structurewallbase
wallbase 时间:2021-01-28 阅读:(
)
GEOTECHNICALEARTHQUAKEENGINEERINGGEOTECHNICAL,GEOLOGICALANDEARTHQUAKEENGINEERINGVolume9SeriesEditorAtillaAnsal,KandilliObservatoryandEarthquakeResearchInstitute,BogaziciUniversity,Istanbul,TurkeyEditorialAdvisoryBoardJulianBommer,ImperialCollegeLondon,U.
K.
JonathanD.
Bray,UniversityofCalifornia,Berkeley,U.
S.
A.
KyriazisPitilakis,AristotleUniversityofThessaloniki,GreeceSusumuYasuda,TokyoDenkiUniversity,JapanForothertitlespublishedinthisseries,gotowww.
springer.
com/series/6011GeotechnicalEarthquakeEngineeringSimpliedAnalyseswithCaseStudiesandExamplesbyMILUTINSRBULOVUnitedKingdomwithForewordofE.
T.
R.
Dean123Dr.
MilutinSrbulovUnitedKingdomsrbuluv@aol.
comISBN:978-1-4020-8683-0e-ISBN:978-1-4020-8684-7LibraryofCongressControlNumber:2008931592c2008SpringerScience+BusinessMediaB.
V.
Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,microlming,recordingorotherwise,withoutwrittenpermissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecicallyforthepurposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.
Printedonacid-freepaper987654321springer.
comForewordMeasurableearthquakesoccurveryfrequentlyinmanypartsoftheworld.
Forexample,Shepherd(1992)lists7283earthquakesrecordedintheCaribbeanAntillesinthe22-yearperiod1964to1985,arateofabout1earthquakeperday.
Somewereduetomovementsofhighlystressedrockatmorethan100kmbelowthegroundsurface(ShepherdandAspinall,1983).
Similarhighlevelsofactivityarefoundinallseismicallyactiveregionsoftheworld.
Astheearthquakevibrationstravelfromthesourcetowardsthegroundsurface,theenergyspreadsoutandalsodissipates,sothatenergydensityreduceswithdis-tancefromsource.
Forthemajorityofevents,shakinghasreducedtolevelsthatpeoplecannotfeelbythetimeitreachesthegroundsurface.
Forsomeevents,suf-cientenergyreachesthesurfaceforpeopletofeelminoreffects.
Forafew,theenergyreachingthesurfaceissufcienttocausemajordamage.
Sinceearthquakeshakingistransmittedthroughground,andsincegroundalsosupportsbuildingsandotherstructures,theartandscienceofgeotechnicalengineer-ingisanimportantpartofearthquakeengineering.
Avarietyofconceptsandtech-niquesaredetailedbyKramer(1996),Day(2002),ChenandScawthorne(2003),andothers.
Someoftheimportantgeotechnicalaspectsare:rTheparticlemechanicalnatureofsoil(MitchellandSoga,2005;LambeandWhitman,1979)rTerzaghi'sPrincipleofEffectiveStress(Terzaghietal,1996)rLinear,isotropicelasticmodels(DavisandSelvadurai,1996)rThetheoryofsoilplasticity(Druckeretal.
,1957;DavisandSelvadurai,2002;Loret,1990)rTheMohr-Coulombfailureenvelope(LambeandWhitman,1979;Das,2004)rThecharacterizationofsoilproperties,andtheoriesofcompressibility,owofwaterthroughsoils,uidization,andconsolidationofsoils(FlorinandIvanov,1961;LambeandWhitman,1979;HeidariandJames,1982;WrothandHoulsby,1985;Terzaghietal,1996;Das,2004)rCriticalstatesoilmechanics,whichseekstoincorporatesoilelasticity,plasticity,strength,density,andconsolidationintoasingleunifyingtheoreticalframework(SchoeldandWroth,1968;AtkinsonandBransby,1978;Muir-Wood,1992;Schoeld,2005)vviForewordrAdvancedsiteinvestigationandlaboratorytestingtechniques(Hunt,2005;Head,2006)rAdvancedmethodsforslopestabilityassessment(Abramsonetal,1996;Corn-forth,2005),andbearingcapacityandlateralearthpressure(eg.
