structurewallbase
wallbase 时间:2021-01-28 阅读:(
)
GEOTECHNICALEARTHQUAKEENGINEERINGGEOTECHNICAL,GEOLOGICALANDEARTHQUAKEENGINEERINGVolume9SeriesEditorAtillaAnsal,KandilliObservatoryandEarthquakeResearchInstitute,BogaziciUniversity,Istanbul,TurkeyEditorialAdvisoryBoardJulianBommer,ImperialCollegeLondon,U.
K.
JonathanD.
Bray,UniversityofCalifornia,Berkeley,U.
S.
A.
KyriazisPitilakis,AristotleUniversityofThessaloniki,GreeceSusumuYasuda,TokyoDenkiUniversity,JapanForothertitlespublishedinthisseries,gotowww.
springer.
com/series/6011GeotechnicalEarthquakeEngineeringSimpliedAnalyseswithCaseStudiesandExamplesbyMILUTINSRBULOVUnitedKingdomwithForewordofE.
T.
R.
Dean123Dr.
MilutinSrbulovUnitedKingdomsrbuluv@aol.
comISBN:978-1-4020-8683-0e-ISBN:978-1-4020-8684-7LibraryofCongressControlNumber:2008931592c2008SpringerScience+BusinessMediaB.
V.
Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,microlming,recordingorotherwise,withoutwrittenpermissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecicallyforthepurposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.
Printedonacid-freepaper987654321springer.
comForewordMeasurableearthquakesoccurveryfrequentlyinmanypartsoftheworld.
Forexample,Shepherd(1992)lists7283earthquakesrecordedintheCaribbeanAntillesinthe22-yearperiod1964to1985,arateofabout1earthquakeperday.
Somewereduetomovementsofhighlystressedrockatmorethan100kmbelowthegroundsurface(ShepherdandAspinall,1983).
Similarhighlevelsofactivityarefoundinallseismicallyactiveregionsoftheworld.
Astheearthquakevibrationstravelfromthesourcetowardsthegroundsurface,theenergyspreadsoutandalsodissipates,sothatenergydensityreduceswithdis-tancefromsource.
Forthemajorityofevents,shakinghasreducedtolevelsthatpeoplecannotfeelbythetimeitreachesthegroundsurface.
Forsomeevents,suf-cientenergyreachesthesurfaceforpeopletofeelminoreffects.
Forafew,theenergyreachingthesurfaceissufcienttocausemajordamage.
Sinceearthquakeshakingistransmittedthroughground,andsincegroundalsosupportsbuildingsandotherstructures,theartandscienceofgeotechnicalengineer-ingisanimportantpartofearthquakeengineering.
Avarietyofconceptsandtech-niquesaredetailedbyKramer(1996),Day(2002),ChenandScawthorne(2003),andothers.
Someoftheimportantgeotechnicalaspectsare:rTheparticlemechanicalnatureofsoil(MitchellandSoga,2005;LambeandWhitman,1979)rTerzaghi'sPrincipleofEffectiveStress(Terzaghietal,1996)rLinear,isotropicelasticmodels(DavisandSelvadurai,1996)rThetheoryofsoilplasticity(Druckeretal.
,1957;DavisandSelvadurai,2002;Loret,1990)rTheMohr-Coulombfailureenvelope(LambeandWhitman,1979;Das,2004)rThecharacterizationofsoilproperties,andtheoriesofcompressibility,owofwaterthroughsoils,uidization,andconsolidationofsoils(FlorinandIvanov,1961;LambeandWhitman,1979;HeidariandJames,1982;WrothandHoulsby,1985;Terzaghietal,1996;Das,2004)rCriticalstatesoilmechanics,whichseekstoincorporatesoilelasticity,plasticity,strength,density,andconsolidationintoasingleunifyingtheoreticalframework(SchoeldandWroth,1968;AtkinsonandBransby,1978;Muir-Wood,1992;Schoeld,2005)vviForewordrAdvancedsiteinvestigationandlaboratorytestingtechniques(Hunt,2005;Head,2006)rAdvancedmethodsforslopestabilityassessment(Abramsonetal,1996;Corn-forth,2005),andbearingcapacityandlateralearthpressure(eg.
