structurewallbase
wallbase 时间:2021-01-28 阅读:(
)
GEOTECHNICALEARTHQUAKEENGINEERINGGEOTECHNICAL,GEOLOGICALANDEARTHQUAKEENGINEERINGVolume9SeriesEditorAtillaAnsal,KandilliObservatoryandEarthquakeResearchInstitute,BogaziciUniversity,Istanbul,TurkeyEditorialAdvisoryBoardJulianBommer,ImperialCollegeLondon,U.
K.
JonathanD.
Bray,UniversityofCalifornia,Berkeley,U.
S.
A.
KyriazisPitilakis,AristotleUniversityofThessaloniki,GreeceSusumuYasuda,TokyoDenkiUniversity,JapanForothertitlespublishedinthisseries,gotowww.
springer.
com/series/6011GeotechnicalEarthquakeEngineeringSimpliedAnalyseswithCaseStudiesandExamplesbyMILUTINSRBULOVUnitedKingdomwithForewordofE.
T.
R.
Dean123Dr.
MilutinSrbulovUnitedKingdomsrbuluv@aol.
comISBN:978-1-4020-8683-0e-ISBN:978-1-4020-8684-7LibraryofCongressControlNumber:2008931592c2008SpringerScience+BusinessMediaB.
V.
Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,microlming,recordingorotherwise,withoutwrittenpermissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecicallyforthepurposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.
Printedonacid-freepaper987654321springer.
comForewordMeasurableearthquakesoccurveryfrequentlyinmanypartsoftheworld.
Forexample,Shepherd(1992)lists7283earthquakesrecordedintheCaribbeanAntillesinthe22-yearperiod1964to1985,arateofabout1earthquakeperday.
Somewereduetomovementsofhighlystressedrockatmorethan100kmbelowthegroundsurface(ShepherdandAspinall,1983).
Similarhighlevelsofactivityarefoundinallseismicallyactiveregionsoftheworld.
Astheearthquakevibrationstravelfromthesourcetowardsthegroundsurface,theenergyspreadsoutandalsodissipates,sothatenergydensityreduceswithdis-tancefromsource.
Forthemajorityofevents,shakinghasreducedtolevelsthatpeoplecannotfeelbythetimeitreachesthegroundsurface.
Forsomeevents,suf-cientenergyreachesthesurfaceforpeopletofeelminoreffects.
Forafew,theenergyreachingthesurfaceissufcienttocausemajordamage.
Sinceearthquakeshakingistransmittedthroughground,andsincegroundalsosupportsbuildingsandotherstructures,theartandscienceofgeotechnicalengineer-ingisanimportantpartofearthquakeengineering.
Avarietyofconceptsandtech-niquesaredetailedbyKramer(1996),Day(2002),ChenandScawthorne(2003),andothers.
Someoftheimportantgeotechnicalaspectsare:rTheparticlemechanicalnatureofsoil(MitchellandSoga,2005;LambeandWhitman,1979)rTerzaghi'sPrincipleofEffectiveStress(Terzaghietal,1996)rLinear,isotropicelasticmodels(DavisandSelvadurai,1996)rThetheoryofsoilplasticity(Druckeretal.
,1957;DavisandSelvadurai,2002;Loret,1990)rTheMohr-Coulombfailureenvelope(LambeandWhitman,1979;Das,2004)rThecharacterizationofsoilproperties,andtheoriesofcompressibility,owofwaterthroughsoils,uidization,andconsolidationofsoils(FlorinandIvanov,1961;LambeandWhitman,1979;HeidariandJames,1982;WrothandHoulsby,1985;Terzaghietal,1996;Das,2004)rCriticalstatesoilmechanics,whichseekstoincorporatesoilelasticity,plasticity,strength,density,andconsolidationintoasingleunifyingtheoreticalframework(SchoeldandWroth,1968;AtkinsonandBransby,1978;Muir-Wood,1992;Schoeld,2005)vviForewordrAdvancedsiteinvestigationandlaboratorytestingtechniques(Hunt,2005;Head,2006)rAdvancedmethodsforslopestabilityassessment(Abramsonetal,1996;Corn-forth,2005),andbearingcapacityandlateralearthpressure(eg.