Choudharyetal,2004;KumarandGhosh,2006)rLiquefactionandthesteadystateconcept(Castro,1969;SeedandIdriss,1971;Poulos,1981;VaidandChern,1985;Seed,1988;Ishihara,1995;JefferiesandBeen,2006)rShakingtableandcentrifugemodeltesting(Schoeld,1980;ArulanandanandScott,1994;Taylor,1994)rThedevelopingtheoriesofunsaturatedsoilmechanics(FredlundandRahardjo,1993)rTheuseofadvanceconstitutivemodels(Loret,1990;YamamuroandKaliakin,2005)withniteelementmethods(ZienkiewiczandTaylor,1989,1991;BrittoandGunn,1987;Finn,1999;Potts,2003)rTheglobalgathering,processing,anduseofcollectiveexperience(YoudandIdriss,2001)Basedontheseandotherfactors,advancesinunderstandinghavebeenincor-poratedindesigncodesincludingtheUniformBuildingCode(UBC,1997),theInternationalBuildingCode(IBC,2006),Eurocode8(2004),APIRP2A(2005),ISO19901(2004),andmanyothers.
Tosupportthesedevelopments,itcanbehighlydesirabletodocumentsomesimpliedmodelsthatareeasiertounderstand,retainandexplainthefundamentalphysicsinvolved,andprovidewaysofassessingtherelevance,reliability,andap-plicabilityofmoresophisticatedapproaches.
Itisalsoratherusefultobeabletoidentifythemostsignicantpublicationsinatechnicalliteraturethatisnowveryextensiveindeed.
ThemonographpresentssomeoftheAuthor'sdescriptions,casehistories,experiencesandcommentsonavarietyofsimpliedmodelsforengineer-ingdesignandanalysis.
Thisisvaluablebothforpersonsnewtothesubjectwhowilllearnofthewide-rangingconsiderationsinvolved,andtootherexperiencedpractitionerswhowillbeabletocompareexperienceswiththosesharedhere.
SeniorLecturerinGeotechnicalEngineering,E.
T.
R.
DeanUniversityoftheWestIndiesPrefaceThismonographcontainsdescriptionsofnumerousmethodsaimedateaseandspeedofuseformajorproblemsingeotechnicalearthquakeengineering.
Commentsonassumptions,limitations,andfactorsaffectingtheresultsaregiven.
Casestudiesandexamplesareincludedtoillustratetheaccuracyandusefulnessofsimpliedmethods.
Alistofreferencesisprovidedforfurtherconsiderations,ifdesired.
Mi-crosoftExcelworkbooksreferredtoinAppendicesandprovidedonanaccompany-ingCDareforthecasestudiesandexamplesconsideredinthemonograph.
Someofthereasonsforusingthismonographarementionedbelow.
Manycodesandstandardscontainrecommendationsonbestpracticebutcompli-ancewiththemdoesnotnecessarilyconferimmunityfromrelevantstatutoryandle-galrequirements(asstatedinBritishStandards).
Someseismiccodesandstandardswererevisedaftermajoreventssuchasthe1995Hyogo-kenNambuandthe1994Northridgeearthquakes.
Codescontainclauseswithoutreferencestotheoriginalsourcesformoredetailedconsiderationswhencasesthatrequiresuchconsiderationappearinpractice.
Codesdonotcontainexplanationsofthestatementsexpressedinthem.
Codesarebriefregardinggroundpropertiesandgroundresponse.
Forexample,Eurocode8–Part5requiresassessmentoftheeffectsofsoil-structureinteractionincertaincircumstancesbutdoesnotspecifythedetailsoftheanalyses.
Therefore,theuseofcodesandstandardsalonemaynotbesufcientinengineeringpractice.
Inengineeringpractice,thereisoftenratherlittleinteractionbetweenstructuralandfoundationdisciplines.
Structuralengineersoftenconsidergroundinasim-pliedwayusingequivalentsprings.
Geotechnicalengineersconsideroftenonlyloadingfromstructuresonfoundations.
Dynamicsoil-structureinteractionisverycomplexandanalyzedmainlybyspecialistingeotechnicalearthquakeengineering.
Thismonographshouldhelpgeotechnicalandstructuralengineerstocommunicateeffectivelytobetterunderstandsolutionsofmanyproblemsingeotechnicalearth-quakeengineering.
Specialistsinnon-lineardynamicsanalysesneedtorecognizethatthemotionofanon-linearsystemcanbechaoticandtheoutcomescanbeunrepeatableandunpredictable.
BakerandGollub(1992),forexample,showthattwoconditionsaresufcienttogiverisetothepossibilityofchaoticmotion:thesystemhasatleastthreeindependentvariables,andthevariablesarecoupledbynon-linearviiviiiPrefacerelations.
