structurewallbase

wallbase  时间:2021-01-28  阅读:()
GEOTECHNICALEARTHQUAKEENGINEERINGGEOTECHNICAL,GEOLOGICALANDEARTHQUAKEENGINEERINGVolume9SeriesEditorAtillaAnsal,KandilliObservatoryandEarthquakeResearchInstitute,BogaziciUniversity,Istanbul,TurkeyEditorialAdvisoryBoardJulianBommer,ImperialCollegeLondon,U.
K.
JonathanD.
Bray,UniversityofCalifornia,Berkeley,U.
S.
A.
KyriazisPitilakis,AristotleUniversityofThessaloniki,GreeceSusumuYasuda,TokyoDenkiUniversity,JapanForothertitlespublishedinthisseries,gotowww.
springer.
com/series/6011GeotechnicalEarthquakeEngineeringSimpliedAnalyseswithCaseStudiesandExamplesbyMILUTINSRBULOVUnitedKingdomwithForewordofE.
T.
R.
Dean123Dr.
MilutinSrbulovUnitedKingdomsrbuluv@aol.
comISBN:978-1-4020-8683-0e-ISBN:978-1-4020-8684-7LibraryofCongressControlNumber:2008931592c2008SpringerScience+BusinessMediaB.
V.
Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,microlming,recordingorotherwise,withoutwrittenpermissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecicallyforthepurposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.
Printedonacid-freepaper987654321springer.
comForewordMeasurableearthquakesoccurveryfrequentlyinmanypartsoftheworld.
Forexample,Shepherd(1992)lists7283earthquakesrecordedintheCaribbeanAntillesinthe22-yearperiod1964to1985,arateofabout1earthquakeperday.
Somewereduetomovementsofhighlystressedrockatmorethan100kmbelowthegroundsurface(ShepherdandAspinall,1983).
Similarhighlevelsofactivityarefoundinallseismicallyactiveregionsoftheworld.
Astheearthquakevibrationstravelfromthesourcetowardsthegroundsurface,theenergyspreadsoutandalsodissipates,sothatenergydensityreduceswithdis-tancefromsource.
Forthemajorityofevents,shakinghasreducedtolevelsthatpeoplecannotfeelbythetimeitreachesthegroundsurface.
Forsomeevents,suf-cientenergyreachesthesurfaceforpeopletofeelminoreffects.
Forafew,theenergyreachingthesurfaceissufcienttocausemajordamage.
Sinceearthquakeshakingistransmittedthroughground,andsincegroundalsosupportsbuildingsandotherstructures,theartandscienceofgeotechnicalengineer-ingisanimportantpartofearthquakeengineering.
Avarietyofconceptsandtech-niquesaredetailedbyKramer(1996),Day(2002),ChenandScawthorne(2003),andothers.
Someoftheimportantgeotechnicalaspectsare:rTheparticlemechanicalnatureofsoil(MitchellandSoga,2005;LambeandWhitman,1979)rTerzaghi'sPrincipleofEffectiveStress(Terzaghietal,1996)rLinear,isotropicelasticmodels(DavisandSelvadurai,1996)rThetheoryofsoilplasticity(Druckeretal.
,1957;DavisandSelvadurai,2002;Loret,1990)rTheMohr-Coulombfailureenvelope(LambeandWhitman,1979;Das,2004)rThecharacterizationofsoilproperties,andtheoriesofcompressibility,owofwaterthroughsoils,uidization,andconsolidationofsoils(FlorinandIvanov,1961;LambeandWhitman,1979;HeidariandJames,1982;WrothandHoulsby,1985;Terzaghietal,1996;Das,2004)rCriticalstatesoilmechanics,whichseekstoincorporatesoilelasticity,plasticity,strength,density,andconsolidationintoasingleunifyingtheoreticalframework(SchoeldandWroth,1968;AtkinsonandBransby,1978;Muir-Wood,1992;Schoeld,2005)vviForewordrAdvancedsiteinvestigationandlaboratorytestingtechniques(Hunt,2005;Head,2006)rAdvancedmethodsforslopestabilityassessment(Abramsonetal,1996;Corn-forth,2005),andbearingcapacityandlateralearthpressure(eg.
