structurewallbase
wallbase 时间:2021-01-28 阅读:(
)
GEOTECHNICALEARTHQUAKEENGINEERINGGEOTECHNICAL,GEOLOGICALANDEARTHQUAKEENGINEERINGVolume9SeriesEditorAtillaAnsal,KandilliObservatoryandEarthquakeResearchInstitute,BogaziciUniversity,Istanbul,TurkeyEditorialAdvisoryBoardJulianBommer,ImperialCollegeLondon,U.
K.
JonathanD.
Bray,UniversityofCalifornia,Berkeley,U.
S.
A.
KyriazisPitilakis,AristotleUniversityofThessaloniki,GreeceSusumuYasuda,TokyoDenkiUniversity,JapanForothertitlespublishedinthisseries,gotowww.
springer.
com/series/6011GeotechnicalEarthquakeEngineeringSimpliedAnalyseswithCaseStudiesandExamplesbyMILUTINSRBULOVUnitedKingdomwithForewordofE.
T.
R.
Dean123Dr.
MilutinSrbulovUnitedKingdomsrbuluv@aol.
comISBN:978-1-4020-8683-0e-ISBN:978-1-4020-8684-7LibraryofCongressControlNumber:2008931592c2008SpringerScience+BusinessMediaB.
V.
Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,microlming,recordingorotherwise,withoutwrittenpermissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecicallyforthepurposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.
Printedonacid-freepaper987654321springer.
comForewordMeasurableearthquakesoccurveryfrequentlyinmanypartsoftheworld.
Forexample,Shepherd(1992)lists7283earthquakesrecordedintheCaribbeanAntillesinthe22-yearperiod1964to1985,arateofabout1earthquakeperday.
Somewereduetomovementsofhighlystressedrockatmorethan100kmbelowthegroundsurface(ShepherdandAspinall,1983).
Similarhighlevelsofactivityarefoundinallseismicallyactiveregionsoftheworld.
Astheearthquakevibrationstravelfromthesourcetowardsthegroundsurface,theenergyspreadsoutandalsodissipates,sothatenergydensityreduceswithdis-tancefromsource.
Forthemajorityofevents,shakinghasreducedtolevelsthatpeoplecannotfeelbythetimeitreachesthegroundsurface.
Forsomeevents,suf-cientenergyreachesthesurfaceforpeopletofeelminoreffects.
Forafew,theenergyreachingthesurfaceissufcienttocausemajordamage.
Sinceearthquakeshakingistransmittedthroughground,andsincegroundalsosupportsbuildingsandotherstructures,theartandscienceofgeotechnicalengineer-ingisanimportantpartofearthquakeengineering.
Avarietyofconceptsandtech-niquesaredetailedbyKramer(1996),Day(2002),ChenandScawthorne(2003),andothers.
Someoftheimportantgeotechnicalaspectsare:rTheparticlemechanicalnatureofsoil(MitchellandSoga,2005;LambeandWhitman,1979)rTerzaghi'sPrincipleofEffectiveStress(Terzaghietal,1996)rLinear,isotropicelasticmodels(DavisandSelvadurai,1996)rThetheoryofsoilplasticity(Druckeretal.
,1957;DavisandSelvadurai,2002;Loret,1990)rTheMohr-Coulombfailureenvelope(LambeandWhitman,1979;Das,2004)rThecharacterizationofsoilproperties,andtheoriesofcompressibility,owofwaterthroughsoils,uidization,andconsolidationofsoils(FlorinandIvanov,1961;LambeandWhitman,1979;HeidariandJames,1982;WrothandHoulsby,1985;Terzaghietal,1996;Das,2004)rCriticalstatesoilmechanics,whichseekstoincorporatesoilelasticity,plasticity,strength,density,andconsolidationintoasingleunifyingtheoreticalframework(SchoeldandWroth,1968;AtkinsonandBransby,1978;Muir-Wood,1992;Schoeld,2005)vviForewordrAdvancedsiteinvestigationandlaboratorytestingtechniques(Hunt,2005;Head,2006)rAdvancedmethodsforslopestabilityassessment(Abramsonetal,1996;Corn-forth,2005),andbearingcapacityandlateralearthpressure(eg.