Choudharyetal,2004;KumarandGhosh,2006)rLiquefactionandthesteadystateconcept(Castro,1969;SeedandIdriss,1971;Poulos,1981;VaidandChern,1985;Seed,1988;Ishihara,1995;JefferiesandBeen,2006)rShakingtableandcentrifugemodeltesting(Schoeld,1980;ArulanandanandScott,1994;Taylor,1994)rThedevelopingtheoriesofunsaturatedsoilmechanics(FredlundandRahardjo,1993)rTheuseofadvanceconstitutivemodels(Loret,1990;YamamuroandKaliakin,2005)withniteelementmethods(ZienkiewiczandTaylor,1989,1991;BrittoandGunn,1987;Finn,1999;Potts,2003)rTheglobalgathering,processing,anduseofcollectiveexperience(YoudandIdriss,2001)Basedontheseandotherfactors,advancesinunderstandinghavebeenincor-poratedindesigncodesincludingtheUniformBuildingCode(UBC,1997),theInternationalBuildingCode(IBC,2006),Eurocode8(2004),APIRP2A(2005),ISO19901(2004),andmanyothers.
Tosupportthesedevelopments,itcanbehighlydesirabletodocumentsomesimpliedmodelsthatareeasiertounderstand,retainandexplainthefundamentalphysicsinvolved,andprovidewaysofassessingtherelevance,reliability,andap-plicabilityofmoresophisticatedapproaches.
Itisalsoratherusefultobeabletoidentifythemostsignicantpublicationsinatechnicalliteraturethatisnowveryextensiveindeed.
ThemonographpresentssomeoftheAuthor'sdescriptions,casehistories,experiencesandcommentsonavarietyofsimpliedmodelsforengineer-ingdesignandanalysis.
Thisisvaluablebothforpersonsnewtothesubjectwhowilllearnofthewide-rangingconsiderationsinvolved,andtootherexperiencedpractitionerswhowillbeabletocompareexperienceswiththosesharedhere.
SeniorLecturerinGeotechnicalEngineering,E.
T.
R.
DeanUniversityoftheWestIndiesPrefaceThismonographcontainsdescriptionsofnumerousmethodsaimedateaseandspeedofuseformajorproblemsingeotechnicalearthquakeengineering.
Commentsonassumptions,limitations,andfactorsaffectingtheresultsaregiven.
Casestudiesandexamplesareincludedtoillustratetheaccuracyandusefulnessofsimpliedmethods.
Alistofreferencesisprovidedforfurtherconsiderations,ifdesired.
Mi-crosoftExcelworkbooksreferredtoinAppendicesandprovidedonanaccompany-ingCDareforthecasestudiesandexamplesconsideredinthemonograph.
Someofthereasonsforusingthismonographarementionedbelow.
Manycodesandstandardscontainrecommendationsonbestpracticebutcompli-ancewiththemdoesnotnecessarilyconferimmunityfromrelevantstatutoryandle-galrequirements(asstatedinBritishStandards).
Someseismiccodesandstandardswererevisedaftermajoreventssuchasthe1995Hyogo-kenNambuandthe1994Northridgeearthquakes.
Codescontainclauseswithoutreferencestotheoriginalsourcesformoredetailedconsiderationswhencasesthatrequiresuchconsiderationappearinpractice.
Codesdonotcontainexplanationsofthestatementsexpressedinthem.
Codesarebriefregardinggroundpropertiesandgroundresponse.
Forexample,Eurocode8–Part5requiresassessmentoftheeffectsofsoil-structureinteractionincertaincircumstancesbutdoesnotspecifythedetailsoftheanalyses.
Therefore,theuseofcodesandstandardsalonemaynotbesufcientinengineeringpractice.
Inengineeringpractice,thereisoftenratherlittleinteractionbetweenstructuralandfoundationdisciplines.
Structuralengineersoftenconsidergroundinasim-pliedwayusingequivalentsprings.
Geotechnicalengineersconsideroftenonlyloadingfromstructuresonfoundations.
Dynamicsoil-structureinteractionisverycomplexandanalyzedmainlybyspecialistingeotechnicalearthquakeengineering.
Thismonographshouldhelpgeotechnicalandstructuralengineerstocommunicateeffectivelytobetterunderstandsolutionsofmanyproblemsingeotechnicalearth-quakeengineering.
Specialistsinnon-lineardynamicsanalysesneedtorecognizethatthemotionofanon-linearsystemcanbechaoticandtheoutcomescanbeunrepeatableandunpredictable.
BakerandGollub(1992),forexample,showthattwoconditionsaresufcienttogiverisetothepossibilityofchaoticmotion:thesystemhasatleastthreeindependentvariables,andthevariablesarecoupledbynon-linearviiviiiPrefacerelations.
