commonlywallbase
wallbase 时间:2021-01-28 阅读:(
)
PeriodicaPolytechnicaCivilEngineering60(3),pp.
421–426,2016DOI:10.
3311/PPci.
8522CreativeCommonsAttributionRESEARCHARTICLEDesignChartsforCircular-ShapedSheetedExcavationPitsagainstSeepageFailurebyHeaveSerdarKoltuk,RagAzzamReceived25-08-2015,revised28-01-2016,accepted01-02-2016AbstractDuringtheconstructionofanexcavationpit,themainprob-lemisoftendominatedbyseepageowintotheexcavationpit.
Theporewaterpressuredevelopedbytheseepageowmaylifttheexcavationbase,andthus,mayleadtothestabilitylossoftheexcavationpit,whichisknownasseepagefailurebyheave.
Inthisstudy,basedontheresultsofthree-dimensionalsteady-stategroundwaterowanalyses,designchartsaregiventoeval-uatethesafetyagainstheaveofcircular-shapedsheetedexca-vationpitsconstructedwithinhomogeneousisotropicsoillay-ersoflimitedorunlimitedthicknesses.
Thegivendesignchartsconsiderthevariousconditionsofwaterlevelonbothup-anddownstreamsideofanexcavationpit.
Itmeansthattheycanbeusedforexcavationpitsconstructedinbothurbanareasandopenwater.
KeywordsCircular-shapedsheetedexcavationpits·seepagefailurebyheave·designchartsSerdarKoltukDepartmentofEngineeringGeologyandHydrogeologyRWTHAachenUniver-sityLochnerstr,4-20,D-52064,Aachen,Germanye-mail:koltuk@lih.
rwth-aachen.
deRagAzzamDepartmentofEngineeringGeologyandHydrogeologyRWTHAachenUniver-sityLochnerstr,4-20,D-52064,Aachen,Germanye-mail:azzam@lih.
rwth-aachen.
de1IntroductionCircular-shapedsheetedexcavationpitsareverycommonfortheconstructionsofsewers,shafts,bridgepiersandabutments.
Duetoappearingringstresses,theearthpressureactingonthewallsofacircular-shapedexcavationpitislessthanthatinasquare-orrectangular-shapedexcavationpit.
Therefore,theycanbeconstructedwithoutusingstrutsortie-backanchors,whichreducesconstructioncosts,andprovideslargeworkingarea.
Aftertheconstructionofsheetpiles,thewaterinsidetheex-cavationpitispumpedoutwhichcausesareductioninboththeporewaterpressureandthetotalstressbelowtheexcavationbase.
Additionally,afurtherreductionofthetotalstressappearsduetoexcavationprocesses.
Aseepagefailurebyheaveoccurswhentheporewaterpressuredevelopedbytheseepageowovercomesthetotalpressurebelowtheexcavationbase.
AscanbeseeninFig.
1a,theamountofsoildeformationsaroundthepartitionpanelincreaseswithincreasinghydraulicheaddier-enceH,andconsequently,thesedeformationsleadtothelossofthesoilstabilityand/orthelossofthepartitionpanel.
Forthevericationagainstseepagefailurebyheave,variousmethodshavebeendeveloped,themostwell-knownofwhicharemen-tionedbelow.
Terzaghietal.
determinedfrommodelteststhatheaveoccurswithinadistanceofaboutD/2fromthepartitionpanel(whereDistheembedmentdepthofthepartitionpanel),andthecriti-calsectionpassesthroughthebaseofthepartitionpanel[1,2].
Baumgart&Davidenkomethod,whichhasrstlypresentedinRussianlanguagein1929,considersthemaximumporewaterpressurethatdevelopsatthewalltiponthedownstreamside[3].
Harzastatedthattheexithydraulicgradientonthedownstreamsideisdecisivewithregardtoheave[4].
Marslandidentiedtwotypesofseepagefailurethroughmodeltests:pipingandheave.
Pipingoccursindensesandswhentheexithydraulicgradientadjacenttothepartitionpanelbecomesequaltocriti-calhydraulicgradientofthesoilwhereasheaveoccursinloosesandswhentheporewaterpressureatthebaseofthepartitionpanelbecomesequaltothetotalstressatthesamelevel[5].