Choudharyetal,2004;KumarandGhosh,2006)rLiquefactionandthesteadystateconcept(Castro,1969;SeedandIdriss,1971;Poulos,1981;VaidandChern,1985;Seed,1988;Ishihara,1995;JefferiesandBeen,2006)rShakingtableandcentrifugemodeltesting(Schoeld,1980;ArulanandanandScott,1994;Taylor,1994)rThedevelopingtheoriesofunsaturatedsoilmechanics(FredlundandRahardjo,1993)rTheuseofadvanceconstitutivemodels(Loret,1990;YamamuroandKaliakin,2005)withniteelementmethods(ZienkiewiczandTaylor,1989,1991;BrittoandGunn,1987;Finn,1999;Potts,2003)rTheglobalgathering,processing,anduseofcollectiveexperience(YoudandIdriss,2001)Basedontheseandotherfactors,advancesinunderstandinghavebeenincor-poratedindesigncodesincludingtheUniformBuildingCode(UBC,1997),theInternationalBuildingCode(IBC,2006),Eurocode8(2004),APIRP2A(2005),ISO19901(2004),andmanyothers.
Tosupportthesedevelopments,itcanbehighlydesirabletodocumentsomesimpliedmodelsthatareeasiertounderstand,retainandexplainthefundamentalphysicsinvolved,andprovidewaysofassessingtherelevance,reliability,andap-plicabilityofmoresophisticatedapproaches.
Itisalsoratherusefultobeabletoidentifythemostsignicantpublicationsinatechnicalliteraturethatisnowveryextensiveindeed.
ThemonographpresentssomeoftheAuthor'sdescriptions,casehistories,experiencesandcommentsonavarietyofsimpliedmodelsforengineer-ingdesignandanalysis.
Thisisvaluablebothforpersonsnewtothesubjectwhowilllearnofthewide-rangingconsiderationsinvolved,andtootherexperiencedpractitionerswhowillbeabletocompareexperienceswiththosesharedhere.
SeniorLecturerinGeotechnicalEngineering,E.
T.
R.
DeanUniversityoftheWestIndiesPrefaceThismonographcontainsdescriptionsofnumerousmethodsaimedateaseandspeedofuseformajorproblemsingeotechnicalearthquakeengineering.
Commentsonassumptions,limitations,andfactorsaffectingtheresultsaregiven.
Casestudiesandexamplesareincludedtoillustratetheaccuracyandusefulnessofsimpliedmethods.
Alistofreferencesisprovidedforfurtherconsiderations,ifdesired.
Mi-crosoftExcelworkbooksreferredtoinAppendicesandprovidedonanaccompany-ingCDareforthecasestudiesandexamplesconsideredinthemonograph.
Someofthereasonsforusingthismonographarementionedbelow.
Manycodesandstandardscontainrecommendationsonbestpracticebutcompli-ancewiththemdoesnotnecessarilyconferimmunityfromrelevantstatutoryandle-galrequirements(asstatedinBritishStandards).
Someseismiccodesandstandardswererevisedaftermajoreventssuchasthe1995Hyogo-kenNambuandthe1994Northridgeearthquakes.
Codescontainclauseswithoutreferencestotheoriginalsourcesformoredetailedconsiderationswhencasesthatrequiresuchconsiderationappearinpractice.
Codesdonotcontainexplanationsofthestatementsexpressedinthem.
Codesarebriefregardinggroundpropertiesandgroundresponse.
Forexample,Eurocode8–Part5requiresassessmentoftheeffectsofsoil-structureinteractionincertaincircumstancesbutdoesnotspecifythedetailsoftheanalyses.
Therefore,theuseofcodesandstandardsalonemaynotbesufcientinengineeringpractice.
Inengineeringpractice,thereisoftenratherlittleinteractionbetweenstructuralandfoundationdisciplines.
Structuralengineersoftenconsidergroundinasim-pliedwayusingequivalentsprings.
Geotechnicalengineersconsideroftenonlyloadingfromstructuresonfoundations.
Dynamicsoil-structureinteractionisverycomplexandanalyzedmainlybyspecialistingeotechnicalearthquakeengineering.
Thismonographshouldhelpgeotechnicalandstructuralengineerstocommunicateeffectivelytobetterunderstandsolutionsofmanyproblemsingeotechnicalearth-quakeengineering.
Specialistsinnon-lineardynamicsanalysesneedtorecognizethatthemotionofanon-linearsystemcanbechaoticandtheoutcomescanbeunrepeatableandunpredictable.
BakerandGollub(1992),forexample,showthattwoconditionsaresufcienttogiverisetothepossibilityofchaoticmotion:thesystemhasatleastthreeindependentvariables,andthevariablesarecoupledbynon-linearviiviiiPrefacerelations.