Choudharyetal,2004;KumarandGhosh,2006)rLiquefactionandthesteadystateconcept(Castro,1969;SeedandIdriss,1971;Poulos,1981;VaidandChern,1985;Seed,1988;Ishihara,1995;JefferiesandBeen,2006)rShakingtableandcentrifugemodeltesting(Schoeld,1980;ArulanandanandScott,1994;Taylor,1994)rThedevelopingtheoriesofunsaturatedsoilmechanics(FredlundandRahardjo,1993)rTheuseofadvanceconstitutivemodels(Loret,1990;YamamuroandKaliakin,2005)withniteelementmethods(ZienkiewiczandTaylor,1989,1991;BrittoandGunn,1987;Finn,1999;Potts,2003)rTheglobalgathering,processing,anduseofcollectiveexperience(YoudandIdriss,2001)Basedontheseandotherfactors,advancesinunderstandinghavebeenincor-poratedindesigncodesincludingtheUniformBuildingCode(UBC,1997),theInternationalBuildingCode(IBC,2006),Eurocode8(2004),APIRP2A(2005),ISO19901(2004),andmanyothers.
Tosupportthesedevelopments,itcanbehighlydesirabletodocumentsomesimpliedmodelsthatareeasiertounderstand,retainandexplainthefundamentalphysicsinvolved,andprovidewaysofassessingtherelevance,reliability,andap-plicabilityofmoresophisticatedapproaches.
Itisalsoratherusefultobeabletoidentifythemostsignicantpublicationsinatechnicalliteraturethatisnowveryextensiveindeed.
ThemonographpresentssomeoftheAuthor'sdescriptions,casehistories,experiencesandcommentsonavarietyofsimpliedmodelsforengineer-ingdesignandanalysis.
Thisisvaluablebothforpersonsnewtothesubjectwhowilllearnofthewide-rangingconsiderationsinvolved,andtootherexperiencedpractitionerswhowillbeabletocompareexperienceswiththosesharedhere.
SeniorLecturerinGeotechnicalEngineering,E.
T.
R.
DeanUniversityoftheWestIndiesPrefaceThismonographcontainsdescriptionsofnumerousmethodsaimedateaseandspeedofuseformajorproblemsingeotechnicalearthquakeengineering.
Commentsonassumptions,limitations,andfactorsaffectingtheresultsaregiven.
Casestudiesandexamplesareincludedtoillustratetheaccuracyandusefulnessofsimpliedmethods.
Alistofreferencesisprovidedforfurtherconsiderations,ifdesired.
Mi-crosoftExcelworkbooksreferredtoinAppendicesandprovidedonanaccompany-ingCDareforthecasestudiesandexamplesconsideredinthemonograph.
Someofthereasonsforusingthismonographarementionedbelow.
Manycodesandstandardscontainrecommendationsonbestpracticebutcompli-ancewiththemdoesnotnecessarilyconferimmunityfromrelevantstatutoryandle-galrequirements(asstatedinBritishStandards).
Someseismiccodesandstandardswererevisedaftermajoreventssuchasthe1995Hyogo-kenNambuandthe1994Northridgeearthquakes.
Codescontainclauseswithoutreferencestotheoriginalsourcesformoredetailedconsiderationswhencasesthatrequiresuchconsiderationappearinpractice.
Codesdonotcontainexplanationsofthestatementsexpressedinthem.
Codesarebriefregardinggroundpropertiesandgroundresponse.
Forexample,Eurocode8–Part5requiresassessmentoftheeffectsofsoil-structureinteractionincertaincircumstancesbutdoesnotspecifythedetailsoftheanalyses.
Therefore,theuseofcodesandstandardsalonemaynotbesufcientinengineeringpractice.
Inengineeringpractice,thereisoftenratherlittleinteractionbetweenstructuralandfoundationdisciplines.
Structuralengineersoftenconsidergroundinasim-pliedwayusingequivalentsprings.
Geotechnicalengineersconsideroftenonlyloadingfromstructuresonfoundations.
Dynamicsoil-structureinteractionisverycomplexandanalyzedmainlybyspecialistingeotechnicalearthquakeengineering.
Thismonographshouldhelpgeotechnicalandstructuralengineerstocommunicateeffectivelytobetterunderstandsolutionsofmanyproblemsingeotechnicalearth-quakeengineering.
Specialistsinnon-lineardynamicsanalysesneedtorecognizethatthemotionofanon-linearsystemcanbechaoticandtheoutcomescanbeunrepeatableandunpredictable.
BakerandGollub(1992),forexample,showthattwoconditionsaresufcienttogiverisetothepossibilityofchaoticmotion:thesystemhasatleastthreeindependentvariables,andthevariablesarecoupledbynon-linearviiviiiPrefacerelations.