Equivalentlinearandsimpliednon-lineardynamicanalysisdescribedinthismonographcanbeusedtoavoidpossiblechaoticoutcomesofacomplexnon-lineardynamicanalysis.
Groundmotioncausedbyearthquakesischaoticandthereforegreateraccuracyofsophisticatedmethodslosesitsadvantage.
Expectedgroundmotioncanbepredictedonlyapproximately,andsimpliedanalysesarefasterandeasiertoolsforparametricstudiescomparedtosophisticatedmethods.
UnitedKingdomMilutinSrbulovAcknowledgementsProfessorMaksimovicpersuadedmetoswitchprofessionfromconcretestructurestogeotechnicsrightaftermygraduation.
HepioneeredstudiesofsoilmechanicspaidbyEnergoprojektCo.
atImperialCollegeintheU.
K.
TheMScsoilmechanicsstudyin1984/85enabledmetoobtainthepositionofaresearchassistantlater.
IwashonoredandprivilegedtoworkwithProfessorAmbraseysonanumberofresearchprojectssupportedbytheEngineeringandPhysicalScienceResearchCounciloftheUnitedKingdomandbytheEPOCHprogramoftheCommunityofEuropeanCountriesatImperialCollegeinLondonduringtheperiod1991–1997.
Thesimpliedapproachusedinourresearchisdirectlyapplicabletoroutineengi-neeringpractice.
DrE.
T.
R.
Deanreviewedseveralofmypapersandwasofgreathelpwithhisdetailedandprecisecommentsfortheimprovementoftheinitialversionsofthepapers.
Hekindlyreviewedthemonographandmadeasignicantcontributiontowardstheimprovementoftheclarityandreadabilityofthetext.
ElsevierpublisherskindlygrantedpermissiontoreproduceFig.
5B,Fig.
10,Fig.
11,2/3ofDiscussion,andAppendixAofthepaperbyAmbraseysandSr-bulov(1995)inprintandelectronicformatinalllanguagesandeditions.
Elsevierpublisherskindlygrantedpermissiontoreproducepages255to268ofthepaperbySrbulov(2001)inprintandEnglishversion.
PatronEditorepublisherskindlygrantedpermissiontoreproducepartsofmypaperspublishedinthejournalEuropeanEarthquakeEngineering.
TheAmericanSocietyofCivilEngineerskindlygrantedpermissiontoreproduceinprintandelectronicversionTable2fromZhangetal.
(2005)paper.
ixContents1WellKnownSimpliedModels11.
1Introduction11.
2SourceModelsofEnergyReleasebyTectonicFault11.
2.
1ASimpliedPoint-SourceModel11.
2.
2AnAlternative,PlanarSourceModel41.
2.
3CaseStudyComparisonsofthePointandPlanarSourceModels51.
3SlidingBlockModelofCo-SeismicPermanentSlopeDisplacement61.
3.
1Newmark's(1965)SlidingBlockModel61.
3.
2CommentsonNewmarks's(1965)SlidingBlockModel.
.
.
71.
4SingleDegreeofFreedomOscillatorforVibrationofaStructureonRigidBase101.
4.
1DescriptionoftheModel101.
4.
2CommentsontheModel111.
5Summary122SoilProperties132.
1Introduction132.
2CyclicShearStiffnessandMaterialDamping142.
2.
1ShearStiffnessandDampingRatioDependenceonShearStrain162.
3StaticShearStrengthsofSoils182.
4CyclicShearStrengthsofSoils202.
5TheEquivalentNumberofCyclesConcept232.
5.
1AnExampleofEquivalentHarmonicTimeHistories252.
6WaterPermeabilityandVolumetricCompressibility262.
7Summary283SeismicExcitation293.
1Introduction293.
2SeismicHazard293.
2.
1TypesofEarthquakeMagnitudes303.
2.
2TypesofSource-to-SiteDistances31xixiiContents3.
2.
3TypesofEarthquakeRecurrenceRates313.
2.
4RepresentationsofSeismicHazard323.
2.
5SourcesofEarthquakeData393.
3FactorsAffectingSeismicHazard.
413.
3.
1EarthquakeSourceandWavePathEffects413.
3.
2SedimentBasinEdgeandDepthEffects453.
3.
3LocalSoilLayersEffect543.
3.
4TopographicEffect573.
3.
5SpaceandTimeClustering(andSeismicGaps)583.
4ShortTermSeismicHazardAssessment603.
4.
1HistoricandInstrumentalSeismicDataBased.
603.
4.
2ObservationalMethod623.