Equivalentlinearandsimpliednon-lineardynamicanalysisdescribedinthismonographcanbeusedtoavoidpossiblechaoticoutcomesofacomplexnon-lineardynamicanalysis.
Groundmotioncausedbyearthquakesischaoticandthereforegreateraccuracyofsophisticatedmethodslosesitsadvantage.
Expectedgroundmotioncanbepredictedonlyapproximately,andsimpliedanalysesarefasterandeasiertoolsforparametricstudiescomparedtosophisticatedmethods.
UnitedKingdomMilutinSrbulovAcknowledgementsProfessorMaksimovicpersuadedmetoswitchprofessionfromconcretestructurestogeotechnicsrightaftermygraduation.
HepioneeredstudiesofsoilmechanicspaidbyEnergoprojektCo.
atImperialCollegeintheU.
K.
TheMScsoilmechanicsstudyin1984/85enabledmetoobtainthepositionofaresearchassistantlater.
IwashonoredandprivilegedtoworkwithProfessorAmbraseysonanumberofresearchprojectssupportedbytheEngineeringandPhysicalScienceResearchCounciloftheUnitedKingdomandbytheEPOCHprogramoftheCommunityofEuropeanCountriesatImperialCollegeinLondonduringtheperiod1991–1997.
Thesimpliedapproachusedinourresearchisdirectlyapplicabletoroutineengi-neeringpractice.
DrE.
T.
R.
Deanreviewedseveralofmypapersandwasofgreathelpwithhisdetailedandprecisecommentsfortheimprovementoftheinitialversionsofthepapers.
Hekindlyreviewedthemonographandmadeasignicantcontributiontowardstheimprovementoftheclarityandreadabilityofthetext.
ElsevierpublisherskindlygrantedpermissiontoreproduceFig.
5B,Fig.
10,Fig.
11,2/3ofDiscussion,andAppendixAofthepaperbyAmbraseysandSr-bulov(1995)inprintandelectronicformatinalllanguagesandeditions.
Elsevierpublisherskindlygrantedpermissiontoreproducepages255to268ofthepaperbySrbulov(2001)inprintandEnglishversion.
PatronEditorepublisherskindlygrantedpermissiontoreproducepartsofmypaperspublishedinthejournalEuropeanEarthquakeEngineering.
TheAmericanSocietyofCivilEngineerskindlygrantedpermissiontoreproduceinprintandelectronicversionTable2fromZhangetal.
(2005)paper.
ixContents1WellKnownSimpliedModels11.
1Introduction11.
2SourceModelsofEnergyReleasebyTectonicFault11.
2.
1ASimpliedPoint-SourceModel11.
2.
2AnAlternative,PlanarSourceModel41.
2.
3CaseStudyComparisonsofthePointandPlanarSourceModels51.
3SlidingBlockModelofCo-SeismicPermanentSlopeDisplacement61.
3.
1Newmark's(1965)SlidingBlockModel61.
3.
2CommentsonNewmarks's(1965)SlidingBlockModel.
.
.
71.
4SingleDegreeofFreedomOscillatorforVibrationofaStructureonRigidBase101.
4.
1DescriptionoftheModel101.
4.
2CommentsontheModel111.
5Summary122SoilProperties132.
1Introduction132.
2CyclicShearStiffnessandMaterialDamping142.
2.
1ShearStiffnessandDampingRatioDependenceonShearStrain162.
3StaticShearStrengthsofSoils182.
4CyclicShearStrengthsofSoils202.
5TheEquivalentNumberofCyclesConcept232.
5.
1AnExampleofEquivalentHarmonicTimeHistories252.
6WaterPermeabilityandVolumetricCompressibility262.
7Summary283SeismicExcitation293.
1Introduction293.
2SeismicHazard293.
2.
1TypesofEarthquakeMagnitudes303.
2.
2TypesofSource-to-SiteDistances31xixiiContents3.
2.
3TypesofEarthquakeRecurrenceRates313.
2.
4RepresentationsofSeismicHazard323.
2.
5SourcesofEarthquakeData393.
3FactorsAffectingSeismicHazard.
413.
3.
1EarthquakeSourceandWavePathEffects413.
3.
2SedimentBasinEdgeandDepthEffects453.
3.
3LocalSoilLayersEffect543.
3.
4TopographicEffect573.
3.
5SpaceandTimeClustering(andSeismicGaps)583.
4ShortTermSeismicHazardAssessment603.
4.
1HistoricandInstrumentalSeismicDataBased.