Equivalentlinearandsimpliednon-lineardynamicanalysisdescribedinthismonographcanbeusedtoavoidpossiblechaoticoutcomesofacomplexnon-lineardynamicanalysis.
Groundmotioncausedbyearthquakesischaoticandthereforegreateraccuracyofsophisticatedmethodslosesitsadvantage.
Expectedgroundmotioncanbepredictedonlyapproximately,andsimpliedanalysesarefasterandeasiertoolsforparametricstudiescomparedtosophisticatedmethods.
UnitedKingdomMilutinSrbulovAcknowledgementsProfessorMaksimovicpersuadedmetoswitchprofessionfromconcretestructurestogeotechnicsrightaftermygraduation.
HepioneeredstudiesofsoilmechanicspaidbyEnergoprojektCo.
atImperialCollegeintheU.
K.
TheMScsoilmechanicsstudyin1984/85enabledmetoobtainthepositionofaresearchassistantlater.
IwashonoredandprivilegedtoworkwithProfessorAmbraseysonanumberofresearchprojectssupportedbytheEngineeringandPhysicalScienceResearchCounciloftheUnitedKingdomandbytheEPOCHprogramoftheCommunityofEuropeanCountriesatImperialCollegeinLondonduringtheperiod1991–1997.
Thesimpliedapproachusedinourresearchisdirectlyapplicabletoroutineengi-neeringpractice.
DrE.
T.
R.
Deanreviewedseveralofmypapersandwasofgreathelpwithhisdetailedandprecisecommentsfortheimprovementoftheinitialversionsofthepapers.
Hekindlyreviewedthemonographandmadeasignicantcontributiontowardstheimprovementoftheclarityandreadabilityofthetext.
ElsevierpublisherskindlygrantedpermissiontoreproduceFig.
5B,Fig.
10,Fig.
11,2/3ofDiscussion,andAppendixAofthepaperbyAmbraseysandSr-bulov(1995)inprintandelectronicformatinalllanguagesandeditions.
Elsevierpublisherskindlygrantedpermissiontoreproducepages255to268ofthepaperbySrbulov(2001)inprintandEnglishversion.
PatronEditorepublisherskindlygrantedpermissiontoreproducepartsofmypaperspublishedinthejournalEuropeanEarthquakeEngineering.
TheAmericanSocietyofCivilEngineerskindlygrantedpermissiontoreproduceinprintandelectronicversionTable2fromZhangetal.
(2005)paper.
ixContents1WellKnownSimpliedModels11.
1Introduction11.
2SourceModelsofEnergyReleasebyTectonicFault11.
2.
1ASimpliedPoint-SourceModel11.
2.
2AnAlternative,PlanarSourceModel41.
2.
3CaseStudyComparisonsofthePointandPlanarSourceModels51.
3SlidingBlockModelofCo-SeismicPermanentSlopeDisplacement61.
3.
1Newmark's(1965)SlidingBlockModel61.
3.
2CommentsonNewmarks's(1965)SlidingBlockModel.
.
.
71.
4SingleDegreeofFreedomOscillatorforVibrationofaStructureonRigidBase101.
4.
1DescriptionoftheModel101.
4.
2CommentsontheModel111.
5Summary122SoilProperties132.
1Introduction132.
2CyclicShearStiffnessandMaterialDamping142.
2.
1ShearStiffnessandDampingRatioDependenceonShearStrain162.
3StaticShearStrengthsofSoils182.
4CyclicShearStrengthsofSoils202.
5TheEquivalentNumberofCyclesConcept232.
5.
1AnExampleofEquivalentHarmonicTimeHistories252.
6WaterPermeabilityandVolumetricCompressibility262.
7Summary283SeismicExcitation293.
1Introduction293.
2SeismicHazard293.
2.
1TypesofEarthquakeMagnitudes303.
2.
2TypesofSource-to-SiteDistances31xixiiContents3.
2.
3TypesofEarthquakeRecurrenceRates313.
2.
4RepresentationsofSeismicHazard323.
2.
5SourcesofEarthquakeData393.
3FactorsAffectingSeismicHazard.
413.
3.
1EarthquakeSourceandWavePathEffects413.
3.
2SedimentBasinEdgeandDepthEffects453.
3.
3LocalSoilLayersEffect543.
3.
4TopographicEffect573.
3.
5SpaceandTimeClustering(andSeismicGaps)583.
4ShortTermSeismicHazardAssessment603.
4.
1HistoricandInstrumentalSeismicDataBased.
603.
4.
2ObservationalMethod623.