Choudharyetal,2004;KumarandGhosh,2006)rLiquefactionandthesteadystateconcept(Castro,1969;SeedandIdriss,1971;Poulos,1981;VaidandChern,1985;Seed,1988;Ishihara,1995;JefferiesandBeen,2006)rShakingtableandcentrifugemodeltesting(Schoeld,1980;ArulanandanandScott,1994;Taylor,1994)rThedevelopingtheoriesofunsaturatedsoilmechanics(FredlundandRahardjo,1993)rTheuseofadvanceconstitutivemodels(Loret,1990;YamamuroandKaliakin,2005)withniteelementmethods(ZienkiewiczandTaylor,1989,1991;BrittoandGunn,1987;Finn,1999;Potts,2003)rTheglobalgathering,processing,anduseofcollectiveexperience(YoudandIdriss,2001)Basedontheseandotherfactors,advancesinunderstandinghavebeenincor-poratedindesigncodesincludingtheUniformBuildingCode(UBC,1997),theInternationalBuildingCode(IBC,2006),Eurocode8(2004),APIRP2A(2005),ISO19901(2004),andmanyothers.
Tosupportthesedevelopments,itcanbehighlydesirabletodocumentsomesimpliedmodelsthatareeasiertounderstand,retainandexplainthefundamentalphysicsinvolved,andprovidewaysofassessingtherelevance,reliability,andap-plicabilityofmoresophisticatedapproaches.
Itisalsoratherusefultobeabletoidentifythemostsignicantpublicationsinatechnicalliteraturethatisnowveryextensiveindeed.
ThemonographpresentssomeoftheAuthor'sdescriptions,casehistories,experiencesandcommentsonavarietyofsimpliedmodelsforengineer-ingdesignandanalysis.
Thisisvaluablebothforpersonsnewtothesubjectwhowilllearnofthewide-rangingconsiderationsinvolved,andtootherexperiencedpractitionerswhowillbeabletocompareexperienceswiththosesharedhere.
SeniorLecturerinGeotechnicalEngineering,E.
T.
R.
DeanUniversityoftheWestIndiesPrefaceThismonographcontainsdescriptionsofnumerousmethodsaimedateaseandspeedofuseformajorproblemsingeotechnicalearthquakeengineering.
Commentsonassumptions,limitations,andfactorsaffectingtheresultsaregiven.
Casestudiesandexamplesareincludedtoillustratetheaccuracyandusefulnessofsimpliedmethods.
Alistofreferencesisprovidedforfurtherconsiderations,ifdesired.
Mi-crosoftExcelworkbooksreferredtoinAppendicesandprovidedonanaccompany-ingCDareforthecasestudiesandexamplesconsideredinthemonograph.
Someofthereasonsforusingthismonographarementionedbelow.
Manycodesandstandardscontainrecommendationsonbestpracticebutcompli-ancewiththemdoesnotnecessarilyconferimmunityfromrelevantstatutoryandle-galrequirements(asstatedinBritishStandards).
Someseismiccodesandstandardswererevisedaftermajoreventssuchasthe1995Hyogo-kenNambuandthe1994Northridgeearthquakes.
Codescontainclauseswithoutreferencestotheoriginalsourcesformoredetailedconsiderationswhencasesthatrequiresuchconsiderationappearinpractice.
Codesdonotcontainexplanationsofthestatementsexpressedinthem.
Codesarebriefregardinggroundpropertiesandgroundresponse.
Forexample,Eurocode8–Part5requiresassessmentoftheeffectsofsoil-structureinteractionincertaincircumstancesbutdoesnotspecifythedetailsoftheanalyses.
Therefore,theuseofcodesandstandardsalonemaynotbesufcientinengineeringpractice.
Inengineeringpractice,thereisoftenratherlittleinteractionbetweenstructuralandfoundationdisciplines.
Structuralengineersoftenconsidergroundinasim-pliedwayusingequivalentsprings.
Geotechnicalengineersconsideroftenonlyloadingfromstructuresonfoundations.
Dynamicsoil-structureinteractionisverycomplexandanalyzedmainlybyspecialistingeotechnicalearthquakeengineering.
Thismonographshouldhelpgeotechnicalandstructuralengineerstocommunicateeffectivelytobetterunderstandsolutionsofmanyproblemsingeotechnicalearth-quakeengineering.
Specialistsinnon-lineardynamicsanalysesneedtorecognizethatthemotionofanon-linearsystemcanbechaoticandtheoutcomescanbeunrepeatableandunpredictable.
BakerandGollub(1992),forexample,showthattwoconditionsaresufcienttogiverisetothepossibilityofchaoticmotion:thesystemhasatleastthreeindependentvariables,andthevariablesarecoupledbynon-linearviiviiiPrefacerelations.
