageFailurebyHeave4252016603Inthesecondexample,acircular-shapedsheetedexcavationpitwiththedimensionsgiveninFig.
9isstudied.
Theexca-vationpitisconstructedwithinagravelysand,whichisun-derlainbyacohesivesoilwithapermeabilitycoecientof1.
25x108m/s,inopenwater.
Thegravelysandhasaperme-abilitycoecientof2x106m/sandasaturatedunitweightof20kN/m3.
Theunitweightofwaterisassumedtobe10kN/m3.
Fig.
9.
Amodelexampletouseofthegivendesignchartsforcircular-shapedexcavationpitsinopenwaterFromFig.
9,theratiosofH/D,b/DandT/Daredeter-minedas2/4=0.
5,12/4=3,8/4=2,respectively.
Theratioofkupper/klowerisequalto160,sothattheaveragehydraulicgradientiavisdeterminedas0.
45fromFig.
5a.
ButthisvalueisvalidforH/D=1,sothatitmustbemultipliedbyH/D=0.
5.
Furthermore,thevaluesobtainedfromthegivendesignchartsarevalidforexcavationpits,whichcorrespondtothecaseinFig.
7a.
However,thewaterlevelconditionsinthisexamplecorrespondtothecaseinFig.
7d,sothatthedeterminedvaluemustalsobemultipliedbyH/H=4.
2/2=2.
1.
Finally,iaviscalculatedas0.
45x0.
5x2.
1=0.
47.
ThecriticalhydraulicgradientiscalculatedbyEq.
(3):icr=γsatγwγw=201010=1Thenthesafetyfactoriscalculatedas:FS=icriav=10.
47=2.
14ConclusionsTheaveragehydraulicgradientsonthedownstreamsidesofcircular-shapedsheetedexcavationpitswithvariousdimen-sionsaredetermined,andtheresultsarepresentedintheformofcharts.
Utilizingthegivencharts,thesafetyfactoragainstheaveofcircular-shapedsheetedexcavationpits,whicharecon-structedwithinhomogeneousisotropicsoillayersoflimitedorunlimitedthicknessesinopenwaterorurbanareas,canbeeasilyandquicklyevaluated.
References1TerzaghiK,ErdbaumechanikaufbodenphysikalischerGrundlage,FranzDeuticke-Verlag;Leipzig/Wien,1925.
2TerzaghiK,PeckRB,Soilmechanicsinengineeringpractice,JohnWiley&Sons;NewYork,1968.
3EAU,Recommendationsofthecommitteeforwaterfrontstructures,harboursandwaterways;Berlin,2012.
4HarzaLF,Upliftandseepageunderdamsinsand,TransactionsoftheAmer-icanSocietyofCivilEngineering,100(1),(1935),1352–1385.
5MarslandA,Modelexperimentstostudytheinuenceofseepageonthestabilityofasheetedexcavationinsand,Géotechnique,3(6),(1953),223–241.
6TanakaT,SongS,ShibaY,KusumiS,InoueK,Seepagefail-ureofsandinthreedimensions-experimentsandnumericalanal-yses,6thInternationalConferenceonScourandErosion,(August27-31,2012),http://scour-and-erosion.
baw.
de/icse6-cd/data/articles/000144.
pdf.
7SchoberP,BoleyC,DerEinusseinesAuastltersaufdenBruchvor-gangbeimhydraulischenVersagennichtbindigerBden,Geotechnik,37(4),(2014),250–258.
(inGerman).
8PaneV,CecconiM,NapoliP,HydraulicheavefailureinEC7:SuggestionsforVerication,GeotechnicalandGeologicalEngineering,33(3),(2015),739–750,DOI10.
1007/s10706-014-9834-8.
9EN1997-1:Eurocode7,Geotechnicaldesign-Part1:Generalrules,Euro-peanCommitteeforStandardisation;Brussels,2004.
10AhmedAshrafA,JohnstonHT,OyedeleL,Hydraulicstructureswithdefectivesheetpilewalls,DamsandReservoirs,23(1),(2013),29–37,DOI10.
1680/dare.
13.
00017.
11CaiF,UgaiK,TakahashiC,NakamuraH,OkakiI,Seepageanalysisoftwocasehistoriesofpipinginducedbyexcavationsincohesionlesssoils,TherstInternationalConferenceonConstruction,(August12-14,2004),www.
forum8.
co.
jp/english/icci/ICCI2004-analysis.
pdf.
12AulbachB,ZieglerM,Simplieddesignofexcavationsupportandshaftsforsafetyagainsthydraulicheave,GeomechanicsandTunnelling,6(4),(2013),362–374,DOI10.
1002/geot.
201300031.
13KoltukS,Fernandez-SteegerM,AzzamR,Anumericalstudyontheseepagefailurebyheaveinsheetedexcavationpits,GeomechanicsandEn-gineering,9(4),(2015),513–530,DOI10.
12989/gae.
2015.
9.
4.
513.
14Abaqusanalysisuser'smanual,Vol.
Vol.
1-5,Hibbitt,KarlssonandSoren-son,Inc.
,2012.
Period.
Polytech.
CivilEng.
426SerdarKoltuk,RagAzzam