603.
4.
2ObservationalMethod623.
5LongTermSeismicHazardAssessment653.
5.
1TectonicDataBased653.
5.
2PaleoseismicDataBased673.
6Summary704SlopeStabilityandDisplacement.
734.
1Introduction734.
2SlopeStability734.
2.
1LimitEquilibriumMethodforTwo-DimensionalAnalysisbyPrismaticWedges744.
2.
2SingleTetrahedralWedgeforThree-DimensionalAnalysisofTranslationalStability844.
3ShearBeamModelforReversibleDisplacementAnalysis864.
3.
1Two-DimensionalAnalysis.
864.
3.
2Three-DimensionalEffect.
884.
4SlidingBlockModelsforPermanentDisplacementAnalysis894.
4.
1Co-SeismicStage.
894.
4.
2Post-SeismicStage944.
5BouncingBallModelofRockFall994.
5.
1CaseStudyofBedrina1RockFallinSwitzerland1034.
5.
2CaseStudyofShimaRockFallinJapan.
1054.
5.
3CaseStudyofFutamataRockFallinJapan1064.
6SimpliedModelforSoilandRockAvalanches,DebrisRun-OutandFastSpreadsAnalysis1074.
6.
1EquationofMotion1084.
6.
2MassBalance1104.
6.
3EnergyBalance1114.
7Summary1175SandLiquefactionandFlow1195.
1Introduction1195.
2ConventionalEmpiricalMethods1205.
2.
1LiquefactionPotentialAssessment120Contentsxiii5.
2.
2FlowConsideration1225.
3RotatingCylinderModelforLiquefactionPotentialAnalysisofSlopes.
1235.
3.
1ModelforCleanSand1235.
3.
2ModelforSandwithFines1265.
4RollingCylinderModelforAnalysisofFlowFailures.
1355.
4.
1ModelforCleanSand1355.
4.
2ModelforSandwithFines1365.
5Summary1396DynamicSoil–FoundationInteraction1416.
1Introduction1416.
2AdvancedandEmpiricalMethods1426.
2.
1NumericalMethods,CentrifugeandShakingTableTesting.
1426.
2.
2SystemIdenticationProcedure.
1426.
3DiscreteElementModels1436.
3.
1LumpedMassModelFormula1436.
3.
2ClosedFormSolutioninTime1506.
3.
3TimeSteppingProcedure1566.
4SingleDegreeofFreedomOscillatoronFlexibleBaseforPiledFoundationsandFlexuralRetainingWalls1686.
4.
1GroundMotionAveragingforKinematicInteractionEffectConsideration1706.
4.
2AccelerationResponseSpectraRatiosforInertialInteractionEffectConsideration1726.
5Summary1857BearingCapacityAndAdditionalSettlementofShallowFoundation.
.
1877.
1Introduction1877.
2BearingCapacity:Pseudo-StaticApproaches1877.
3BearingCapacity:EffectsofSub-SurfaceLiquefaction1887.
4BearingCapacity:EffectsofStructuralInertiaandEccentricityofLoad1897.
4.
1AnExampleofCalculationofBearingCapacityofShallowFoundationinSeismicCondition1907.
5AdditionalSettlementinGranularsoils1917.
5.
1ExamplesofEstimationofAdditionalSettlementCausedbySandLiquefaction1927.
6Summary1938SeismicWavePropagationEffectonTunnelsandShafts1958.
1Introduction1958.
2WavePropagationEffectonCutandCoverTunnelsandShafts.
.
.
.
1958.
2.
1CaseStudyoftheDaikaiStationFailurein1995.
1968.
2.
2CaseStudyofaTenStoryBuildinginMexicoCity199xivContents8.
3WaveRefractionEffectonDeepTunnelsandShafts2018.
4Summary2029CommentsonSomeFrequentLiquefactionPotentialMitigationMeasures2039.
1Introduction2039.
2StoneColumns2039.
3SoilMixing2049.
4ExcessWaterPressureReliefWells2059.
4.
1AnExampleforPressureReliefWells2089.
5Summary208Appendices–MicrosoftExcelWorkbooksonCompactDisk211A.
1CoordinatesofEarthquakeHypocentreandSite-to-EpicentreDistance211A.
2LimitEquilibriumMethodforNortholtSlopeStability212A.
3SingleWedgeforThree-DimensionalSlopeStability214A.
4Co-SeismicSlidingBlock215A.
5aPost-SeismicSlidingBlocksforMaidipoSlipinFrictionalSoil.