Tanaka'sfailureconcept,whichisanextensionofTerzaghi'sDesignChartsforCircular-ShapedSheetedExcavationPitsagainstSeepageFailurebyHeave4212016603method,considersthefrictionalforcesonthesidesofvariousprismaticfailurebodiesadjacenttothesheetpile.
Theprismgivingminimumfactorofsafetyisdecisiveagainstheave[6].
Forthecasethatahorizontalstraticationexistsbetweentheexcavationbaseandthewalltip,variousvericationmethodsagainstheavecanalsobefoundintheliterature[2,7,8].
Thepresentstudyfocusesontheseepagefailurebyheaveinho-mogeneoussoillayersinwhichnohorizontalstraticationispresentbetweentheexcavationbaseandthewalltip.
Fig.
1.
Seepagefailurebyheave:a)developmentofheaveintwo-dimensionalmodeltests,b)vericationagainstheaveThemostcommonlyusedmethodtoevaluatethesafetyagainstheavewasintroducedbyTerzaghietal.
[2].
Inhismethod,limitstateconditionisobtainedbyequatingtheaver-ageporewaterpressureatthebottomoftheheavezonewiththeconstruction-relatedtotalstressatthesamelevel(seeFig.
1b):h·γw+D·γsat=(hav+h+D)·γw(1)Substituting(γsat=γ'+γw)intoEq.
(1)givesD·γ=hav·γw(2)γγw=havD(3)icr=iav(4)whereγsatandγarethesaturatedandsubmergedunitweightsofthesoilrespectively,γwistheunitweightofthewater,havistheaveragehydraulicheadatthebottomoftheheavezone,histheheightofthewaterlevelontheexcavationbase,Distheembedmentlengthofthewallbelowthewaterlevel,asshowninFig.
1b.
Theratiosofhav/Dandγ/γwarecalledtheaveragehydraulicgradientiavandthecriticalhydraulicgradientofthesoilicr,respectively.
Thesafetyagainstheaveisassuredwhenicrisgreaterthaniav.
However,theactualeldconditions,namelythesoilandtheowconditions,maydierfromtheassumedtheoreticalmodel.
Therefore,thestabilitycomputationsareonlyapproximateandshouldbecompensatedusingasafetyfactor(FS=icr/iav).
Asafetyfactorof1.
5isrecommendedagainstseepagefailurebyheave[9].
Butitisoftenuncertainwhetherthepartsofem-beddedwallsbelowtheexcavationbaseare100%waterproofornot.
Insuchcases,ahighersafetyfactorshouldbeusedsinceadefectonthewallendangersthesafetyagainstseepagefailure[10].
Todeterminetheaveragehydraulicgradientiavintheheavezone,thedistributionofporewaterpressurewithinthesoilshouldbeknown.
ThetheoryofseepageowthroughsaturatedsoilsisbasedonLaplace'sequation,whichisobtainedbyin-troducingDarcy'slawintothecontinuityequation.
Commonly,two-dimensionalLaplace'spartialdierentialequationisusedtodeterminethedistributionofporewaterpressurewithinthesoil:kx·2hx2+kz·2hz2=0(5)wherekxandkzarethehydraulicconductivitiesofsoil,h/xandh/zarethehydraulicgradientsinanypointwithinthesoilinhorizontal(x)andvertical(z)directions,respectively.
ThesolutionofEq.
(5)iscommonlyobtainedusingagraphreferredtoasownet.
However,itisnoteasytodrawaownetincomplexowconditions(e.
g.
instratiedsoils),whichismostlythecaseinpracticalseepageproblems.
Furthermore,theexperimentalandnumericalstudiesdemonstratedthattheporewaterpressuresobtainedfromthree-dimensionalmodelscanbetoolargerthanthoseobtainedfromtwo-dimensionalmodels[6,11–13].
Inthepresentstudy,three-dimensionalLaplace'spartialdif-ferentialequationissolvedbyusingtheniteelementsoftwareABAQUS6.