极光KVM美国美国洛杉矶元/极光kvmCN7月促销,美国CN2 GIA大带宽vps,洛杉矶联通CUVIP,14元/月起

极光KVM怎么样?极光KVM本月主打产品:美西CN2双向,1H1G100M,189/年!在美西CN2资源“一兆难求”的大环境下,CN2+大带宽 是很多用户的福音,也是商家实力的象征。目前,极光KVM在7月份的促销,7月促销,美国CN2 GIA大带宽vps,洛杉矶联通cuvip,14元/月起;香港CN2+BGP仅19元/月起,这次补货,机会,不要错过了。点击进入:极光KVM官方网站地址极光KVM七月...

零途云:香港站群云服务器16IP220元/月,云服务器低至39元/月

零途云(Lingtuyun.com)新上了香港站群云服务器 – CN2精品线路,香港多ip站群云服务器16IP/5M带宽,4H4G仅220元/月,还有美国200g高防云服务器低至39元/月起。零途云是一家香港公司,主要产品香港cn2 gia线路、美国Cera线路云主机,美国CERA高防服务器,日本CN2直连服务器;同时提供香港多ip站群云服务器。即日起,购买香港/美国/日本云服务器享受9折优惠,新...

织梦DEDECMS即将授权收费和维权模式 站长应对的几个方法

这两天在站长群里看到不少有使用DEDECMS织梦程序的朋友比较着急,因为前两天有看到来自DEDECMS,我们熟悉的织梦程序官方发布的公告,将会在10月25日开始全面商业用途的使用DEDECMS内容管理程序的会采用授权收费模式,如果我们有在个人或者企业商业用途的,需要联系且得到授权才可以使用,否则后面会通过维权的方式。对于这个事情,我们可能有些站长经历过,比如字体、图片的版权。以及有一些国内的CMS...

wallbase为你推荐
电脑桌面背景图片电脑桌面壁纸输入法哪个好用五笔输入法哪个最好用涡轮增压和自然吸气哪个好本田车自然吸气和涡轮增压哪个好帕萨特和迈腾哪个好2019帕萨特和迈腾哪个好?隔音怎么样?浮动利率和固定利率哪个好贷款选择浮动利率还是固定利率dnf魔枪士转职哪个好dnf魔枪士专职哪个车险哪个好买汽车保险,买哪几种比较好电动牙刷哪个好电动牙刷和普通牙刷哪个好,有何区别?美国国际集团深圳500强企业都有哪些?飞信空间登录移动飞信客户端怎么登陆???
国内免费空间 42u标准机柜尺寸 新世界电讯 web服务器架设软件 个人空间申请 合租空间 免费活动 服务器干什么用的 绍兴电信 网游服务器 空间登陆首页 英国伦敦 中国电信网络测速 阿里云免费邮箱 贵阳电信测速 免费个人网页 买空间网 wordpress空间 蓝队云 29美元 更多