Equivalentlinearandsimpliednon-lineardynamicanalysisdescribedinthismonographcanbeusedtoavoidpossiblechaoticoutcomesofacomplexnon-lineardynamicanalysis.
Groundmotioncausedbyearthquakesischaoticandthereforegreateraccuracyofsophisticatedmethodslosesitsadvantage.
Expectedgroundmotioncanbepredictedonlyapproximately,andsimpliedanalysesarefasterandeasiertoolsforparametricstudiescomparedtosophisticatedmethods.
UnitedKingdomMilutinSrbulovAcknowledgementsProfessorMaksimovicpersuadedmetoswitchprofessionfromconcretestructurestogeotechnicsrightaftermygraduation.
HepioneeredstudiesofsoilmechanicspaidbyEnergoprojektCo.
atImperialCollegeintheU.
K.
TheMScsoilmechanicsstudyin1984/85enabledmetoobtainthepositionofaresearchassistantlater.
IwashonoredandprivilegedtoworkwithProfessorAmbraseysonanumberofresearchprojectssupportedbytheEngineeringandPhysicalScienceResearchCounciloftheUnitedKingdomandbytheEPOCHprogramoftheCommunityofEuropeanCountriesatImperialCollegeinLondonduringtheperiod1991–1997.
Thesimpliedapproachusedinourresearchisdirectlyapplicabletoroutineengi-neeringpractice.
DrE.
T.
R.
Deanreviewedseveralofmypapersandwasofgreathelpwithhisdetailedandprecisecommentsfortheimprovementoftheinitialversionsofthepapers.
Hekindlyreviewedthemonographandmadeasignicantcontributiontowardstheimprovementoftheclarityandreadabilityofthetext.
ElsevierpublisherskindlygrantedpermissiontoreproduceFig.
5B,Fig.
10,Fig.
11,2/3ofDiscussion,andAppendixAofthepaperbyAmbraseysandSr-bulov(1995)inprintandelectronicformatinalllanguagesandeditions.
Elsevierpublisherskindlygrantedpermissiontoreproducepages255to268ofthepaperbySrbulov(2001)inprintandEnglishversion.
PatronEditorepublisherskindlygrantedpermissiontoreproducepartsofmypaperspublishedinthejournalEuropeanEarthquakeEngineering.
TheAmericanSocietyofCivilEngineerskindlygrantedpermissiontoreproduceinprintandelectronicversionTable2fromZhangetal.
(2005)paper.
ixContents1WellKnownSimpliedModels11.
1Introduction11.
2SourceModelsofEnergyReleasebyTectonicFault11.
2.
1ASimpliedPoint-SourceModel11.
2.
2AnAlternative,PlanarSourceModel41.
2.
3CaseStudyComparisonsofthePointandPlanarSourceModels51.
3SlidingBlockModelofCo-SeismicPermanentSlopeDisplacement61.
3.
1Newmark's(1965)SlidingBlockModel61.
3.
2CommentsonNewmarks's(1965)SlidingBlockModel.
.
.
71.
4SingleDegreeofFreedomOscillatorforVibrationofaStructureonRigidBase101.
4.
1DescriptionoftheModel101.
4.
2CommentsontheModel111.
5Summary122SoilProperties132.
1Introduction132.
2CyclicShearStiffnessandMaterialDamping142.
2.
1ShearStiffnessandDampingRatioDependenceonShearStrain162.
3StaticShearStrengthsofSoils182.
4CyclicShearStrengthsofSoils202.
5TheEquivalentNumberofCyclesConcept232.
5.
1AnExampleofEquivalentHarmonicTimeHistories252.
6WaterPermeabilityandVolumetricCompressibility262.
7Summary283SeismicExcitation293.
1Introduction293.
2SeismicHazard293.
2.
1TypesofEarthquakeMagnitudes303.
2.
2TypesofSource-to-SiteDistances31xixiiContents3.
2.
3TypesofEarthquakeRecurrenceRates313.
2.
4RepresentationsofSeismicHazard323.
2.
5SourcesofEarthquakeData393.
3FactorsAffectingSeismicHazard.
413.
3.
1EarthquakeSourceandWavePathEffects413.
3.
2SedimentBasinEdgeandDepthEffects453.
3.
3LocalSoilLayersEffect543.
3.
4TopographicEffect573.
3.
5SpaceandTimeClustering(andSeismicGaps)583.
4ShortTermSeismicHazardAssessment603.
4.
1HistoricandInstrumentalSeismicDataBased.