Equivalentlinearandsimpliednon-lineardynamicanalysisdescribedinthismonographcanbeusedtoavoidpossiblechaoticoutcomesofacomplexnon-lineardynamicanalysis.
Groundmotioncausedbyearthquakesischaoticandthereforegreateraccuracyofsophisticatedmethodslosesitsadvantage.
Expectedgroundmotioncanbepredictedonlyapproximately,andsimpliedanalysesarefasterandeasiertoolsforparametricstudiescomparedtosophisticatedmethods.
UnitedKingdomMilutinSrbulovAcknowledgementsProfessorMaksimovicpersuadedmetoswitchprofessionfromconcretestructurestogeotechnicsrightaftermygraduation.
HepioneeredstudiesofsoilmechanicspaidbyEnergoprojektCo.
atImperialCollegeintheU.
K.
TheMScsoilmechanicsstudyin1984/85enabledmetoobtainthepositionofaresearchassistantlater.
IwashonoredandprivilegedtoworkwithProfessorAmbraseysonanumberofresearchprojectssupportedbytheEngineeringandPhysicalScienceResearchCounciloftheUnitedKingdomandbytheEPOCHprogramoftheCommunityofEuropeanCountriesatImperialCollegeinLondonduringtheperiod1991–1997.
Thesimpliedapproachusedinourresearchisdirectlyapplicabletoroutineengi-neeringpractice.
DrE.
T.
R.
Deanreviewedseveralofmypapersandwasofgreathelpwithhisdetailedandprecisecommentsfortheimprovementoftheinitialversionsofthepapers.
Hekindlyreviewedthemonographandmadeasignicantcontributiontowardstheimprovementoftheclarityandreadabilityofthetext.
ElsevierpublisherskindlygrantedpermissiontoreproduceFig.
5B,Fig.
10,Fig.
11,2/3ofDiscussion,andAppendixAofthepaperbyAmbraseysandSr-bulov(1995)inprintandelectronicformatinalllanguagesandeditions.
Elsevierpublisherskindlygrantedpermissiontoreproducepages255to268ofthepaperbySrbulov(2001)inprintandEnglishversion.
PatronEditorepublisherskindlygrantedpermissiontoreproducepartsofmypaperspublishedinthejournalEuropeanEarthquakeEngineering.
TheAmericanSocietyofCivilEngineerskindlygrantedpermissiontoreproduceinprintandelectronicversionTable2fromZhangetal.
(2005)paper.
ixContents1WellKnownSimpliedModels11.
1Introduction11.
2SourceModelsofEnergyReleasebyTectonicFault11.
2.
1ASimpliedPoint-SourceModel11.
2.
2AnAlternative,PlanarSourceModel41.
2.
3CaseStudyComparisonsofthePointandPlanarSourceModels51.
3SlidingBlockModelofCo-SeismicPermanentSlopeDisplacement61.
3.
1Newmark's(1965)SlidingBlockModel61.
3.
2CommentsonNewmarks's(1965)SlidingBlockModel.
.
.
71.
4SingleDegreeofFreedomOscillatorforVibrationofaStructureonRigidBase101.
4.
1DescriptionoftheModel101.
4.
2CommentsontheModel111.
5Summary122SoilProperties132.
1Introduction132.
2CyclicShearStiffnessandMaterialDamping142.
2.
1ShearStiffnessandDampingRatioDependenceonShearStrain162.
3StaticShearStrengthsofSoils182.
4CyclicShearStrengthsofSoils202.
5TheEquivalentNumberofCyclesConcept232.
5.
1AnExampleofEquivalentHarmonicTimeHistories252.
6WaterPermeabilityandVolumetricCompressibility262.
7Summary283SeismicExcitation293.
1Introduction293.
2SeismicHazard293.
2.
1TypesofEarthquakeMagnitudes303.
2.
2TypesofSource-to-SiteDistances31xixiiContents3.
2.
3TypesofEarthquakeRecurrenceRates313.
2.
4RepresentationsofSeismicHazard323.
2.
5SourcesofEarthquakeData393.
3FactorsAffectingSeismicHazard.
413.
3.
1EarthquakeSourceandWavePathEffects413.
3.
2SedimentBasinEdgeandDepthEffects453.
3.
3LocalSoilLayersEffect543.
3.
4TopographicEffect573.
3.
5SpaceandTimeClustering(andSeismicGaps)583.
4ShortTermSeismicHazardAssessment603.
4.
1HistoricandInstrumentalSeismicDataBased.
603.
4.