5LongTermSeismicHazardAssessment653.
5.
1TectonicDataBased653.
5.
2PaleoseismicDataBased673.
6Summary704SlopeStabilityandDisplacement.
734.
1Introduction734.
2SlopeStability734.
2.
1LimitEquilibriumMethodforTwo-DimensionalAnalysisbyPrismaticWedges744.
2.
2SingleTetrahedralWedgeforThree-DimensionalAnalysisofTranslationalStability844.
3ShearBeamModelforReversibleDisplacementAnalysis864.
3.
1Two-DimensionalAnalysis.
864.
3.
2Three-DimensionalEffect.
884.
4SlidingBlockModelsforPermanentDisplacementAnalysis894.
4.
1Co-SeismicStage.
894.
4.
2Post-SeismicStage944.
5BouncingBallModelofRockFall994.
5.
1CaseStudyofBedrina1RockFallinSwitzerland1034.
5.
2CaseStudyofShimaRockFallinJapan.
1054.
5.
3CaseStudyofFutamataRockFallinJapan1064.
6SimpliedModelforSoilandRockAvalanches,DebrisRun-OutandFastSpreadsAnalysis1074.
6.
1EquationofMotion1084.
6.
2MassBalance1104.
6.
3EnergyBalance1114.
7Summary1175SandLiquefactionandFlow1195.
1Introduction1195.
2ConventionalEmpiricalMethods1205.
2.
1LiquefactionPotentialAssessment120Contentsxiii5.
2.
2FlowConsideration1225.
3RotatingCylinderModelforLiquefactionPotentialAnalysisofSlopes.
1235.
3.
1ModelforCleanSand1235.
3.
2ModelforSandwithFines1265.
4RollingCylinderModelforAnalysisofFlowFailures.
1355.
4.
1ModelforCleanSand1355.
4.
2ModelforSandwithFines1365.
5Summary1396DynamicSoil–FoundationInteraction1416.
1Introduction1416.
2AdvancedandEmpiricalMethods1426.
2.
1NumericalMethods,CentrifugeandShakingTableTesting.
1426.
2.
2SystemIdenticationProcedure.
1426.
3DiscreteElementModels1436.
3.
1LumpedMassModelFormula1436.
3.
2ClosedFormSolutioninTime1506.
3.
3TimeSteppingProcedure1566.
4SingleDegreeofFreedomOscillatoronFlexibleBaseforPiledFoundationsandFlexuralRetainingWalls1686.
4.
1GroundMotionAveragingforKinematicInteractionEffectConsideration1706.
4.
2AccelerationResponseSpectraRatiosforInertialInteractionEffectConsideration1726.
5Summary1857BearingCapacityAndAdditionalSettlementofShallowFoundation.
.
1877.
1Introduction1877.
2BearingCapacity:Pseudo-StaticApproaches1877.
3BearingCapacity:EffectsofSub-SurfaceLiquefaction1887.
4BearingCapacity:EffectsofStructuralInertiaandEccentricityofLoad1897.
4.
1AnExampleofCalculationofBearingCapacityofShallowFoundationinSeismicCondition1907.
5AdditionalSettlementinGranularsoils1917.
5.
1ExamplesofEstimationofAdditionalSettlementCausedbySandLiquefaction1927.
6Summary1938SeismicWavePropagationEffectonTunnelsandShafts1958.
1Introduction1958.
2WavePropagationEffectonCutandCoverTunnelsandShafts.
.
.
.
1958.
2.
1CaseStudyoftheDaikaiStationFailurein1995.
1968.
2.
2CaseStudyofaTenStoryBuildinginMexicoCity199xivContents8.
3WaveRefractionEffectonDeepTunnelsandShafts2018.
4Summary2029CommentsonSomeFrequentLiquefactionPotentialMitigationMeasures2039.
1Introduction2039.
2StoneColumns2039.
3SoilMixing2049.
4ExcessWaterPressureReliefWells2059.
4.
1AnExampleforPressureReliefWells2089.
5Summary208Appendices–MicrosoftExcelWorkbooksonCompactDisk211A.
1CoordinatesofEarthquakeHypocentreandSite-to-EpicentreDistance211A.
2LimitEquilibriumMethodforNortholtSlopeStability212A.
3SingleWedgeforThree-DimensionalSlopeStability214A.
4Co-SeismicSlidingBlock215A.
5aPost-SeismicSlidingBlocksforMaidipoSlipinFrictionalSoil.
.
.
.
215A.