603.
4.
2ObservationalMethod623.
5LongTermSeismicHazardAssessment653.
5.
1TectonicDataBased653.
5.
2PaleoseismicDataBased673.
6Summary704SlopeStabilityandDisplacement.
734.
1Introduction734.
2SlopeStability734.
2.
1LimitEquilibriumMethodforTwo-DimensionalAnalysisbyPrismaticWedges744.
2.
2SingleTetrahedralWedgeforThree-DimensionalAnalysisofTranslationalStability844.
3ShearBeamModelforReversibleDisplacementAnalysis864.
3.
1Two-DimensionalAnalysis.
864.
3.
2Three-DimensionalEffect.
884.
4SlidingBlockModelsforPermanentDisplacementAnalysis894.
4.
1Co-SeismicStage.
894.
4.
2Post-SeismicStage944.
5BouncingBallModelofRockFall994.
5.
1CaseStudyofBedrina1RockFallinSwitzerland1034.
5.
2CaseStudyofShimaRockFallinJapan.
1054.
5.
3CaseStudyofFutamataRockFallinJapan1064.
6SimpliedModelforSoilandRockAvalanches,DebrisRun-OutandFastSpreadsAnalysis1074.
6.
1EquationofMotion1084.
6.
2MassBalance1104.
6.
3EnergyBalance1114.
7Summary1175SandLiquefactionandFlow1195.
1Introduction1195.
2ConventionalEmpiricalMethods1205.
2.
1LiquefactionPotentialAssessment120Contentsxiii5.
2.
2FlowConsideration1225.
3RotatingCylinderModelforLiquefactionPotentialAnalysisofSlopes.
1235.
3.
1ModelforCleanSand1235.
3.
2ModelforSandwithFines1265.
4RollingCylinderModelforAnalysisofFlowFailures.
1355.
4.
1ModelforCleanSand1355.
4.
2ModelforSandwithFines1365.
5Summary1396DynamicSoil–FoundationInteraction1416.
1Introduction1416.
2AdvancedandEmpiricalMethods1426.
2.
1NumericalMethods,CentrifugeandShakingTableTesting.
1426.
2.
2SystemIdenticationProcedure.
1426.
3DiscreteElementModels1436.
3.
1LumpedMassModelFormula1436.
3.
2ClosedFormSolutioninTime1506.
3.
3TimeSteppingProcedure1566.
4SingleDegreeofFreedomOscillatoronFlexibleBaseforPiledFoundationsandFlexuralRetainingWalls1686.
4.
1GroundMotionAveragingforKinematicInteractionEffectConsideration1706.
4.
2AccelerationResponseSpectraRatiosforInertialInteractionEffectConsideration1726.
5Summary1857BearingCapacityAndAdditionalSettlementofShallowFoundation.
.
1877.
1Introduction1877.
2BearingCapacity:Pseudo-StaticApproaches1877.
3BearingCapacity:EffectsofSub-SurfaceLiquefaction1887.
4BearingCapacity:EffectsofStructuralInertiaandEccentricityofLoad1897.
4.
1AnExampleofCalculationofBearingCapacityofShallowFoundationinSeismicCondition1907.
5AdditionalSettlementinGranularsoils1917.
5.
1ExamplesofEstimationofAdditionalSettlementCausedbySandLiquefaction1927.
6Summary1938SeismicWavePropagationEffectonTunnelsandShafts1958.
1Introduction1958.
2WavePropagationEffectonCutandCoverTunnelsandShafts.
.
.
.
1958.
2.
1CaseStudyoftheDaikaiStationFailurein1995.
1968.
2.
2CaseStudyofaTenStoryBuildinginMexicoCity199xivContents8.
3WaveRefractionEffectonDeepTunnelsandShafts2018.
4Summary2029CommentsonSomeFrequentLiquefactionPotentialMitigationMeasures2039.
1Introduction2039.
2StoneColumns2039.
3SoilMixing2049.
4ExcessWaterPressureReliefWells2059.
4.
1AnExampleforPressureReliefWells2089.
5Summary208Appendices–MicrosoftExcelWorkbooksonCompactDisk211A.
1CoordinatesofEarthquakeHypocentreandSite-to-EpicentreDistance211A.
2LimitEquilibriumMethodforNortholtSlopeStability212A.
3SingleWedgeforThree-DimensionalSlopeStability214A.
4Co-SeismicSlidingBlock215A.
5aPost-SeismicSlidingBlocksforMaidipoSlipinFrictionalSoil.