2ObservationalMethod623.
5LongTermSeismicHazardAssessment653.
5.
1TectonicDataBased653.
5.
2PaleoseismicDataBased673.
6Summary704SlopeStabilityandDisplacement.
734.
1Introduction734.
2SlopeStability734.
2.
1LimitEquilibriumMethodforTwo-DimensionalAnalysisbyPrismaticWedges744.
2.
2SingleTetrahedralWedgeforThree-DimensionalAnalysisofTranslationalStability844.
3ShearBeamModelforReversibleDisplacementAnalysis864.
3.
1Two-DimensionalAnalysis.
864.
3.
2Three-DimensionalEffect.
884.
4SlidingBlockModelsforPermanentDisplacementAnalysis894.
4.
1Co-SeismicStage.
894.
4.
2Post-SeismicStage944.
5BouncingBallModelofRockFall994.
5.
1CaseStudyofBedrina1RockFallinSwitzerland1034.
5.
2CaseStudyofShimaRockFallinJapan.
1054.
5.
3CaseStudyofFutamataRockFallinJapan1064.
6SimpliedModelforSoilandRockAvalanches,DebrisRun-OutandFastSpreadsAnalysis1074.
6.
1EquationofMotion1084.
6.
2MassBalance1104.
6.
3EnergyBalance1114.
7Summary1175SandLiquefactionandFlow1195.
1Introduction1195.
2ConventionalEmpiricalMethods1205.
2.
1LiquefactionPotentialAssessment120Contentsxiii5.
2.
2FlowConsideration1225.
3RotatingCylinderModelforLiquefactionPotentialAnalysisofSlopes.
1235.
3.
1ModelforCleanSand1235.
3.
2ModelforSandwithFines1265.
4RollingCylinderModelforAnalysisofFlowFailures.
1355.
4.
1ModelforCleanSand1355.
4.
2ModelforSandwithFines1365.
5Summary1396DynamicSoil–FoundationInteraction1416.
1Introduction1416.
2AdvancedandEmpiricalMethods1426.
2.
1NumericalMethods,CentrifugeandShakingTableTesting.
1426.
2.
2SystemIdenticationProcedure.
1426.
3DiscreteElementModels1436.
3.
1LumpedMassModelFormula1436.
3.
2ClosedFormSolutioninTime1506.
3.
3TimeSteppingProcedure1566.
4SingleDegreeofFreedomOscillatoronFlexibleBaseforPiledFoundationsandFlexuralRetainingWalls1686.
4.
1GroundMotionAveragingforKinematicInteractionEffectConsideration1706.
4.
2AccelerationResponseSpectraRatiosforInertialInteractionEffectConsideration1726.
5Summary1857BearingCapacityAndAdditionalSettlementofShallowFoundation.
.
1877.
1Introduction1877.
2BearingCapacity:Pseudo-StaticApproaches1877.
3BearingCapacity:EffectsofSub-SurfaceLiquefaction1887.
4BearingCapacity:EffectsofStructuralInertiaandEccentricityofLoad1897.
4.
1AnExampleofCalculationofBearingCapacityofShallowFoundationinSeismicCondition1907.
5AdditionalSettlementinGranularsoils1917.
5.
1ExamplesofEstimationofAdditionalSettlementCausedbySandLiquefaction1927.
6Summary1938SeismicWavePropagationEffectonTunnelsandShafts1958.
1Introduction1958.
2WavePropagationEffectonCutandCoverTunnelsandShafts.
.
.
.
1958.
2.
1CaseStudyoftheDaikaiStationFailurein1995.
1968.
2.
2CaseStudyofaTenStoryBuildinginMexicoCity199xivContents8.
3WaveRefractionEffectonDeepTunnelsandShafts2018.
4Summary2029CommentsonSomeFrequentLiquefactionPotentialMitigationMeasures2039.
1Introduction2039.
2StoneColumns2039.
3SoilMixing2049.
4ExcessWaterPressureReliefWells2059.
4.
1AnExampleforPressureReliefWells2089.
5Summary208Appendices–MicrosoftExcelWorkbooksonCompactDisk211A.
1CoordinatesofEarthquakeHypocentreandSite-to-EpicentreDistance211A.
2LimitEquilibriumMethodforNortholtSlopeStability212A.
3SingleWedgeforThree-DimensionalSlopeStability214A.
4Co-SeismicSlidingBlock215A.
5aPost-SeismicSlidingBlocksforMaidipoSlipinFrictionalSoil.
.
.
.
215A.