12[14].
Basedontheresultsofthree-dimensionalsteady-stategroundwaterowanalyses,whichalsocorrespondtoaxisymmetricanalyses,designchartsaregiven.
Thechartsenableuserstoevaluatethestabilityagainstheaveofcircular-shapedsheetedexcavationpitsconstructedinhomogeneousisotropicsoillayersoflimitedorunlimitedthicknesses.
2NumericalAnalysesThenumericalmodelsusedinthisstudyconsideronlyaquar-terofcircular-shapedsheetedexcavationpitstakingadvantageofsymmetry.
ThehorizontaldistancefromthewalltotheouterboundariesofthesoilmodelRischosensuchthatitseectontheresultsisnegligiblysmallwhereastheverticaldistancefromthewallbasetothetopsurfaceofthelowersoillayerTisvar-iedbetween0.
0625·Dand8D(seeFig.
2a).
Thethicknessofthelowersoillayerischosensuchthatitseectonthehy-draulicgradientisnegligiblysmall.
Thewaterlevelsontheup-anddownstreamsides,whichareshownwiththeblue-coloredsurfaces,lieonthetopsurfaceoftheuppersoillayerandontheexcavationbase,respectively.
ThesymbolHinFig.
2brep-resentstheverticaldistancebetweenthelevelontheupstreamside,wherethewaterbeginstoowthroughthesoil,andthelevelonthedownstreamside,wherethewaterowsoutofthePeriod.
Polytech.
CivilEng.
422SerdarKoltuk,RagAzzamsoil.
ThesymbolsDandbrepresenttheembedmentlengthofthewallbelowthewaterlevel,andtheradiusoftheexcavationpitrespectively.
Fig.
2.
Numericalmodel:(a)entiremodel;(b)zoomoftheexcavationpitThesheetpilesaremodelledusingagapwithanignorablethickness.
Thesurfacesofthesheetpilesareimpermeablebydefault.
Theverticalboundariesandthebottomboundaryofthesoilmodelsarealsoimpermeable.
Thedeformationsofthemod-elsthatresultfromthegroundwaterow,inotherwordsfromthechangeofeectivestresses,areprevented.
Thesoillay-ersaremodelledwith8-nodebricktrilineardisplacement/porepressureelements(C3D8P).
Themeshisrenednearthewallwheretheowgradientsareconcentrated.
Thenumberofele-mentsinthemodelsischosensuchthatitseectontheresultsisnegligiblysmall.
Accordingly,thenumberofelementsvariesbetweenabout20,000and100,000dependingonthemodelsize.
Thewaterlevelonthedownstreamside,namelytheleveloftheexcavationbaseisconsideredasreferencelevel.
Accordingly,theporepressureboundaryconditionontheupstreamsideissetequaltothepotentialheadH,andonthedownstreamsideissetequaltozero.
3ResultsandDiscussionsInthegivendesigncharts,itisdistinguishedbetweentwoba-siccases:Intherstcase,theuppersoillayerisassumedtobemorepermeablethanthelowersoillayerkupper/klower>1whilethelowerlayerisassumedtobemorepermeablethantheupperlayerkupper/klower1Fig.
4.
Baseoftheassumedthree-dimensionalfailurebodyFig.
3showstheequipotentiallines(surfaces)forcircular-shapedsheetedexcavationpitsconstructedwithinhomogeneoussoillayersoflimited(kupper/klower1)andunlimitedthick-nesses(kupper/klower=1).
Inthecaseofkupper/klower1(seeFig.
3c).
Athree-dimensionalbodywiththewidthsuggestedbyTerza-ghifortwo-dimensionalcasesisconsideredasfailurebody.
Thewhite-coloreddashedlinewithadistanceofD/4fromthewallinFig.
4indicatesthelocationoftheaverageporewaterpressureatthebottomofthefailurebody.
DesignChartsforCircular-ShapedSheetedExcavationPitsagainstSeepageFailurebyHeave4232016603(a)(b)(c)Fig.
5.
Designchartsagainstseepagefailurebyheaveinthecaseofkupper/klower:a)100/1,b)10/1,c)2.