.
.
.
215A.
5bPost-SeismicSlidingBlocksforCatakSlipinCohesiveSoil216A.
6BouncingBlockModelofRockFalls216A.
7SimpliedModelforSoilandRockAvalanches,DebrisRun-OutandFastSpreads216A.
8Closed-FormSolutionforGravityWalls219A.
9aTimeSteppingProcedureforKobeWall219A.
9bTimeSteppingProcedureforKalamataWall.
219A.
10AccelerogramAveragingandAccelerationResponseSpectra.
219A.
11BearingCapacityofShallowFoundation223A.
12ExcessPoreWaterPressureDissipation.
223References225Index241ListofSymbolsSymbolDescriptionσh/hhorizontalaxialstressgradientinhorizontaldirectionτhn/ngradientofshearstressinverticalplaneindirectionnormaltotheplaneτhv/vgradientofshearstressinverticalplaneinverticaldirection2u(1)/t2secondgradientofhorizontaldisplacementintime(1-downslope)u/vhorizontaldisplacementgradientinverticaldirectioncapparentcohesionofreinforcedsoilφequivalentfrictionanglealongslidingblockbaseσaveragecompressivestressonslidingblockbaseθinclinationtothehorizontalofslidingblockbase.
.
θrotationalaccelerationofacylinderaroundapoint.
.
uhorizontalacceleration.
θ1nrotationalvelocityofagravitywall.
.
θon,.
.
uonrotationalandhorizontalaccelerationsofagravitywall/αexponentoftheratioγγ1rαangleofslidingblockinclinationtohorizontal/kexponentoftheratioσmP1a(N1)60normalizedblowcounttoanoverburdenpressureof100kPaandcorrectedtoanenergyratioof60%aanexponenta(i)acceleration(initial)a,b,ccoefcientscalculatedfrommeasuredincrementaldisplacementsu,v,wa1rateofgroundaccelerationincrementduringatimeintervalA1,2seismicwaveamplitudes1and2Abareaofthemasscontactwiththebaseandsidesac(h,r)criticalhorizontalaccelerationinsliding(h)orrocking(r)acrcriticalaccelerationxvAffoundationareaaf,phorizontalpeakfoundationaccelerationAfaulttectonicfaultareaAgamplitudeofgrounddisplacementag,thorizontalgroundaccelerationahhorizontalacceleration(foraharmonicload)aipeakinputaccelerationofaSDOFOalgroundaccelerationatdepthlalongthepile/wallattimetAlooptheareaofthehystereticloopaogroundaccelerationatthebeginningofatimeintervalapeak,depthpeakhorizontalgroundaccelerationatdepthaphpeakhorizontalgroundsurfaceaccelerationapeak,surfaceapvpeakverticalgroundsurfaceaccelerationarrockfallaccelerationjustbeforetheimpactAsareaofslopeslidingsurfaceAu(d)upstream(downstream)verticalcrosssectionareabhorizontaldistancebetweenthebackofawallandthewallcentroidb(i)breadthofwedgebase(interfacei)BbwidthofanequivalentballofrockfallbcbreadthofarectangularpilecapBfdiameterofanequivalentcircularfoundationbjbreadthofjointjBsnumberof(sub)basementsinabuildingBwwallbasewidthcsoilshearstrength(cohesion)atzerocompressivestressCtranslationaldashpotcoefcientc(j)soilcohesionindrainedcondition(atjointj)C0,1,2constantschhorizontalcoefcientofinertiaforceinducedbygroundmotioncnamplitudeofthenthharmonicoftheFourierseriescpgroundlongitudinalwavevelocityCssoilconstantintheshearstrengthandshearstrainrelationshipcssoilcharacteristicwavevelocityctgroundtransversalwavevelocitycuundrainedshearstrengthofliqueedsandlayercu(1)undrainedcohesion(inonecycle)curresidualundrainedshearstrengthofliqueedsandcv(r)coefcientofconsolidation(inradialdirection)cvmverticalcoefcientofinertiaforceinducedbygroundmotionCθrotationalsoildashpotcoefcientxviListofSymbolsdminimaldistancefromthelocationofinteresttothesurfaceprojectionofafaultD50anaveragediameterofsoilparticlesdcdepthfactordedistancebetweenwellscentretocentreDffoundationdepthbelowgroundleveldg,thorizontalgrounddisplacementintimedhhorizontaldistancebetweenthelocationwheretheloadFisactingandthelocationwherethestressiscalculatedDldepthofliqueedsoillayerdppilediameterdphpeakhorizontalgroundsurfacedisplacementdrradialdistancemeasuredfromcentreofthewelldsstraight-line(slant)distancebetweentheearthquakehypocenterandarecordingsiteDsmaximumsurfacedisplacementoftectonicfaultdtchangeofthicknessofwedgejointdtj,ejoint(j)thicknesschangeedistancebetweenwallcentroidanditsbaseEYoungmodulusEdenergydensityatahypocentraldistanceEfftheoreticalfree-fallenergyofhammerElossenergylossduetoplasticdeformationofimpactedsurfaceEmactualenergydeliveredbyhammerEototalenergyreleasedattheearthquakesourceEpYoungmodulusofpileEsanaveragelateralearthforceEttotalenergyreleasedattheearthquakesourceperunitareaofthesourceffrequencyofshearstressreversalFavraveragefactorofsafetyofagroupofwedgesFggroundresistingforcetorockfallpenetrationonimpactFi,jlocalfactorsofsafetyalongwedgejointsi,jFmmodicationfactorofsedimentstransversalwavevelocitiesFNnormalandstrike-slipfaultindicatorFOunspeciedfaultindicatorFppointloadFrsoilreactionforceatwallbaseFSfactorofsafetyofslopestabilityFTreverse(thrust)faultindicatorFvverticalfoundationcapacityGshearmodulusggravitationalaccelerationGbaveragetransversalwavevelocityrange3601]probabilityofatleastoneexceedanceofaparticularearthquakemagnitudeinaperiodoftyearsPaatmosphericpressurePbsoilresistingforceactingatthebasePfaxialcomponentofrockfallimpactforcePIsoilplasticityindexpncharacteristicaxialstressListofSymbolsxixpoeffectiveoverburdenstressatthefoundationdepthPrsoilreinforcementforcePsimprovementinshearingresistancefromsoilreinforcementforcePrRradiusofanequivalentballofrockfallrcylinderradiusr1radiusofthenesmodelRbratiobetweenthehorizontaldistancesfromastationtosedimentbasinedgeandthedepthofsedimentsatthelocationofthestationrccorrelationcoefcientrdstressfactorwithdepthreahalfofthedistancederfsourceslantdistancerhradiusofanequivalentdisksforthehorizontalmotionrMCradiusofMohr–CoulombcircledenedbyEquation(9.
1)rpileahalfofpilediameterrrradiusofanequivalentdisksfortherotationalmotionru(,j)excessporewaterpressureratio(atjointj)rvradiusofanequivalentdisksfortheverticalmotionrwradiusofawellSslidingforceatthebaseofarigidretainingwallsaxistoaxisspacingbetweensoil-cementmixturewallsSAstiffsoilsiteindicatorscshapefactorSfaveragesliponthefaultduringanearthquakeSSsoftsoilsiteindicatorStnumberofstoreysabovegroundlevelSuminimaluniaxialcompressivestrengthofsamplestakenfrommixedsoilTperiodofvibrationttimeTi(j)forceactinginthedirectionthatisparalleltothesurfaceofawedgebasei(interfacej)t1timewhencylinderwillstartrotationtachtimecorrespondingtoachTdperiodoftherstmodeoffreevibrationofadamTeqvperiodofequivalentharmoniccycleTftransversalcomponentofrockfallimpactforceTishearforceatwedgejointiTMreturnperiodofearthquakesexceedingmagnitudeMTpageoftectonicplatesubductionTrearthquakerecurrenceperiodTsthetime(inseconds)necessaryforaseismicwavetopassalongLsxxListofSymbolsTvtimefactortwthicknessofsoil-cementmixturewallsT()transversalforceatthetopofthecolumnduetothehorizontaldisplacementandrotationθuhorizontaldisplacementU(z,r)overalldegreeofconsolidation(atdepthz,radiusr)u1one-waypermanenthorizontalcomponentofdisplacementsonslopinggroundu2two-waypermanentdisplacementsoflevel(horizontal)groundufowdistanceuf(ω)surfaceamplitudeofthefreeeldgroundmotionuohorizontalwalldisplacementutexcessporewaterpressureattimetvverticaldirectionVvolumeofmovingmassalongtravelpathv1lowersoilwavepropagationvelocityvhhorizontalbasevelocityvinincomingvelocityofrockfallvlvelocityofpropagationofthelongitudinalwavesvmmovingmassvelocityvoinitialvelocityvoutvelocityofbouncedrockfallVpvelocityofaparticlevphpeakhorizontalgroundsurfacevelocityVrrateoftectonicplatesubductionvtvelocityofpropagationofthetransversalwavesvtpgroundvelocitybelowthepile/walltipattimetvtTsgroundvelocitybelowthepile/walltipattimetTsWweightW1weightofthenesmodelWDdissipatedenergybymaterial(hysteretic)dampingWftectonicfaultwidthWsstrainenergyxshortestdistancebetweentheforceNandpointAinFigure5.