5LongTermSeismicHazardAssessment653.
5.
1TectonicDataBased653.
5.
2PaleoseismicDataBased673.
6Summary704SlopeStabilityandDisplacement.
734.
1Introduction734.
2SlopeStability734.
2.
1LimitEquilibriumMethodforTwo-DimensionalAnalysisbyPrismaticWedges744.
2.
2SingleTetrahedralWedgeforThree-DimensionalAnalysisofTranslationalStability844.
3ShearBeamModelforReversibleDisplacementAnalysis864.
3.
1Two-DimensionalAnalysis.
864.
3.
2Three-DimensionalEffect.
884.
4SlidingBlockModelsforPermanentDisplacementAnalysis894.
4.
1Co-SeismicStage.
894.
4.
2Post-SeismicStage944.
5BouncingBallModelofRockFall994.
5.
1CaseStudyofBedrina1RockFallinSwitzerland1034.
5.
2CaseStudyofShimaRockFallinJapan.
1054.
5.
3CaseStudyofFutamataRockFallinJapan1064.
6SimpliedModelforSoilandRockAvalanches,DebrisRun-OutandFastSpreadsAnalysis1074.
6.
1EquationofMotion1084.
6.
2MassBalance1104.
6.
3EnergyBalance1114.
7Summary1175SandLiquefactionandFlow1195.
1Introduction1195.
2ConventionalEmpiricalMethods1205.
2.
1LiquefactionPotentialAssessment120Contentsxiii5.
2.
2FlowConsideration1225.
3RotatingCylinderModelforLiquefactionPotentialAnalysisofSlopes.
1235.
3.
1ModelforCleanSand1235.
3.
2ModelforSandwithFines1265.
4RollingCylinderModelforAnalysisofFlowFailures.
1355.
4.
1ModelforCleanSand1355.
4.
2ModelforSandwithFines1365.
5Summary1396DynamicSoil–FoundationInteraction1416.
1Introduction1416.
2AdvancedandEmpiricalMethods1426.
2.
1NumericalMethods,CentrifugeandShakingTableTesting.
1426.
2.
2SystemIdenticationProcedure.
1426.
3DiscreteElementModels1436.
3.
1LumpedMassModelFormula1436.
3.
2ClosedFormSolutioninTime1506.
3.
3TimeSteppingProcedure1566.
4SingleDegreeofFreedomOscillatoronFlexibleBaseforPiledFoundationsandFlexuralRetainingWalls1686.
4.
1GroundMotionAveragingforKinematicInteractionEffectConsideration1706.
4.
2AccelerationResponseSpectraRatiosforInertialInteractionEffectConsideration1726.
5Summary1857BearingCapacityAndAdditionalSettlementofShallowFoundation.
.
1877.
1Introduction1877.
2BearingCapacity:Pseudo-StaticApproaches1877.
3BearingCapacity:EffectsofSub-SurfaceLiquefaction1887.
4BearingCapacity:EffectsofStructuralInertiaandEccentricityofLoad1897.
4.
1AnExampleofCalculationofBearingCapacityofShallowFoundationinSeismicCondition1907.
5AdditionalSettlementinGranularsoils1917.
5.
1ExamplesofEstimationofAdditionalSettlementCausedbySandLiquefaction1927.
6Summary1938SeismicWavePropagationEffectonTunnelsandShafts1958.
1Introduction1958.
2WavePropagationEffectonCutandCoverTunnelsandShafts.
.
.
.
1958.
2.
1CaseStudyoftheDaikaiStationFailurein1995.
1968.
2.
2CaseStudyofaTenStoryBuildinginMexicoCity199xivContents8.
3WaveRefractionEffectonDeepTunnelsandShafts2018.
4Summary2029CommentsonSomeFrequentLiquefactionPotentialMitigationMeasures2039.
1Introduction2039.
2StoneColumns2039.
3SoilMixing2049.
4ExcessWaterPressureReliefWells2059.
4.
1AnExampleforPressureReliefWells2089.
5Summary208Appendices–MicrosoftExcelWorkbooksonCompactDisk211A.
1CoordinatesofEarthquakeHypocentreandSite-to-EpicentreDistance211A.
2LimitEquilibriumMethodforNortholtSlopeStability212A.
3SingleWedgeforThree-DimensionalSlopeStability214A.
4Co-SeismicSlidingBlock215A.
5aPost-SeismicSlidingBlocksforMaidipoSlipinFrictionalSoil.
.
.
.
215A.