5/1(a)(b)(c)Fig.
6.
Designchartsagainstseepagefailurebyheaveinthecaseofkupper/klower:a)1/2.
5,b)1/10,c)1/100Period.
Polytech.
CivilEng.
424SerdarKoltuk,RagAzzamInFig.
5andFig.
6,thedesignchartsaregiventoevaluatethesafetyagainstheaveofcircular-shapedsheetedexcavationpits.
Inthecharts,theaveragehydraulicgradientsweredeterminedforsixvariousratiosofb/D=0.
25,0.
5,1,2,4,8andeightvariousratiosofT/D=0.
625,0.
125,0.
25,0.
5,1,2,4,8.
Forotherratiosofb/DandT/Dthatlyingbetweenthevaluesgivenabove,iavcanbedeterminedusingalinearinterpolation.
AscanbeseeninFigs.
5and6,thelowersoillayerlosesitseectontheaveragehydraulicgradientdevelopedinthefail-urebodyfortheratiosofT/Daboveacertainvaluedepend-ingontheratioofb/D.
Inthiscase,theuppersoillayercanbeassumedasahomogeneousisotropicsoillayerofunlimitedthickness.
Accordingly,allchartsgivethesamevalueofiavforasameratioofb/D.
Itshouldbementionedthat:1thegivendesignchartsarevalidforH/D=1.
Inordertode-terminetheaveragehydraulicgradientiavfortheotherratiosofH/D,thevaluesofiavobtainedfromthechartsmustbemultipliedbyH/D.
InthecasethatHisequaltozero,thevaluesofiavobtainedfromthechartsmustbemultipliedbytheratioofpotentialdierencetoembedmentdepthH/D.
Anaveragehydraulicgradientthatisobtainedinthiswaycontainsamaximumerrorof±5%;2thegivendesignchartsarevalidforexcavationpits,whichcorrespondtothecaseinFig.
7a.
Whenthewaterlevelonthedownstreamsideliesabovetheexcavationbaseand/orthewaterlevelontheupstreamsideliesabovethegroundsur-face,theaveragehydraulicgradientiavobtainedfromFig.
5orFig.
6mustbemultipliedbyH/H.
ThesymbolsH,HareshowninFig.
7forthevariousconditionsofthewaterlevel;Fig.
7.
Useofthegivenchartsforvariouswaterlevelconditions3Equation(3),icr=γ'/γw,isvalidwhenthegroundwaterlevelonthedownstreamsideliesonorabovetheexcavationbase.
Ifthegroundwaterleveliskeptbelowtheexcavationbaseforsafetyreasons,thecriticalhydraulicgradienticrisgivenas:icr=d·γ+D(γsatγw)D·γw(6)whereγisthemoistureunitweightofsoil,disthedistancebetweentheexcavationbaseandthepumpedgroundwaterlevelonthedownstreamside,andDistheembedmentlengthofthewallbelowthepumpedgroundwaterlevel(seeFigures7aand7c).
Inthefollowing,theuseofthegivendesignchartsisex-plainedthroughtwoexamples.
Forthispurpose,acircular-shapedsheetedexcavationpitwiththedimensionsgiveninFig.
8isexaminedrst.
Theexcavationpitisconstructedwithinasiltynesand,whichisunderlainbyagravellysandwithapermeabilitycoe-cientof4.
5x104m/s,inanurbanarea.
Thesiltynesandhasapermeabilitycoecientof5x106m/s.
Themoistureandsatu-ratedunitweightsofthesiltynesandare19and19.
5kN/m3re-spectively.
Theunitweightofwaterisassumedtobe10kN/m3.
FromFig.
8,theratiosofH/D,b/DandT/Daredeter-minedas8/4=2,4/4=1,2/4=0.
5respectively.
Theratioofkupper/klowerisequalto1/90,sothattheaveragehydraulicgra-dientiavisdeterminedas0.
74fromFig.
6c.
ButthisvalueisvalidforH/D=1,sothatitmustbemultipliedbyH/D=2.
Finally,iaviscalculatedas0.