5yshortestdistance(levelarm)betweentheforceNtanφandpointAinFigure5.
5ypileshortestdistancebetweenpilecentroidandtheneutralaxisofrotationzdepthzmdatumabovemovingmassatrestpositionτa(,i)availablesoilshearstrength(atjointi)τeshearstressnecessarytomaintainlimitequilibriumBConstantofproportionalitybetweenγi(j),eandi(j),eListofSymbolsxxi(i(j),e)relativehorizontaldisplacementofabeamend(magnitudesofkinematicallypossibletangentialdisplacementsalongjointsi,jofwedges)Etransientpartoflateralearthforcei(j),ekinematicallypossibleshearstrainalongjointiorjMθmassmomentofinertiaofthetrappedsoilbeneathwallforPoisson'sratiogreaterthan1/3sfoundationsettlementttimesteptwtimelagbetweenarrivaloflongitudinalandtransversalwavesuincrementofgroundsurfacedisplacementinxdirectionvincrementofgroundsurfacedisplacementinydirectionwincrementofgroundsurfacedisplacementinzdirectionxincrementalhorizontaldistancealongrockfalltrajectoryjustbeforetheimpactxhorizontallengthoverwhichchangeofthicknessofmovingmasshasbeenachievedyincrementalverticaldistancealongrockfalltrajectoryjustbeforetheimpactzchangeofthicknessofmovingmassεincrementalaxialstrainφdifferencebetweenangleofsoilfrictionatzeroeffectivestressandbasicangleofsoilfrictionγincrementalshearstrainσvadditionalverticalstressatadepthz>0causedbypointloadFatthegroundsurfacesumofenergylossoveratravelpathofmovingmassNaxialcomponentoftheresultantofallforcesactingontheslipsurfaceTshearcomponentoftheresultantofallforcesactingontheslipsurfaceαangleinFigure5.
4and5.
11α1(2)anglebetweennormaltotheinterfaceanddirectionofpropagationofwavepathsontwosidesofaninterfaceαjangleofinclinationoftangentialdisplacementvectorwithrespecttojointdirectionαllocalangleofinclinationtothehorizontalattheimpactplaceofrockfallβinclinationtothehorizontalβllargerinclinationofthegroundsurfaceslopeortheslopeofthelowerboundaryoftheliqueedzoneinpercentβrfangle(positiveupwards)withthehorizontalatthebeginningofrockfallβttuningratioxxiiListofSymbolsδbfrictionanglebetweensoilandwallbackδi(j),asheardisplacementindirectshearapparatuscorrespondingtoavailableshearstressτaatajointi(i.
e.
j)δi(j),esheardisplacementindirectshearapparatuscorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)δpplasticdeformationindirectionperpendiculartotheimpactsurfaceδrresidualangleofsoilfrictionεi(j),aaxialstrainintriaxialapparatuscorrespondingtoavailableshearstressτaatajointi(i.
e.
j)εi(j),eaxialstrainintriaxialapparatuscorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)φfrictionangleincyclicconditionφ(j)soilfrictionangle(atjointj)indrainedconditionφ1peakfrictionalangleinstaticconditionφbbasicangleofsoilfricitionφnphaseangleespectivelyofthenthharmonicoftheFourierseriesγshearstrainγsubmergedunitweightofnon-liqueedsoilγhvshearstraininverticalplaneγi(j),ashearstraincorrespondingtoavailableshearstressτaatajointi(i.
e.
j)γi(j),eshearstraincorrespondingtomobilizedshearstressτeatajointi(i.
e.