5bPost-SeismicSlidingBlocksforCatakSlipinCohesiveSoil216A.
6BouncingBlockModelofRockFalls216A.
7SimpliedModelforSoilandRockAvalanches,DebrisRun-OutandFastSpreads216A.
8Closed-FormSolutionforGravityWalls219A.
9aTimeSteppingProcedureforKobeWall219A.
9bTimeSteppingProcedureforKalamataWall.
219A.
10AccelerogramAveragingandAccelerationResponseSpectra.
219A.
11BearingCapacityofShallowFoundation223A.
12ExcessPoreWaterPressureDissipation.
223References225Index241ListofSymbolsSymbolDescriptionσh/hhorizontalaxialstressgradientinhorizontaldirectionτhn/ngradientofshearstressinverticalplaneindirectionnormaltotheplaneτhv/vgradientofshearstressinverticalplaneinverticaldirection2u(1)/t2secondgradientofhorizontaldisplacementintime(1-downslope)u/vhorizontaldisplacementgradientinverticaldirectioncapparentcohesionofreinforcedsoilφequivalentfrictionanglealongslidingblockbaseσaveragecompressivestressonslidingblockbaseθinclinationtothehorizontalofslidingblockbase.
.
θrotationalaccelerationofacylinderaroundapoint.
.
uhorizontalacceleration.
θ1nrotationalvelocityofagravitywall.
.
θon,.
.
uonrotationalandhorizontalaccelerationsofagravitywall/αexponentoftheratioγγ1rαangleofslidingblockinclinationtohorizontal/kexponentoftheratioσmP1a(N1)60normalizedblowcounttoanoverburdenpressureof100kPaandcorrectedtoanenergyratioof60%aanexponenta(i)acceleration(initial)a,b,ccoefcientscalculatedfrommeasuredincrementaldisplacementsu,v,wa1rateofgroundaccelerationincrementduringatimeintervalA1,2seismicwaveamplitudes1and2Abareaofthemasscontactwiththebaseandsidesac(h,r)criticalhorizontalaccelerationinsliding(h)orrocking(r)acrcriticalaccelerationxvAffoundationareaaf,phorizontalpeakfoundationaccelerationAfaulttectonicfaultareaAgamplitudeofgrounddisplacementag,thorizontalgroundaccelerationahhorizontalacceleration(foraharmonicload)aipeakinputaccelerationofaSDOFOalgroundaccelerationatdepthlalongthepile/wallattimetAlooptheareaofthehystereticloopaogroundaccelerationatthebeginningofatimeintervalapeak,depthpeakhorizontalgroundaccelerationatdepthaphpeakhorizontalgroundsurfaceaccelerationapeak,surfaceapvpeakverticalgroundsurfaceaccelerationarrockfallaccelerationjustbeforetheimpactAsareaofslopeslidingsurfaceAu(d)upstream(downstream)verticalcrosssectionareabhorizontaldistancebetweenthebackofawallandthewallcentroidb(i)breadthofwedgebase(interfacei)BbwidthofanequivalentballofrockfallbcbreadthofarectangularpilecapBfdiameterofanequivalentcircularfoundationbjbreadthofjointjBsnumberof(sub)basementsinabuildingBwwallbasewidthcsoilshearstrength(cohesion)atzerocompressivestressCtranslationaldashpotcoefcientc(j)soilcohesionindrainedcondition(atjointj)C0,1,2constantschhorizontalcoefcientofinertiaforceinducedbygroundmotioncnamplitudeofthenthharmonicoftheFourierseriescpgroundlongitudinalwavevelocityCssoilconstantintheshearstrengthandshearstrainrelationshipcssoilcharacteristicwavevelocityctgroundtransversalwavevelocitycuundrainedshearstrengthofliqueedsandlayercu(1)undrainedcohesion(inonecycle)curresidualundrainedshearstrengthofliqueedsandcv(r)coefcientofconsolidation(inradialdirection)cvmverticalcoefcientofinertiaforceinducedbygroundmotionCθrotationalsoildashpotcoefcientxviListofSymbolsdminimaldistancefromthelocationofinteresttothesurfaceprojectionofafaultD50anaveragediameterofsoilparticlesdcdepthfactordedistancebetweenwellscentretocentreDffoundationdepthbelowgroundleveldg,thorizontalgrounddisplacementintimedhhorizontaldistancebetweenthelocationwheretheloadFisactingandthelocationwherethestressiscalculatedDldepthofliqueedsoillayerdppilediameterdphpeakhorizontalgroundsurfacedisplacementdrradialdistancemeasuredfromcentreofthewelldsstraight-line(slant)distancebetweentheearthquakehypocenterandarecordingsiteDsmaximumsurfacedisplacementoftectonicfaultdtchangeofthicknessofwedgejointdtj,ejoint(j)thicknesschangeedistancebetweenwallcentroidanditsbaseEYoungmodulusEdenergydensityatahypocentraldistanceEfftheoreticalfree-fallenergyofhammerElossenergylossduetoplasticdeformationofimpactedsurfaceEmactualenergydeliveredbyhammerEototalenergyreleasedattheearthquakesourceEpYoungmodulusofpileEsanaveragelateralearthforceEttotalenergyreleasedattheearthquakesourceperunitareaofthesourceffrequencyofshearstressreversalFavraveragefactorofsafetyofagroupofwedgesFggroundresistingforcetorockfallpenetrationonimpactFi,jlocalfactorsofsafetyalongwedgejointsi,jFmmodicationfactorofsedimentstransversalwavevelocitiesFNnormalandstrike-slipfaultindicatorFOunspeciedfaultindicatorFppointloadFrsoilreactionforceatwallbaseFSfactorofsafetyofslopestabilityFTreverse(thrust)faultindicatorFvverticalfoundationcapacityGshearmodulusggravitationalaccelerationGbaveragetransversalwavevelocityrange3601]probabilityofatleastoneexceedanceofaparticularearthquakemagnitudeinaperiodoftyearsPaatmosphericpressurePbsoilresistingforceactingatthebasePfaxialcomponentofrockfallimpactforcePIsoilplasticityindexpncharacteristicaxialstressListofSymbolsxixpoeffectiveoverburdenstressatthefoundationdepthPrsoilreinforcementforcePsimprovementinshearingresistancefromsoilreinforcementforcePrRradiusofanequivalentballofrockfallrcylinderradiusr1radiusofthenesmodelRbratiobetweenthehorizontaldistancesfromastationtosedimentbasinedgeandthedepthofsedimentsatthelocationofthestationrccorrelationcoefcientrdstressfactorwithdepthreahalfofthedistancederfsourceslantdistancerhradiusofanequivalentdisksforthehorizontalmotionrMCradiusofMohr–CoulombcircledenedbyEquation(9.
1)rpileahalfofpilediameterrrradiusofanequivalentdisksfortherotationalmotionru(,j)excessporewaterpressureratio(atjointj)rvradiusofanequivalentdisksfortheverticalmotionrwradiusofawellSslidingforceatthebaseofarigidretainingwallsaxistoaxisspacingbetweensoil-cementmixturewallsSAstiffsoilsiteindicatorscshapefactorSfaveragesliponthefaultduringanearthquakeSSsoftsoilsiteindicatorStnumberofstoreysabovegroundlevelSuminimaluniaxialcompressivestrengthofsamplestakenfrommixedsoilTperiodofvibrationttimeTi(j)forceactinginthedirectionthatisparalleltothesurfaceofawedgebasei(interfacej)t1timewhencylinderwillstartrotationtachtimecorrespondingtoachTdperiodoftherstmodeoffreevibrationofadamTeqvperiodofequivalentharmoniccycleTftransversalcomponentofrockfallimpactforceTishearforceatwedgejointiTMreturnperiodofearthquakesexceedingmagnitudeMTpageoftectonicplatesubductionTrearthquakerecurrenceperiodTsthetime(inseconds)necessaryforaseismicwavetopassalongLsxxListofSymbolsTvtimefactortwthicknessofsoil-cementmixturewallsT()transversalforceatthetopofthecolumnduetothehorizontaldisplacementandrotationθuhorizontaldisplacementU(z,r)overalldegreeofconsolidation(atdepthz,radiusr)u1one-waypermanenthorizontalcomponentofdisplacementsonslopinggroundu2two-waypermanentdisplacementsoflevel(horizontal)groundufowdistanceuf(ω)surfaceamplitudeofthefreeeldgroundmotionuohorizontalwalldisplacementutexcessporewaterpressureattimetvverticaldirectionVvolumeofmovingmassalongtravelpathv1lowersoilwavepropagationvelocityvhhorizontalbasevelocityvinincomingvelocityofrockfallvlvelocityofpropagationofthelongitudinalwavesvmmovingmassvelocityvoinitialvelocityvoutvelocityofbouncedrockfallVpvelocityofaparticlevphpeakhorizontalgroundsurfacevelocityVrrateoftectonicplatesubductionvtvelocityofpropagationofthetransversalwavesvtpgroundvelocitybelowthepile/walltipattimetvtTsgroundvelocitybelowthepile/walltipattimetTsWweightW1weightofthenesmodelWDdissipatedenergybymaterial(hysteretic)dampingWftectonicfaultwidthWsstrainenergyxshortestdistancebetweentheforceNandpointAinFigure5.