5bPost-SeismicSlidingBlocksforCatakSlipinCohesiveSoil216A.
6BouncingBlockModelofRockFalls216A.
7SimpliedModelforSoilandRockAvalanches,DebrisRun-OutandFastSpreads216A.
8Closed-FormSolutionforGravityWalls219A.
9aTimeSteppingProcedureforKobeWall219A.
9bTimeSteppingProcedureforKalamataWall.
219A.
10AccelerogramAveragingandAccelerationResponseSpectra.
219A.
11BearingCapacityofShallowFoundation223A.
12ExcessPoreWaterPressureDissipation.
223References225Index241ListofSymbolsSymbolDescriptionσh/hhorizontalaxialstressgradientinhorizontaldirectionτhn/ngradientofshearstressinverticalplaneindirectionnormaltotheplaneτhv/vgradientofshearstressinverticalplaneinverticaldirection2u(1)/t2secondgradientofhorizontaldisplacementintime(1-downslope)u/vhorizontaldisplacementgradientinverticaldirectioncapparentcohesionofreinforcedsoilφequivalentfrictionanglealongslidingblockbaseσaveragecompressivestressonslidingblockbaseθinclinationtothehorizontalofslidingblockbase.
.
θrotationalaccelerationofacylinderaroundapoint.
.
uhorizontalacceleration.
θ1nrotationalvelocityofagravitywall.
.
θon,.
.
uonrotationalandhorizontalaccelerationsofagravitywall/αexponentoftheratioγγ1rαangleofslidingblockinclinationtohorizontal/kexponentoftheratioσmP1a(N1)60normalizedblowcounttoanoverburdenpressureof100kPaandcorrectedtoanenergyratioof60%aanexponenta(i)acceleration(initial)a,b,ccoefcientscalculatedfrommeasuredincrementaldisplacementsu,v,wa1rateofgroundaccelerationincrementduringatimeintervalA1,2seismicwaveamplitudes1and2Abareaofthemasscontactwiththebaseandsidesac(h,r)criticalhorizontalaccelerationinsliding(h)orrocking(r)acrcriticalaccelerationxvAffoundationareaaf,phorizontalpeakfoundationaccelerationAfaulttectonicfaultareaAgamplitudeofgrounddisplacementag,thorizontalgroundaccelerationahhorizontalacceleration(foraharmonicload)aipeakinputaccelerationofaSDOFOalgroundaccelerationatdepthlalongthepile/wallattimetAlooptheareaofthehystereticloopaogroundaccelerationatthebeginningofatimeintervalapeak,depthpeakhorizontalgroundaccelerationatdepthaphpeakhorizontalgroundsurfaceaccelerationapeak,surfaceapvpeakverticalgroundsurfaceaccelerationarrockfallaccelerationjustbeforetheimpactAsareaofslopeslidingsurfaceAu(d)upstream(downstream)verticalcrosssectionareabhorizontaldistancebetweenthebackofawallandthewallcentroidb(i)breadthofwedgebase(interfacei)BbwidthofanequivalentballofrockfallbcbreadthofarectangularpilecapBfdiameterofanequivalentcircularfoundationbjbreadthofjointjBsnumberof(sub)basementsinabuildingBwwallbasewidthcsoilshearstrength(cohesion)atzerocompressivestressCtranslationaldashpotcoefcientc(j)soilcohesionindrainedcondition(atjointj)C0,1,2constantschhorizontalcoefcientofinertiaforceinducedbygroundmotioncnamplitudeofthenthharmonicoftheFourierseriescpgroundlongitudinalwavevelocityCssoilconstantintheshearstrengthandshearstrainrelationshipcssoilcharacteristicwavevelocityctgroundtransversalwavevelocitycuundrainedshearstrengthofliqueedsandlayercu(1)undrainedcohesion(inonecycle)curresidualundrainedshearstrengthofliqueedsandcv(r)coefcientofconsolidation(inradialdirection)cvmverticalcoefcientofinertiaforceinducedbygroundmotionCθrotationalsoildashpotcoefcientxviListofSymbolsdminimaldistancefromthelocationofinteresttothesurfaceprojectionofafaultD50anaveragediameterofsoilparticlesdcdepthfactordedistancebetweenwellscentretocentreDffoundationdepthbelowgroundleveldg,thorizontalgrounddisplacementintimedhhorizontaldistancebetweenthelocationwheretheloadFisactingandthelocationwherethestressiscalculatedDldepthofliqueedsoillayerdppilediameterdphpeakhorizontalgroundsurfacedisplacementdrradialdistancemeasuredfromcentreofthewelldsstraight-line(slant)distancebetweentheearthquakehypocenterandarecordingsiteDsmaximumsurfacedisplacementoftectonicfaultdtchangeofthicknessofwedgejointdtj,ejoint(j)thicknesschangeedistancebetweenwallcentroidanditsbaseEYoungmodulusEdenergydensityatahypocentraldistanceEfftheoreticalfree-fallenergyofhammerElossenergylossduetoplasticdeformationofimpactedsurfaceEmactualenergydeliveredbyhammerEototalenergyreleasedattheearthquakesourceEpYoungmodulusofpileEsanaveragelateralearthforceEttotalenergyreleasedattheearthquakesourceperunitareaofthesourceffrequencyofshearstressreversalFavraveragefactorofsafetyofagroupofwedgesFggroundresistingforcetorockfallpenetrationonimpactFi,jlocalfactorsofsafetyalongwedgejointsi,jFmmodicationfactorofsedimentstransversalwavevelocitiesFNnormalandstrike-slipfaultindicatorFOunspeciedfaultindicatorFppointloadFrsoilreactionforceatwallbaseFSfactorofsafetyofslopestabilityFTreverse(thrust)faultindicatorFvverticalfoundationcapacityGshearmodulusggravitationalaccelerationGbaveragetransversalwavevelocityrange3601]probabilityofatleastoneexceedanceofaparticularearthquakemagnitudeinaperiodoftyearsPaatmosphericpressurePbsoilresistingforceactingatthebasePfaxialcomponentofrockfallimpactforcePIsoilplasticityindexpncharacteristicaxialstressListofSymbolsxixpoeffectiveoverburdenstressatthefoundationdepthPrsoilreinforcementforcePsimprovementinshearingresistancefromsoilreinforcementforcePrRradiusofanequivalentballofrockfallrcylinderradiusr1radiusofthenesmodelRbratiobetweenthehorizontaldistancesfromastationtosedimentbasinedgeandthedepthofsedimentsatthelocationofthestationrccorrelationcoefcientrdstressfactorwithdepthreahalfofthedistancederfsourceslantdistancerhradiusofanequivalentdisksforthehorizontalmotionrMCradiusofMohr–CoulombcircledenedbyEquation(9.
1)rpileahalfofpilediameterrrradiusofanequivalentdisksfortherotationalmotionru(,j)excessporewaterpressureratio(atjointj)rvradiusofanequivalentdisksfortheverticalmotionrwradiusofawellSslidingforceatthebaseofarigidretainingwallsaxistoaxisspacingbetweensoil-cementmixturewallsSAstiffsoilsiteindicatorscshapefactorSfaveragesliponthefaultduringanearthquakeSSsoftsoilsiteindicatorStnumberofstoreysabovegroundlevelSuminimaluniaxialcompressivestrengthofsamplestakenfrommixedsoilTperiodofvibrationttimeTi(j)forceactinginthedirectionthatisparalleltothesurfaceofawedgebasei(interfacej)t1timewhencylinderwillstartrotationtachtimecorrespondingtoachTdperiodoftherstmodeoffreevibrationofadamTeqvperiodofequivalentharmoniccycleTftransversalcomponentofrockfallimpactforceTishearforceatwedgejointiTMreturnperiodofearthquakesexceedingmagnitudeMTpageoftectonicplatesubductionTrearthquakerecurrenceperiodTsthetime(inseconds)necessaryforaseismicwavetopassalongLsxxListofSymbolsTvtimefactortwthicknessofsoil-cementmixturewallsT()transversalforceatthetopofthecolumnduetothehorizontaldisplacementandrotationθuhorizontaldisplacementU(z,r)overalldegreeofconsolidation(atdepthz,radiusr)u1one-waypermanenthorizontalcomponentofdisplacementsonslopinggroundu2two-waypermanentdisplacementsoflevel(horizontal)groundufowdistanceuf(ω)surfaceamplitudeofthefreeeldgroundmotionuohorizontalwalldisplacementutexcessporewaterpressureattimetvverticaldirectionVvolumeofmovingmassalongtravelpathv1lowersoilwavepropagationvelocityvhhorizontalbasevelocityvinincomingvelocityofrockfallvlvelocityofpropagationofthelongitudinalwavesvmmovingmassvelocityvoinitialvelocityvoutvelocityofbouncedrockfallVpvelocityofaparticlevphpeakhorizontalgroundsurfacevelocityVrrateoftectonicplatesubductionvtvelocityofpropagationofthetransversalwavesvtpgroundvelocitybelowthepile/walltipattimetvtTsgroundvelocitybelowthepile/walltipattimetTsWweightW1weightofthenesmodelWDdissipatedenergybymaterial(hysteretic)dampingWftectonicfaultwidthWsstrainenergyxshortestdistancebetweentheforceNandpointAinFigure5.