5bPost-SeismicSlidingBlocksforCatakSlipinCohesiveSoil216A.
6BouncingBlockModelofRockFalls216A.
7SimpliedModelforSoilandRockAvalanches,DebrisRun-OutandFastSpreads216A.
8Closed-FormSolutionforGravityWalls219A.
9aTimeSteppingProcedureforKobeWall219A.
9bTimeSteppingProcedureforKalamataWall.
219A.
10AccelerogramAveragingandAccelerationResponseSpectra.
219A.
11BearingCapacityofShallowFoundation223A.
12ExcessPoreWaterPressureDissipation.
223References225Index241ListofSymbolsSymbolDescriptionσh/hhorizontalaxialstressgradientinhorizontaldirectionτhn/ngradientofshearstressinverticalplaneindirectionnormaltotheplaneτhv/vgradientofshearstressinverticalplaneinverticaldirection2u(1)/t2secondgradientofhorizontaldisplacementintime(1-downslope)u/vhorizontaldisplacementgradientinverticaldirectioncapparentcohesionofreinforcedsoilφequivalentfrictionanglealongslidingblockbaseσaveragecompressivestressonslidingblockbaseθinclinationtothehorizontalofslidingblockbase.
.
θrotationalaccelerationofacylinderaroundapoint.
.
uhorizontalacceleration.
θ1nrotationalvelocityofagravitywall.
.
θon,.
.
uonrotationalandhorizontalaccelerationsofagravitywall/αexponentoftheratioγγ1rαangleofslidingblockinclinationtohorizontal/kexponentoftheratioσmP1a(N1)60normalizedblowcounttoanoverburdenpressureof100kPaandcorrectedtoanenergyratioof60%aanexponenta(i)acceleration(initial)a,b,ccoefcientscalculatedfrommeasuredincrementaldisplacementsu,v,wa1rateofgroundaccelerationincrementduringatimeintervalA1,2seismicwaveamplitudes1and2Abareaofthemasscontactwiththebaseandsidesac(h,r)criticalhorizontalaccelerationinsliding(h)orrocking(r)acrcriticalaccelerationxvAffoundationareaaf,phorizontalpeakfoundationaccelerationAfaulttectonicfaultareaAgamplitudeofgrounddisplacementag,thorizontalgroundaccelerationahhorizontalacceleration(foraharmonicload)aipeakinputaccelerationofaSDOFOalgroundaccelerationatdepthlalongthepile/wallattimetAlooptheareaofthehystereticloopaogroundaccelerationatthebeginningofatimeintervalapeak,depthpeakhorizontalgroundaccelerationatdepthaphpeakhorizontalgroundsurfaceaccelerationapeak,surfaceapvpeakverticalgroundsurfaceaccelerationarrockfallaccelerationjustbeforetheimpactAsareaofslopeslidingsurfaceAu(d)upstream(downstream)verticalcrosssectionareabhorizontaldistancebetweenthebackofawallandthewallcentroidb(i)breadthofwedgebase(interfacei)BbwidthofanequivalentballofrockfallbcbreadthofarectangularpilecapBfdiameterofanequivalentcircularfoundationbjbreadthofjointjBsnumberof(sub)basementsinabuildingBwwallbasewidthcsoilshearstrength(cohesion)atzerocompressivestressCtranslationaldashpotcoefcientc(j)soilcohesionindrainedcondition(atjointj)C0,1,2constantschhorizontalcoefcientofinertiaforceinducedbygroundmotioncnamplitudeofthenthharmonicoftheFourierseriescpgroundlongitudinalwavevelocityCssoilconstantintheshearstrengthandshearstrainrelationshipcssoilcharacteristicwavevelocityctgroundtransversalwavevelocitycuundrainedshearstrengthofliqueedsandlayercu(1)undrainedcohesion(inonecycle)curresidualundrainedshearstrengthofliqueedsandcv(r)coefcientofconsolidation(inradialdirection)cvmverticalcoefcientofinertiaforceinducedbygroundmotionCθrotationalsoildashpotcoefcientxviListofSymbolsdminimaldistancefromthelocationofinteresttothesurfaceprojectionofafaultD50anaveragediameterofsoilparticlesdcdepthfactordedistancebetweenwellscentretocentreDffoundationdepthbelowgroundleveldg,thorizontalgrounddisplacementintimedhhorizontaldistancebetweenthelocationwheretheloadFisactingandthelocationwherethestressiscalculatedDldepthofliqueedsoillayerdppilediameterdphpeakhorizontalgroundsurfacedisplacementdrradialdistancemeasuredfromcentreofthewelldsstraight-line(slant)distancebetweentheearthquakehypocenterandarecordingsiteDsmaximumsurfacedisplacementoftectonicfaultdtchangeofthicknessofwedgejointdtj,ejoint(j)thicknesschangeedistancebetweenwallcentroidanditsbaseEYoungmodulusEdenergydensityatahypocentraldistanceEfftheoreticalfree-fallenergyofhammerElossenergylossduetoplasticdeformationofimpactedsurfaceEmactualenergydeliveredbyhammerEototalenergyreleasedattheearthquakesourceEpYoungmodulusofpileEsanaveragelateralearthforceEttotalenergyreleasedattheearthquakesourceperunitareaofthesourceffrequencyofshearstressreversalFavraveragefactorofsafetyofagroupofwedgesFggroundresistingforcetorockfallpenetrationonimpactFi,jlocalfactorsofsafetyalongwedgejointsi,jFmmodicationfactorofsedimentstransversalwavevelocitiesFNnormalandstrike-slipfaultindicatorFOunspeciedfaultindicatorFppointloadFrsoilreactionforceatwallbaseFSfactorofsafetyofslopestabilityFTreverse(thrust)faultindicatorFvverticalfoundationcapacityGshearmodulusggravitationalaccelerationGbaveragetransversalwavevelocityrange3601]probabilityofatleastoneexceedanceofaparticularearthquakemagnitudeinaperiodoftyearsPaatmosphericpressurePbsoilresistingforceactingatthebasePfaxialcomponentofrockfallimpactforcePIsoilplasticityindexpncharacteristicaxialstressListofSymbolsxixpoeffectiveoverburdenstressatthefoundationdepthPrsoilreinforcementforcePsimprovementinshearingresistancefromsoilreinforcementforcePrRradiusofanequivalentballofrockfallrcylinderradiusr1radiusofthenesmodelRbratiobetweenthehorizontaldistancesfromastationtosedimentbasinedgeandthedepthofsedimentsatthelocationofthestationrccorrelationcoefcientrdstressfactorwithdepthreahalfofthedistancederfsourceslantdistancerhradiusofanequivalentdisksforthehorizontalmotionrMCradiusofMohr–CoulombcircledenedbyEquation(9.
1)rpileahalfofpilediameterrrradiusofanequivalentdisksfortherotationalmotionru(,j)excessporewaterpressureratio(atjointj)rvradiusofanequivalentdisksfortheverticalmotionrwradiusofawellSslidingforceatthebaseofarigidretainingwallsaxistoaxisspacingbetweensoil-cementmixturewallsSAstiffsoilsiteindicatorscshapefactorSfaveragesliponthefaultduringanearthquakeSSsoftsoilsiteindicatorStnumberofstoreysabovegroundlevelSuminimaluniaxialcompressivestrengthofsamplestakenfrommixedsoilTperiodofvibrationttimeTi(j)forceactinginthedirectionthatisparalleltothesurfaceofawedgebasei(interfacej)t1timewhencylinderwillstartrotationtachtimecorrespondingtoachTdperiodoftherstmodeoffreevibrationofadamTeqvperiodofequivalentharmoniccycleTftransversalcomponentofrockfallimpactforceTishearforceatwedgejointiTMreturnperiodofearthquakesexceedingmagnitudeMTpageoftectonicplatesubductionTrearthquakerecurrenceperiodTsthetime(inseconds)necessaryforaseismicwavetopassalongLsxxListofSymbolsTvtimefactortwthicknessofsoil-cementmixturewallsT()transversalforceatthetopofthecolumnduetothehorizontaldisplacementandrotationθuhorizontaldisplacementU(z,r)overalldegreeofconsolidation(atdepthz,radiusr)u1one-waypermanenthorizontalcomponentofdisplacementsonslopinggroundu2two-waypermanentdisplacementsoflevel(horizontal)groundufowdistanceuf(ω)surfaceamplitudeofthefreeeldgroundmotionuohorizontalwalldisplacementutexcessporewaterpressureattimetvverticaldirectionVvolumeofmovingmassalongtravelpathv1lowersoilwavepropagationvelocityvhhorizontalbasevelocityvinincomingvelocityofrockfallvlvelocityofpropagationofthelongitudinalwavesvmmovingmassvelocityvoinitialvelocityvoutvelocityofbouncedrockfallVpvelocityofaparticlevphpeakhorizontalgroundsurfacevelocityVrrateoftectonicplatesubductionvtvelocityofpropagationofthetransversalwavesvtpgroundvelocitybelowthepile/walltipattimetvtTsgroundvelocitybelowthepile/walltipattimetTsWweightW1weightofthenesmodelWDdissipatedenergybymaterial(hysteretic)dampingWftectonicfaultwidthWsstrainenergyxshortestdistancebetweentheforceNandpointAinFigure5.