.
.
.
215A.
5bPost-SeismicSlidingBlocksforCatakSlipinCohesiveSoil216A.
6BouncingBlockModelofRockFalls216A.
7SimpliedModelforSoilandRockAvalanches,DebrisRun-OutandFastSpreads216A.
8Closed-FormSolutionforGravityWalls219A.
9aTimeSteppingProcedureforKobeWall219A.
9bTimeSteppingProcedureforKalamataWall.
219A.
10AccelerogramAveragingandAccelerationResponseSpectra.
219A.
11BearingCapacityofShallowFoundation223A.
12ExcessPoreWaterPressureDissipation.
223References225Index241ListofSymbolsSymbolDescriptionσh/hhorizontalaxialstressgradientinhorizontaldirectionτhn/ngradientofshearstressinverticalplaneindirectionnormaltotheplaneτhv/vgradientofshearstressinverticalplaneinverticaldirection2u(1)/t2secondgradientofhorizontaldisplacementintime(1-downslope)u/vhorizontaldisplacementgradientinverticaldirectioncapparentcohesionofreinforcedsoilφequivalentfrictionanglealongslidingblockbaseσaveragecompressivestressonslidingblockbaseθinclinationtothehorizontalofslidingblockbase.
.
θrotationalaccelerationofacylinderaroundapoint.
.
uhorizontalacceleration.
θ1nrotationalvelocityofagravitywall.
.
θon,.
.
uonrotationalandhorizontalaccelerationsofagravitywall/αexponentoftheratioγγ1rαangleofslidingblockinclinationtohorizontal/kexponentoftheratioσmP1a(N1)60normalizedblowcounttoanoverburdenpressureof100kPaandcorrectedtoanenergyratioof60%aanexponenta(i)acceleration(initial)a,b,ccoefcientscalculatedfrommeasuredincrementaldisplacementsu,v,wa1rateofgroundaccelerationincrementduringatimeintervalA1,2seismicwaveamplitudes1and2Abareaofthemasscontactwiththebaseandsidesac(h,r)criticalhorizontalaccelerationinsliding(h)orrocking(r)acrcriticalaccelerationxvAffoundationareaaf,phorizontalpeakfoundationaccelerationAfaulttectonicfaultareaAgamplitudeofgrounddisplacementag,thorizontalgroundaccelerationahhorizontalacceleration(foraharmonicload)aipeakinputaccelerationofaSDOFOalgroundaccelerationatdepthlalongthepile/wallattimetAlooptheareaofthehystereticloopaogroundaccelerationatthebeginningofatimeintervalapeak,depthpeakhorizontalgroundaccelerationatdepthaphpeakhorizontalgroundsurfaceaccelerationapeak,surfaceapvpeakverticalgroundsurfaceaccelerationarrockfallaccelerationjustbeforetheimpactAsareaofslopeslidingsurfaceAu(d)upstream(downstream)verticalcrosssectionareabhorizontaldistancebetweenthebackofawallandthewallcentroidb(i)breadthofwedgebase(interfacei)BbwidthofanequivalentballofrockfallbcbreadthofarectangularpilecapBfdiameterofanequivalentcircularfoundationbjbreadthofjointjBsnumberof(sub)basementsinabuildingBwwallbasewidthcsoilshearstrength(cohesion)atzerocompressivestressCtranslationaldashpotcoefcientc(j)soilcohesionindrainedcondition(atjointj)C0,1,2constantschhorizontalcoefcientofinertiaforceinducedbygroundmotioncnamplitudeofthenthharmonicoftheFourierseriescpgroundlongitudinalwavevelocityCssoilconstantintheshearstrengthandshearstrainrelationshipcssoilcharacteristicwavevelocityctgroundtransversalwavevelocitycuundrainedshearstrengthofliqueedsandlayercu(1)undrainedcohesion(inonecycle)curresidualundrainedshearstrengthofliqueedsandcv(r)coefcientofconsolidation(inradialdirection)cvmverticalcoefcientofinertiaforceinducedbygroundmotionCθrotationalsoildashpotcoefcientxviListofSymbolsdminimaldistancefromthelocationofinteresttothesurfaceprojectionofafaultD50anaveragediameterofsoilparticlesdcdepthfactordedistancebetweenwellscentretocentreDffoundationdepthbelowgroundleveldg,thorizontalgrounddisplacementintimedhhorizontaldistancebetweenthelocationwheretheloadFisactingandthelocationwherethestressiscalculatedDldepthofliqueedsoillayerdppilediameterdphpeakhorizontalgroundsurfacedisplacementdrradialdistancemeasuredfromcentreofthewelldsstraight-line(slant)distancebetweentheearthquakehypocenterandarecordingsiteDsmaximumsurfacedisplacementoftectonicfaultdtchangeofthicknessofwedgejointdtj,ejoint(j)thicknesschangeedistancebetweenwallcentroidanditsbaseEYoungmodulusEdenergydensityatahypocentraldistanceEfftheoreticalfree-fallenergyofhammerElossenergylossduetoplasticdeformationofimpactedsurfaceEmactualenergydeliveredbyhammerEototalenergyreleasedattheearthquakesourceEpYoungmodulusofpileEsanaveragelateralearthforceEttotalenergyreleasedattheearthquakesourceperunitareaofthesourceffrequencyofshearstressreversalFavraveragefactorofsafetyofagroupofwedgesFggroundresistingforcetorockfallpenetrationonimpactFi,jlocalfactorsofsafetyalongwedgejointsi,jFmmodicationfactorofsedimentstransversalwavevelocitiesFNnormalandstrike-slipfaultindicatorFOunspeciedfaultindicatorFppointloadFrsoilreactionforceatwallbaseFSfactorofsafetyofslopestabilityFTreverse(thrust)faultindicatorFvverticalfoundationcapacityGshearmodulusggravitationalaccelerationGbaveragetransversalwavevelocityrange3601]probabilityofatleastoneexceedanceofaparticularearthquakemagnitudeinaperiodoftyearsPaatmosphericpressurePbsoilresistingforceactingatthebasePfaxialcomponentofrockfallimpactforcePIsoilplasticityindexpncharacteristicaxialstressListofSymbolsxixpoeffectiveoverburdenstressatthefoundationdepthPrsoilreinforcementforcePsimprovementinshearingresistancefromsoilreinforcementforcePrRradiusofanequivalentballofrockfallrcylinderradiusr1radiusofthenesmodelRbratiobetweenthehorizontaldistancesfromastationtosedimentbasinedgeandthedepthofsedimentsatthelocationofthestationrccorrelationcoefcientrdstressfactorwithdepthreahalfofthedistancederfsourceslantdistancerhradiusofanequivalentdisksforthehorizontalmotionrMCradiusofMohr–CoulombcircledenedbyEquation(9.
1)rpileahalfofpilediameterrrradiusofanequivalentdisksfortherotationalmotionru(,j)excessporewaterpressureratio(atjointj)rvradiusofanequivalentdisksfortheverticalmotionrwradiusofawellSslidingforceatthebaseofarigidretainingwallsaxistoaxisspacingbetweensoil-cementmixturewallsSAstiffsoilsiteindicatorscshapefactorSfaveragesliponthefaultduringanearthquakeSSsoftsoilsiteindicatorStnumberofstoreysabovegroundlevelSuminimaluniaxialcompressivestrengthofsamplestakenfrommixedsoilTperiodofvibrationttimeTi(j)forceactinginthedirectionthatisparalleltothesurfaceofawedgebasei(interfacej)t1timewhencylinderwillstartrotationtachtimecorrespondingtoachTdperiodoftherstmodeoffreevibrationofadamTeqvperiodofequivalentharmoniccycleTftransversalcomponentofrockfallimpactforceTishearforceatwedgejointiTMreturnperiodofearthquakesexceedingmagnitudeMTpageoftectonicplatesubductionTrearthquakerecurrenceperiodTsthetime(inseconds)necessaryforaseismicwavetopassalongLsxxListofSymbolsTvtimefactortwthicknessofsoil-cementmixturewallsT()transversalforceatthetopofthecolumnduetothehorizontaldisplacementandrotationθuhorizontaldisplacementU(z,r)overalldegreeofconsolidation(atdepthz,radiusr)u1one-waypermanenthorizontalcomponentofdisplacementsonslopinggroundu2two-waypermanentdisplacementsoflevel(horizontal)groundufowdistanceuf(ω)surfaceamplitudeofthefreeeldgroundmotionuohorizontalwalldisplacementutexcessporewaterpressureattimetvverticaldirectionVvolumeofmovingmassalongtravelpathv1lowersoilwavepropagationvelocityvhhorizontalbasevelocityvinincomingvelocityofrockfallvlvelocityofpropagationofthelongitudinalwavesvmmovingmassvelocityvoinitialvelocityvoutvelocityofbouncedrockfallVpvelocityofaparticlevphpeakhorizontalgroundsurfacevelocityVrrateoftectonicplatesubductionvtvelocityofpropagationofthetransversalwavesvtpgroundvelocitybelowthepile/walltipattimetvtTsgroundvelocitybelowthepile/walltipattimetTsWweightW1weightofthenesmodelWDdissipatedenergybymaterial(hysteretic)dampingWftectonicfaultwidthWsstrainenergyxshortestdistancebetweentheforceNandpointAinFigure5.