5yshortestdistance(levelarm)betweentheforceNtanφandpointAinFigure5.
5ypileshortestdistancebetweenpilecentroidandtheneutralaxisofrotationzdepthzmdatumabovemovingmassatrestpositionτa(,i)availablesoilshearstrength(atjointi)τeshearstressnecessarytomaintainlimitequilibriumBConstantofproportionalitybetweenγi(j),eandi(j),eListofSymbolsxxi(i(j),e)relativehorizontaldisplacementofabeamend(magnitudesofkinematicallypossibletangentialdisplacementsalongjointsi,jofwedges)Etransientpartoflateralearthforcei(j),ekinematicallypossibleshearstrainalongjointiorjMθmassmomentofinertiaofthetrappedsoilbeneathwallforPoisson'sratiogreaterthan1/3sfoundationsettlementttimesteptwtimelagbetweenarrivaloflongitudinalandtransversalwavesuincrementofgroundsurfacedisplacementinxdirectionvincrementofgroundsurfacedisplacementinydirectionwincrementofgroundsurfacedisplacementinzdirectionxincrementalhorizontaldistancealongrockfalltrajectoryjustbeforetheimpactxhorizontallengthoverwhichchangeofthicknessofmovingmasshasbeenachievedyincrementalverticaldistancealongrockfalltrajectoryjustbeforetheimpactzchangeofthicknessofmovingmassεincrementalaxialstrainφdifferencebetweenangleofsoilfrictionatzeroeffectivestressandbasicangleofsoilfrictionγincrementalshearstrainσvadditionalverticalstressatadepthz>0causedbypointloadFatthegroundsurfacesumofenergylossoveratravelpathofmovingmassNaxialcomponentoftheresultantofallforcesactingontheslipsurfaceTshearcomponentoftheresultantofallforcesactingontheslipsurfaceαangleinFigure5.
4and5.
11α1(2)anglebetweennormaltotheinterfaceanddirectionofpropagationofwavepathsontwosidesofaninterfaceαjangleofinclinationoftangentialdisplacementvectorwithrespecttojointdirectionαllocalangleofinclinationtothehorizontalattheimpactplaceofrockfallβinclinationtothehorizontalβllargerinclinationofthegroundsurfaceslopeortheslopeofthelowerboundaryoftheliqueedzoneinpercentβrfangle(positiveupwards)withthehorizontalatthebeginningofrockfallβttuningratioxxiiListofSymbolsδbfrictionanglebetweensoilandwallbackδi(j),asheardisplacementindirectshearapparatuscorrespondingtoavailableshearstressτaatajointi(i.
e.
j)δi(j),esheardisplacementindirectshearapparatuscorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)δpplasticdeformationindirectionperpendiculartotheimpactsurfaceδrresidualangleofsoilfrictionεi(j),aaxialstrainintriaxialapparatuscorrespondingtoavailableshearstressτaatajointi(i.
e.
j)εi(j),eaxialstrainintriaxialapparatuscorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)φfrictionangleincyclicconditionφ(j)soilfrictionangle(atjointj)indrainedconditionφ1peakfrictionalangleinstaticconditionφbbasicangleofsoilfricitionφnphaseangleespectivelyofthenthharmonicoftheFourierseriesγshearstrainγsubmergedunitweightofnon-liqueedsoilγhvshearstraininverticalplaneγi(j),ashearstraincorrespondingtoavailableshearstressτaatajointi(i.
e.