5yshortestdistance(levelarm)betweentheforceNtanφandpointAinFigure5.
5ypileshortestdistancebetweenpilecentroidandtheneutralaxisofrotationzdepthzmdatumabovemovingmassatrestpositionτa(,i)availablesoilshearstrength(atjointi)τeshearstressnecessarytomaintainlimitequilibriumBConstantofproportionalitybetweenγi(j),eandi(j),eListofSymbolsxxi(i(j),e)relativehorizontaldisplacementofabeamend(magnitudesofkinematicallypossibletangentialdisplacementsalongjointsi,jofwedges)Etransientpartoflateralearthforcei(j),ekinematicallypossibleshearstrainalongjointiorjMθmassmomentofinertiaofthetrappedsoilbeneathwallforPoisson'sratiogreaterthan1/3sfoundationsettlementttimesteptwtimelagbetweenarrivaloflongitudinalandtransversalwavesuincrementofgroundsurfacedisplacementinxdirectionvincrementofgroundsurfacedisplacementinydirectionwincrementofgroundsurfacedisplacementinzdirectionxincrementalhorizontaldistancealongrockfalltrajectoryjustbeforetheimpactxhorizontallengthoverwhichchangeofthicknessofmovingmasshasbeenachievedyincrementalverticaldistancealongrockfalltrajectoryjustbeforetheimpactzchangeofthicknessofmovingmassεincrementalaxialstrainφdifferencebetweenangleofsoilfrictionatzeroeffectivestressandbasicangleofsoilfrictionγincrementalshearstrainσvadditionalverticalstressatadepthz>0causedbypointloadFatthegroundsurfacesumofenergylossoveratravelpathofmovingmassNaxialcomponentoftheresultantofallforcesactingontheslipsurfaceTshearcomponentoftheresultantofallforcesactingontheslipsurfaceαangleinFigure5.
4and5.
11α1(2)anglebetweennormaltotheinterfaceanddirectionofpropagationofwavepathsontwosidesofaninterfaceαjangleofinclinationoftangentialdisplacementvectorwithrespecttojointdirectionαllocalangleofinclinationtothehorizontalattheimpactplaceofrockfallβinclinationtothehorizontalβllargerinclinationofthegroundsurfaceslopeortheslopeofthelowerboundaryoftheliqueedzoneinpercentβrfangle(positiveupwards)withthehorizontalatthebeginningofrockfallβttuningratioxxiiListofSymbolsδbfrictionanglebetweensoilandwallbackδi(j),asheardisplacementindirectshearapparatuscorrespondingtoavailableshearstressτaatajointi(i.
e.
j)δi(j),esheardisplacementindirectshearapparatuscorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)δpplasticdeformationindirectionperpendiculartotheimpactsurfaceδrresidualangleofsoilfrictionεi(j),aaxialstrainintriaxialapparatuscorrespondingtoavailableshearstressτaatajointi(i.
e.
j)εi(j),eaxialstrainintriaxialapparatuscorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)φfrictionangleincyclicconditionφ(j)soilfrictionangle(atjointj)indrainedconditionφ1peakfrictionalangleinstaticconditionφbbasicangleofsoilfricitionφnphaseangleespectivelyofthenthharmonicoftheFourierseriesγshearstrainγsubmergedunitweightofnon-liqueedsoilγhvshearstraininverticalplaneγi(j),ashearstraincorrespondingtoavailableshearstressτaatajointi(i.
e.