5yshortestdistance(levelarm)betweentheforceNtanφandpointAinFigure5.
5ypileshortestdistancebetweenpilecentroidandtheneutralaxisofrotationzdepthzmdatumabovemovingmassatrestpositionτa(,i)availablesoilshearstrength(atjointi)τeshearstressnecessarytomaintainlimitequilibriumBConstantofproportionalitybetweenγi(j),eandi(j),eListofSymbolsxxi(i(j),e)relativehorizontaldisplacementofabeamend(magnitudesofkinematicallypossibletangentialdisplacementsalongjointsi,jofwedges)Etransientpartoflateralearthforcei(j),ekinematicallypossibleshearstrainalongjointiorjMθmassmomentofinertiaofthetrappedsoilbeneathwallforPoisson'sratiogreaterthan1/3sfoundationsettlementttimesteptwtimelagbetweenarrivaloflongitudinalandtransversalwavesuincrementofgroundsurfacedisplacementinxdirectionvincrementofgroundsurfacedisplacementinydirectionwincrementofgroundsurfacedisplacementinzdirectionxincrementalhorizontaldistancealongrockfalltrajectoryjustbeforetheimpactxhorizontallengthoverwhichchangeofthicknessofmovingmasshasbeenachievedyincrementalverticaldistancealongrockfalltrajectoryjustbeforetheimpactzchangeofthicknessofmovingmassεincrementalaxialstrainφdifferencebetweenangleofsoilfrictionatzeroeffectivestressandbasicangleofsoilfrictionγincrementalshearstrainσvadditionalverticalstressatadepthz>0causedbypointloadFatthegroundsurfacesumofenergylossoveratravelpathofmovingmassNaxialcomponentoftheresultantofallforcesactingontheslipsurfaceTshearcomponentoftheresultantofallforcesactingontheslipsurfaceαangleinFigure5.
4and5.
11α1(2)anglebetweennormaltotheinterfaceanddirectionofpropagationofwavepathsontwosidesofaninterfaceαjangleofinclinationoftangentialdisplacementvectorwithrespecttojointdirectionαllocalangleofinclinationtothehorizontalattheimpactplaceofrockfallβinclinationtothehorizontalβllargerinclinationofthegroundsurfaceslopeortheslopeofthelowerboundaryoftheliqueedzoneinpercentβrfangle(positiveupwards)withthehorizontalatthebeginningofrockfallβttuningratioxxiiListofSymbolsδbfrictionanglebetweensoilandwallbackδi(j),asheardisplacementindirectshearapparatuscorrespondingtoavailableshearstressτaatajointi(i.
e.
j)δi(j),esheardisplacementindirectshearapparatuscorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)δpplasticdeformationindirectionperpendiculartotheimpactsurfaceδrresidualangleofsoilfrictionεi(j),aaxialstrainintriaxialapparatuscorrespondingtoavailableshearstressτaatajointi(i.
e.
j)εi(j),eaxialstrainintriaxialapparatuscorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)φfrictionangleincyclicconditionφ(j)soilfrictionangle(atjointj)indrainedconditionφ1peakfrictionalangleinstaticconditionφbbasicangleofsoilfricitionφnphaseangleespectivelyofthenthharmonicoftheFourierseriesγshearstrainγsubmergedunitweightofnon-liqueedsoilγhvshearstraininverticalplaneγi(j),ashearstraincorrespondingtoavailableshearstressτaatajointi(i.
e.