74x2=1.
48.
ThecriticalhydraulicgradientiscalculatedbyEq.
(6):icr=0.
5*19+4*(19.
510)4*10=1.
19Thenthesafetyfactoriscalculatedas:FS=icriav=1.
191.
48=0.
8Fig.
8.
Amodelexampletouseofthegivendesignchartsforcircular-shapedexcavationpitsinurbanareasDesignChartsforCircular-ShapedSheetedExcavationPitsagainstSeepageFailurebyHeave4252016603Inthesecondexample,acircular-shapedsheetedexcavationpitwiththedimensionsgiveninFig.
9isstudied.
Theexca-vationpitisconstructedwithinagravelysand,whichisun-derlainbyacohesivesoilwithapermeabilitycoecientof1.
25x108m/s,inopenwater.
Thegravelysandhasaperme-abilitycoecientof2x106m/sandasaturatedunitweightof20kN/m3.
Theunitweightofwaterisassumedtobe10kN/m3.
Fig.
9.
Amodelexampletouseofthegivendesignchartsforcircular-shapedexcavationpitsinopenwaterFromFig.
9,theratiosofH/D,b/DandT/Daredeter-minedas2/4=0.
5,12/4=3,8/4=2,respectively.
Theratioofkupper/klowerisequalto160,sothattheaveragehydraulicgradientiavisdeterminedas0.
45fromFig.
5a.
ButthisvalueisvalidforH/D=1,sothatitmustbemultipliedbyH/D=0.
5.
Furthermore,thevaluesobtainedfromthegivendesignchartsarevalidforexcavationpits,whichcorrespondtothecaseinFig.
7a.
However,thewaterlevelconditionsinthisexamplecorrespondtothecaseinFig.
7d,sothatthedeterminedvaluemustalsobemultipliedbyH/H=4.
2/2=2.
1.
Finally,iaviscalculatedas0.
45x0.
5x2.
1=0.
47.
ThecriticalhydraulicgradientiscalculatedbyEq.
(3):icr=γsatγwγw=201010=1Thenthesafetyfactoriscalculatedas:FS=icriav=10.
47=2.
14ConclusionsTheaveragehydraulicgradientsonthedownstreamsidesofcircular-shapedsheetedexcavationpitswithvariousdimen-sionsaredetermined,andtheresultsarepresentedintheformofcharts.
Utilizingthegivencharts,thesafetyfactoragainstheaveofcircular-shapedsheetedexcavationpits,whicharecon-structedwithinhomogeneousisotropicsoillayersoflimitedorunlimitedthicknessesinopenwaterorurbanareas,canbeeasilyandquicklyevaluated.
References1TerzaghiK,ErdbaumechanikaufbodenphysikalischerGrundlage,FranzDeuticke-Verlag;Leipzig/Wien,1925.
2TerzaghiK,PeckRB,Soilmechanicsinengineeringpractice,JohnWiley&Sons;NewYork,1968.
3EAU,Recommendationsofthecommitteeforwaterfrontstructures,harboursandwaterways;Berlin,2012.
4HarzaLF,Upliftandseepageunderdamsinsand,TransactionsoftheAmer-icanSocietyofCivilEngineering,100(1),(1935),1352–1385.
5MarslandA,Modelexperimentstostudytheinuenceofseepageonthestabilityofasheetedexcavationinsand,Géotechnique,3(6),(1953),223–241.
6TanakaT,SongS,ShibaY,KusumiS,InoueK,Seepagefail-ureofsandinthreedimensions-experimentsandnumericalanal-yses,6thInternationalConferenceonScourandErosion,(August27-31,2012),http://scour-and-erosion.
baw.
de/icse6-cd/data/articles/000144.
pdf.
7SchoberP,BoleyC,DerEinusseinesAuastltersaufdenBruchvor-gangbeimhydraulischenVersagennichtbindigerBden,Geotechnik,37(4),(2014),250–258.
(inGerman).
8PaneV,CecconiM,NapoliP,HydraulicheavefailureinEC7:SuggestionsforVerication,GeotechnicalandGeologicalEngineering,33(3),(2015),739–750,DOI10.