j)γi(j),eshearstraincorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)γrreferentshearstrainγsunitweightofsoilparticleγsoilunitweightofsoilγwunitweightofwaterηviscosityofsoilηawabsoluteviscosityofwaterηwangleofinclinationtothehorizontalofbackllbehindaretainingwallκ,κ1exponenttoshearstrainintheshearstrengthandshearstrainrelationshipλaveragerateofoccurrenceoftheeventwithconsideredearthquakemagnitudeμshearmodulusoftheEarth'scrustνPoisson'sratiooangleofinclinationtotheverticalofthebackofawallθrotationangleθ1anadditionalinternalrotationaldegreeoffreedomθbrelativerotationofabeamendθoangleofwallrotationListofSymbolsxxiiiθranglebetweenthereinforcementdirectionandanormaltowedgejointθαdifferencebetweenanglesα1andα2ρsoilunitdensityρ1lowersoilunitdensityρwwaterunitdensityσmmeaneffectiveconningstressσvverticaleffectivestress(fromoverburden)σ3lateralconningeffectivepressureσdhorizontalcompressivestressesactingonthedownstreamverticalcrosssectionsofmovingmassσhaxialstress,positivewhentensileσuhorizontalcompressivestressactingontheupstreamverticalcrosssectionsofmovingmassσvtotaloverburdenpressure(atdepthvbelowwalltop)σ()axial(effective)stress,positivewhencompressiveτshearstressτbshearstressatthebaseandsidesτdverticalshearstressactingonthedownstreamverticalcrosssectionsofthemassτhnshearstressintheplaneperpendiculartotheplanewithinwhichhorizontaldisplacementoccursτhvshearstressintheverticalplane(behindwallatdepthv)τppeakshearstrengthτuverticalshearstressactingontheupstreamverticalcrosssectionsofthemassω(n)circularfrequency(ofnthharmonicoftheFourierseries)ωdcircularfrequencyofaninputmotionωefundamentalcircularfrequencyofundampedcoupledlinearelasticSDOFOωggroundcircularfrequencyωhcircularfrequencyofhorizontalmotionωocircularfrequencyoftheoutputmotionωrnaturalfrequencycorrespondingtotherotationalmotionofadynamicmodelωsnaturalcircularfrequencyofpile(s)/wallinxedbaseconditionξdampingratioξeequivalenthystereticdampingratioξgsoilhystereticdampingratioξhradiationdampingratioofapilegroupinhorizontaldirectionξminminimumdampingratioξrradiationdampingratioofapilegroupinrotationξsstructuralhystereticdampingratioxxivListofSymbols
我们先普及一下常识吧,每年9月的第一个星期一是美国劳工节。于是,有一些服务商会基于这些节日推出吸引用户的促销活动,比如RackNerd有推出四款洛杉矶和犹他州独立服务器,1G带宽、5个独立IP地址,可以配置Windows和Linux系统,如果有需要独立服务器的可以看看。第一、劳工节促销套餐这里有提供2个套餐。两个方案是选择犹他州的,有2个方案是可以选择洛杉矶机房的。CPU内存SSD硬盘配置流量价格...
这不端午节和大家一样回家休息几天,也没有照顾网站的更新。今天又出去忙一天没有时间更新,这里简单搜集看看是不是有一些商家促销活动,因为我看到电商平台各种推送活动今天又开始一波,所以说现在的各种促销让人真的很累。比如在前面我们也有看到PacificRack 商家发布过年中活动,这不在端午节(昨天)又发布一款闪购活动,有些朋友姑且较多是端午节活动,刚才有看到活动还在的,如果有需要的朋友可以看看。第一、端...
Budgetvm(原EZ机房),2005年成立的美国老品牌机房,主打美国4个机房(洛杉矶、芝加哥、达拉斯、迈阿密)和日本东京机房的独立服务器和VPS业务,而且不限制流量,默认提供免费的1800G DDoS防御服务,支持IPv6和IPMI,多种免费中文操作系统可供选择,独立服务器主打大硬盘,多硬盘,大内存,用户可以在后台自行安装系统等管理操作!内存可定制升级到1536G,多块硬盘随时加,14TBSA...
wallbase为你推荐
秦殇内存修改器秦殇的修改器怎么用啊?修改器的版本是1.1播放器哪个好哪个播放器比较好用辽宁联通网上营业厅辽宁联通网上营业厅为什么不能交小灵通的话费?google广告申请谷歌广告怎么申请?dns服务器故障电脑dns服务器发生故障怎么解决360云盘网页版网页版360云盘打不开,求助!360云盘企业版360企业云盘有免费版吗?360云u盘怎么删除360云u盘月抛隐形眼镜哪个牌子的月抛隐形眼镜戴起来比较舒服?请推荐月抛隐形眼镜价格800度配隐形眼镜大概多少钱
二级域名 in域名注册 济南域名注册 合租服务器 高防直连vps 云网数据 photonvps 加勒比群岛 老左博客 suspended godaddy域名优惠码 抢票工具 godaddy域名转出 好看的桌面背景大图 css样式大全 本网站在美国维护 vip购优惠 如何建立邮箱 yundun 双线asp空间 更多