j)γi(j),eshearstraincorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)γrreferentshearstrainγsunitweightofsoilparticleγsoilunitweightofsoilγwunitweightofwaterηviscosityofsoilηawabsoluteviscosityofwaterηwangleofinclinationtothehorizontalofbackllbehindaretainingwallκ,κ1exponenttoshearstrainintheshearstrengthandshearstrainrelationshipλaveragerateofoccurrenceoftheeventwithconsideredearthquakemagnitudeμshearmodulusoftheEarth'scrustνPoisson'sratiooangleofinclinationtotheverticalofthebackofawallθrotationangleθ1anadditionalinternalrotationaldegreeoffreedomθbrelativerotationofabeamendθoangleofwallrotationListofSymbolsxxiiiθranglebetweenthereinforcementdirectionandanormaltowedgejointθαdifferencebetweenanglesα1andα2ρsoilunitdensityρ1lowersoilunitdensityρwwaterunitdensityσmmeaneffectiveconningstressσvverticaleffectivestress(fromoverburden)σ3lateralconningeffectivepressureσdhorizontalcompressivestressesactingonthedownstreamverticalcrosssectionsofmovingmassσhaxialstress,positivewhentensileσuhorizontalcompressivestressactingontheupstreamverticalcrosssectionsofmovingmassσvtotaloverburdenpressure(atdepthvbelowwalltop)σ()axial(effective)stress,positivewhencompressiveτshearstressτbshearstressatthebaseandsidesτdverticalshearstressactingonthedownstreamverticalcrosssectionsofthemassτhnshearstressintheplaneperpendiculartotheplanewithinwhichhorizontaldisplacementoccursτhvshearstressintheverticalplane(behindwallatdepthv)τppeakshearstrengthτuverticalshearstressactingontheupstreamverticalcrosssectionsofthemassω(n)circularfrequency(ofnthharmonicoftheFourierseries)ωdcircularfrequencyofaninputmotionωefundamentalcircularfrequencyofundampedcoupledlinearelasticSDOFOωggroundcircularfrequencyωhcircularfrequencyofhorizontalmotionωocircularfrequencyoftheoutputmotionωrnaturalfrequencycorrespondingtotherotationalmotionofadynamicmodelωsnaturalcircularfrequencyofpile(s)/wallinxedbaseconditionξdampingratioξeequivalenthystereticdampingratioξgsoilhystereticdampingratioξhradiationdampingratioofapilegroupinhorizontaldirectionξminminimumdampingratioξrradiationdampingratioofapilegroupinrotationξsstructuralhystereticdampingratioxxivListofSymbols
DiyVM 香港沙田机房,也是采用的CN2优化线路,目前也有入手且在使用中,我个人感觉如果中文业务需要用到的话虽然日本机房也是CN2,但是线路的稳定性不如香港机房,所以我们在这篇文章中亲测看看香港机房,然后对比之前看到的日本机房。香港机房的配置信息。CPU内存 硬盘带宽IP价格购买地址2核2G50G2M1¥50/月选择方案4核4G60G3M1¥100/月选择方案4核8G70G3M4¥200/月选择...
我们对于BlueHost主机商还是比较熟悉的,早年我们还是全民使用虚拟主机的时候,大部分的外贸主机都会用到BlueHost无限虚拟主机方案,那时候他们商家只有一款虚拟主机方案。目前,商家国际款和国内款是有差异营销的,BlueHost国内有提供香港、美国、印度和欧洲机房。包括有提供虚拟主机、VPS和独立服务器。现在,BlueHost 商家周年活动,全场五折优惠。我们看看这次的活动有哪些值得选择的。 ...
Nocser刚刚在WHT发布了几款促销服务器,Intel Xeon X3430,8GB内存,1TB HDD,30M不限流量,月付$60.00。Nocser是一家注册于马来西亚的主机商,主要经营虚拟主机、VPS和马来西亚独立服务器业务,数据中心位于马来西亚AIMS机房,线路方面,AIMS到国内电信一般,绕日本NTT;联通和移动比较友好,联通走新加坡,移动走香港,延迟都在100左右。促销马来西亚服务器...
wallbase为你推荐
江门旅游景点哪个好玩的地方江门有那个地方好玩呢炒股软件哪个好用玩股票哪个软件好?手机管家哪个好手机管理软件哪个好用红茶和绿茶哪个好红茶和绿茶,哪个好?雅思和托福哪个好考考托福好还是雅思好行车记录仪哪个好请问行车记录仪那个牌子好?飞信空间登录关于飞信登陆方式willyunlee生化女战士主要讲的什么东莞电信宽带套餐东莞光纤宽带资费360云网盘下载360云盘怎么下载和移走以前的文件?
郑州服务器租用 godaddy域名解析 godaddy域名解析教程 已经备案域名 wavecom kdata webhosting 光棍节日志 天猫双十一秒杀 秒杀汇 网站卫士 东莞数据中心 免费cdn 亿库 cdn加速 godaddy域名 性能测试工具 9929 主机托管 如何架设服务器 更多