5yshortestdistance(levelarm)betweentheforceNtanφandpointAinFigure5.
5ypileshortestdistancebetweenpilecentroidandtheneutralaxisofrotationzdepthzmdatumabovemovingmassatrestpositionτa(,i)availablesoilshearstrength(atjointi)τeshearstressnecessarytomaintainlimitequilibriumBConstantofproportionalitybetweenγi(j),eandi(j),eListofSymbolsxxi(i(j),e)relativehorizontaldisplacementofabeamend(magnitudesofkinematicallypossibletangentialdisplacementsalongjointsi,jofwedges)Etransientpartoflateralearthforcei(j),ekinematicallypossibleshearstrainalongjointiorjMθmassmomentofinertiaofthetrappedsoilbeneathwallforPoisson'sratiogreaterthan1/3sfoundationsettlementttimesteptwtimelagbetweenarrivaloflongitudinalandtransversalwavesuincrementofgroundsurfacedisplacementinxdirectionvincrementofgroundsurfacedisplacementinydirectionwincrementofgroundsurfacedisplacementinzdirectionxincrementalhorizontaldistancealongrockfalltrajectoryjustbeforetheimpactxhorizontallengthoverwhichchangeofthicknessofmovingmasshasbeenachievedyincrementalverticaldistancealongrockfalltrajectoryjustbeforetheimpactzchangeofthicknessofmovingmassεincrementalaxialstrainφdifferencebetweenangleofsoilfrictionatzeroeffectivestressandbasicangleofsoilfrictionγincrementalshearstrainσvadditionalverticalstressatadepthz>0causedbypointloadFatthegroundsurfacesumofenergylossoveratravelpathofmovingmassNaxialcomponentoftheresultantofallforcesactingontheslipsurfaceTshearcomponentoftheresultantofallforcesactingontheslipsurfaceαangleinFigure5.
4and5.
11α1(2)anglebetweennormaltotheinterfaceanddirectionofpropagationofwavepathsontwosidesofaninterfaceαjangleofinclinationoftangentialdisplacementvectorwithrespecttojointdirectionαllocalangleofinclinationtothehorizontalattheimpactplaceofrockfallβinclinationtothehorizontalβllargerinclinationofthegroundsurfaceslopeortheslopeofthelowerboundaryoftheliqueedzoneinpercentβrfangle(positiveupwards)withthehorizontalatthebeginningofrockfallβttuningratioxxiiListofSymbolsδbfrictionanglebetweensoilandwallbackδi(j),asheardisplacementindirectshearapparatuscorrespondingtoavailableshearstressτaatajointi(i.
e.
j)δi(j),esheardisplacementindirectshearapparatuscorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)δpplasticdeformationindirectionperpendiculartotheimpactsurfaceδrresidualangleofsoilfrictionεi(j),aaxialstrainintriaxialapparatuscorrespondingtoavailableshearstressτaatajointi(i.
e.
j)εi(j),eaxialstrainintriaxialapparatuscorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)φfrictionangleincyclicconditionφ(j)soilfrictionangle(atjointj)indrainedconditionφ1peakfrictionalangleinstaticconditionφbbasicangleofsoilfricitionφnphaseangleespectivelyofthenthharmonicoftheFourierseriesγshearstrainγsubmergedunitweightofnon-liqueedsoilγhvshearstraininverticalplaneγi(j),ashearstraincorrespondingtoavailableshearstressτaatajointi(i.
e.