j)γi(j),eshearstraincorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)γrreferentshearstrainγsunitweightofsoilparticleγsoilunitweightofsoilγwunitweightofwaterηviscosityofsoilηawabsoluteviscosityofwaterηwangleofinclinationtothehorizontalofbackllbehindaretainingwallκ,κ1exponenttoshearstrainintheshearstrengthandshearstrainrelationshipλaveragerateofoccurrenceoftheeventwithconsideredearthquakemagnitudeμshearmodulusoftheEarth'scrustνPoisson'sratiooangleofinclinationtotheverticalofthebackofawallθrotationangleθ1anadditionalinternalrotationaldegreeoffreedomθbrelativerotationofabeamendθoangleofwallrotationListofSymbolsxxiiiθranglebetweenthereinforcementdirectionandanormaltowedgejointθαdifferencebetweenanglesα1andα2ρsoilunitdensityρ1lowersoilunitdensityρwwaterunitdensityσmmeaneffectiveconningstressσvverticaleffectivestress(fromoverburden)σ3lateralconningeffectivepressureσdhorizontalcompressivestressesactingonthedownstreamverticalcrosssectionsofmovingmassσhaxialstress,positivewhentensileσuhorizontalcompressivestressactingontheupstreamverticalcrosssectionsofmovingmassσvtotaloverburdenpressure(atdepthvbelowwalltop)σ()axial(effective)stress,positivewhencompressiveτshearstressτbshearstressatthebaseandsidesτdverticalshearstressactingonthedownstreamverticalcrosssectionsofthemassτhnshearstressintheplaneperpendiculartotheplanewithinwhichhorizontaldisplacementoccursτhvshearstressintheverticalplane(behindwallatdepthv)τppeakshearstrengthτuverticalshearstressactingontheupstreamverticalcrosssectionsofthemassω(n)circularfrequency(ofnthharmonicoftheFourierseries)ωdcircularfrequencyofaninputmotionωefundamentalcircularfrequencyofundampedcoupledlinearelasticSDOFOωggroundcircularfrequencyωhcircularfrequencyofhorizontalmotionωocircularfrequencyoftheoutputmotionωrnaturalfrequencycorrespondingtotherotationalmotionofadynamicmodelωsnaturalcircularfrequencyofpile(s)/wallinxedbaseconditionξdampingratioξeequivalenthystereticdampingratioξgsoilhystereticdampingratioξhradiationdampingratioofapilegroupinhorizontaldirectionξminminimumdampingratioξrradiationdampingratioofapilegroupinrotationξsstructuralhystereticdampingratioxxivListofSymbols
Pia云是一家2018的开办的国人商家,原名叫哔哔云,目前整合到了魔方云平台上,商家主要销售VPS服务,采用KVM虚拟架构 ,机房有美国洛杉矶、中国香港和深圳地区,洛杉矶为crea机房,三网回程CN2 GIA,带20G防御,常看我测评的朋友应该知道,一般带防御去程都是骨干线路,香港的线路也是CN2直连大陆,目前商家重新开业,价格非常美丽,性价比较非常高,有需要的朋友可以关注一下。活动方案...
野草云服务商在前面的文章中也有多次提到,算是一个国内的小众服务商。促销活动也不是很多,比较专注个人云服务用户业务,之前和站长聊到不少网友选择他们家是用来做网站的。这不看到商家有提供香港云服务器的优惠促销,可选CN2、BGP线路、支持Linux与windows系统,支持故障自动迁移,使用NVMe优化的Ceph集群存储,比较适合建站用户选择使用,最低年付138元 。野草云(原野草主机),公司成立于20...
ZJI是成立于2011年原Wordpress圈知名主机商—维翔主机,2018年9月更名为ZJI,主要提供香港、日本、美国独立服务器(自营/数据中心直营)租用及VDS、虚拟主机空间、域名注册业务。本月商家针对香港阿里云线路独立服务器提供月付立减270-400元优惠码,优惠后香港独立服务器(阿里云专线)E3或者E5 CPU,SSD硬盘,最低每月仅480元起。阿里一型CPU:Intel E5-2630L...
wallbase为你推荐
名侦探柯南644名侦探柯南中有铃木园子出现的是哪几集?登陆qq空间首页QQ空间打开就显示主页qq空间首页QQ空间的主页少儿英语哪个好少儿英语哪个好英语词典哪个好英语词典哪种更好啊?炒股软件哪个好用股票交易软件哪个好?牡丹江教育云空间登录请问一下校园云空间的登录方式有哪些?辽宁联通网上营业厅辽宁省昌图县联通网上营业厅通话单怎么查询如何增加百度收录如何提高百度收录率?东莞电信网上营业厅东莞虎门电信营业厅
长沙虚拟主机 河北服务器租用 荷兰vps technetcal godaddy支付宝 patcha 国外php空间 创梦 什么是服务器托管 爱奇艺vip免费试用7天 cdn加速是什么 电信虚拟主机 银盘服务是什么 阿里云官方网站 英雄联盟台服官网 云服务是什么意思 97rb gotoassist studentmain 一句话木马 更多