1007/s10706-014-9834-8.
9EN1997-1:Eurocode7,Geotechnicaldesign-Part1:Generalrules,Euro-peanCommitteeforStandardisation;Brussels,2004.
10AhmedAshrafA,JohnstonHT,OyedeleL,Hydraulicstructureswithdefectivesheetpilewalls,DamsandReservoirs,23(1),(2013),29–37,DOI10.
1680/dare.
13.
00017.
11CaiF,UgaiK,TakahashiC,NakamuraH,OkakiI,Seepageanalysisoftwocasehistoriesofpipinginducedbyexcavationsincohesionlesssoils,TherstInternationalConferenceonConstruction,(August12-14,2004),www.
forum8.
co.
jp/english/icci/ICCI2004-analysis.
pdf.
12AulbachB,ZieglerM,Simplieddesignofexcavationsupportandshaftsforsafetyagainsthydraulicheave,GeomechanicsandTunnelling,6(4),(2013),362–374,DOI10.
1002/geot.
201300031.
13KoltukS,Fernandez-SteegerM,AzzamR,Anumericalstudyontheseepagefailurebyheaveinsheetedexcavationpits,GeomechanicsandEn-gineering,9(4),(2015),513–530,DOI10.
12989/gae.
2015.
9.
4.
513.
14Abaqusanalysisuser'smanual,Vol.
Vol.
1-5,Hibbitt,KarlssonandSoren-son,Inc.
,2012.
Period.
Polytech.
CivilEng.
426SerdarKoltuk,RagAzzam
rangcloud怎么样?rangcloud是去年年初开办的国人商家,RangCloud是一家以销售NAT起步,后续逐渐开始拓展到VPS及云主机业务,目前有中国香港、美国西雅图、韩国NAT、广州移动、江门移动、镇江BGP、山东联通、山东BGP等机房。目前,RangCloud提供香港CN2线路云服务器,电信走CN2、联通移动直连,云主机采用PCle固态硬盘,19.8元/月起,支持建站使用;美国高防云...
这两天Linode发布了十八周年的博文和邮件,回顾了过去取得的成绩和对未来的展望。作为一家运营18年的VPS主机商,Linode无疑是有一些可取之处的,商家提供基于KVM架构的VPS主机,支持随时删除(按小时计费),可选包括美国、英国、新加坡、日本、印度、加拿大、德国等全球十多个数据中心,所有机器提供高出入网带宽,最低仅$5/月($0.0075/小时)。This month marks Linod...
spinservers是Majestic Hosting Solutions LLC旗下站点,主要提供国外服务器租用和Hybrid Dedicated等产品的商家,数据中心包括美国达拉斯和圣何塞机房,机器一般10Gbps端口带宽,高配置硬件,支持使用PayPal、信用卡、支付宝或者微信等付款方式。目前,商家针对部分服务器提供优惠码,优惠后达拉斯机房服务器最低每月89美元起,圣何塞机房服务器最低每月...
wallbase为你推荐
cf蜗牛外挂现 在 开 C F 蜗 牛 透 视 封 号 吗?视频制作软件哪个好哪款视频编辑软件比较好用?小说软件哪个好用免费现在看小说用什么软件好?手动挡和自动挡哪个好自动挡手动挡哪个好?机械表和石英表哪个好机械表好还是石英表好,看专家如何分析电视直播软件哪个好电视直播软件安卓tv版哪个好用浮动利率和固定利率哪个好房贷利率是固定的还是浮动的好?等额本息等额本金哪个好等额本息与等额本金哪个划算?雅思和托福哪个好考考托福好还是雅思好电动牙刷哪个好飞利浦电动牙刷哪款好?求推荐
域名邮箱 子域名查询 Oray域名注册服务商 网站备案域名查询 花生壳域名贝锐 新网域名管理 日本软银 isatap gitcafe 英文简历模板word 彩虹ip 魔兽世界台湾服务器 免费全能空间 申请个人网站 idc资讯 最好的免费空间 双十一秒杀 免费高速空间 卡巴斯基破解版 免费网页空间 更多