j)γi(j),eshearstraincorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)γrreferentshearstrainγsunitweightofsoilparticleγsoilunitweightofsoilγwunitweightofwaterηviscosityofsoilηawabsoluteviscosityofwaterηwangleofinclinationtothehorizontalofbackllbehindaretainingwallκ,κ1exponenttoshearstrainintheshearstrengthandshearstrainrelationshipλaveragerateofoccurrenceoftheeventwithconsideredearthquakemagnitudeμshearmodulusoftheEarth'scrustνPoisson'sratiooangleofinclinationtotheverticalofthebackofawallθrotationangleθ1anadditionalinternalrotationaldegreeoffreedomθbrelativerotationofabeamendθoangleofwallrotationListofSymbolsxxiiiθranglebetweenthereinforcementdirectionandanormaltowedgejointθαdifferencebetweenanglesα1andα2ρsoilunitdensityρ1lowersoilunitdensityρwwaterunitdensityσmmeaneffectiveconningstressσvverticaleffectivestress(fromoverburden)σ3lateralconningeffectivepressureσdhorizontalcompressivestressesactingonthedownstreamverticalcrosssectionsofmovingmassσhaxialstress,positivewhentensileσuhorizontalcompressivestressactingontheupstreamverticalcrosssectionsofmovingmassσvtotaloverburdenpressure(atdepthvbelowwalltop)σ()axial(effective)stress,positivewhencompressiveτshearstressτbshearstressatthebaseandsidesτdverticalshearstressactingonthedownstreamverticalcrosssectionsofthemassτhnshearstressintheplaneperpendiculartotheplanewithinwhichhorizontaldisplacementoccursτhvshearstressintheverticalplane(behindwallatdepthv)τppeakshearstrengthτuverticalshearstressactingontheupstreamverticalcrosssectionsofthemassω(n)circularfrequency(ofnthharmonicoftheFourierseries)ωdcircularfrequencyofaninputmotionωefundamentalcircularfrequencyofundampedcoupledlinearelasticSDOFOωggroundcircularfrequencyωhcircularfrequencyofhorizontalmotionωocircularfrequencyoftheoutputmotionωrnaturalfrequencycorrespondingtotherotationalmotionofadynamicmodelωsnaturalcircularfrequencyofpile(s)/wallinxedbaseconditionξdampingratioξeequivalenthystereticdampingratioξgsoilhystereticdampingratioξhradiationdampingratioofapilegroupinhorizontaldirectionξminminimumdampingratioξrradiationdampingratioofapilegroupinrotationξsstructuralhystereticdampingratioxxivListofSymbols
每每进入第四季度,我们就可以看到各大云服务商的促销力度是一年中最大的。一来是年底的促销节日活动比较多,二来是商家希望最后一个季度冲刺业绩。这不还没有到第四季度,我们看到有些商家已经蠢蠢欲动的开始筹备活动。比如素有低价VPS收割机之称的Virmach商家居然还没有到黑色星期五就有发布黑五促销活动。Virmach 商家有十多个数据中心,价格是便宜的,但是机器稳定性和速度肯定我们也是有数的,要不这么低的...
华纳云怎么样?华纳云是香港老牌的IDC服务商,成立于2015年,主要提供中国香港/美国节点的服务器及网络安全产品、比如,香港服务器、香港云服务器、香港高防服务器、香港高防IP、美国云服务器、机柜出租以及云虚拟主机等。以极速 BGP 冗余网络、CN2 GIA 回国专线以及多年技能经验,帮助全球数十万家企业实现业务转型攀升。华纳云针对618返场活动,华纳云推出一系列热销产品活动,香港云服务器低至3折,...
tmthosting怎么样?tmthosting家本站也分享过多次,之前也是不温不火的商家,加上商家的价格略贵,之到斯巴达商家出现,这个商家才被中国用户熟知,原因就是斯巴达家的机器是三网回程AS4837线路,而且也没有多余的加价,斯巴达家断货后,有朋友发现TMTHosting竟然也在同一机房,所以大家就都入手了TMTHosting家的机器。目前,TMTHosting商家放出了夏季优惠,针对VPS推...
wallbase为你推荐
国内免备案服务器国内的服务器是都要备案是吗?有没有不需要备案的?月付百万的女人们男人们谈谈,和多大年龄的女人做爱最舒服莫代尔和纯棉哪个好内裤是莫代尔的好还是棉质的好?理由是什么英语词典哪个好什么英语词典好?视频软件哪个好什么看视频的软件好牡丹江教育云空间登录我想知道校园云空间是用什么账号登录的?qq空间登录不了登陆不了QQ空间yy空间登录怎样进入YY主播的空间考生个人空间登录我是2007年入的学2010年毕业我想查询这3年的成绩,怎么办啊?求解答!dns服务器地址dns服务器地址
3322动态域名 主机优惠码 老鹰主机 百度云100as php主机 新站长网 私有云存储 qingyun cdn加速原理 网站加速 国内空间 cdn服务 美国主机 alertpay 报警主机 流媒体服务器软件 服务器操作系统安装 正在登陆游戏服务器 789影视 英国伦敦艺术大学 更多