j)γrreferentshearstrainγsunitweightofsoilparticleγsoilunitweightofsoilγwunitweightofwaterηviscosityofsoilηawabsoluteviscosityofwaterηwangleofinclinationtothehorizontalofbackllbehindaretainingwallκ,κ1exponenttoshearstrainintheshearstrengthandshearstrainrelationshipλaveragerateofoccurrenceoftheeventwithconsideredearthquakemagnitudeμshearmodulusoftheEarth'scrustνPoisson'sratiooangleofinclinationtotheverticalofthebackofawallθrotationangleθ1anadditionalinternalrotationaldegreeoffreedomθbrelativerotationofabeamendθoangleofwallrotationListofSymbolsxxiiiθranglebetweenthereinforcementdirectionandanormaltowedgejointθαdifferencebetweenanglesα1andα2ρsoilunitdensityρ1lowersoilunitdensityρwwaterunitdensityσmmeaneffectiveconningstressσvverticaleffectivestress(fromoverburden)σ3lateralconningeffectivepressureσdhorizontalcompressivestressesactingonthedownstreamverticalcrosssectionsofmovingmassσhaxialstress,positivewhentensileσuhorizontalcompressivestressactingontheupstreamverticalcrosssectionsofmovingmassσvtotaloverburdenpressure(atdepthvbelowwalltop)σ()axial(effective)stress,positivewhencompressiveτshearstressτbshearstressatthebaseandsidesτdverticalshearstressactingonthedownstreamverticalcrosssectionsofthemassτhnshearstressintheplaneperpendiculartotheplanewithinwhichhorizontaldisplacementoccursτhvshearstressintheverticalplane(behindwallatdepthv)τppeakshearstrengthτuverticalshearstressactingontheupstreamverticalcrosssectionsofthemassω(n)circularfrequency(ofnthharmonicoftheFourierseries)ωdcircularfrequencyofaninputmotionωefundamentalcircularfrequencyofundampedcoupledlinearelasticSDOFOωggroundcircularfrequencyωhcircularfrequencyofhorizontalmotionωocircularfrequencyoftheoutputmotionωrnaturalfrequencycorrespondingtotherotationalmotionofadynamicmodelωsnaturalcircularfrequencyofpile(s)/wallinxedbaseconditionξdampingratioξeequivalenthystereticdampingratioξgsoilhystereticdampingratioξhradiationdampingratioofapilegroupinhorizontaldirectionξminminimumdampingratioξrradiationdampingratioofapilegroupinrotationξsstructuralhystereticdampingratioxxivListofSymbols

个人网站备案流程及注意事项(内容方向和适用主机商)

如今我们还有在做个人网站吗?随着自媒体和短视频的发展和兴起,包括我们很多WEB2.0产品的延续,当然也包括个人建站市场的低迷和用户关注的不同,有些个人已经不在做网站。但是,由于我们有些朋友出于网站的爱好或者说是有些项目还是基于PC端网站的,还是有网友抱有信心的,比如我们看到有一些老牌个人网站依旧在运行,且还有新网站的出现。今天在这篇文章中谈谈有网友问关于个人网站备案的问题。这个也是前几天有他在选择...

618云上Go:腾讯云秒杀云服务器95元/年起,1C2G5M三年仅288元起

进入6月,各大网络平台都开启了618促销,腾讯云目前也正在开展618云上Go活动,上海/北京/广州/成都/香港/新加坡/硅谷等多个地区云服务器及轻量服务器秒杀,最低年付95元起,参与活动的产品还包括短信包、CDN流量包、MySQL数据库、云存储(标准存储)、直播/点播流量包等等,本轮秒杀活动每天5场,一直持续到7月中旬,感兴趣的朋友可以关注本页。活动页面:https://cloud.tencent...

国内云服务器 1核 2G 2M 15元/月 萤光云

标题【萤光云双十二 全场6折 15元/月 续费同价】今天站长给大家推荐一家国内云厂商的双十二活动。萤光云总部位于福建福州,其成立于2002 年。主打高防云服务器产品,主要提供福州、北京、上海 BGP 和香港 CN2 节点。萤光云的高防云服务器自带 50G 防御,适合高防建站、游戏高防等业务。这家厂商本次双十二算是性价比很高了。全线产品6折,上海 BGP 云服务器折扣更大 5.5 折(测试了一下是金...

wallbase为你推荐
美女桌面背景图片最漂亮的美女电脑壁纸哪里有?304和316不锈钢哪个好304不锈钢和316不锈钢哪个好电脑杀毒软件哪个好现在电脑用哪个杀毒软件最好手机浏览器哪个好目前手机浏览器哪个最好oppo和vivo哪个好买oppo手机好还是vivo的好?看书软件哪个好有什么好的读书软件啊?清理手机垃圾软件哪个好清理手机垃圾的软件哪个好qq空间登录电脑手机上怎么登陆电脑版QQ空间dns服务器有什么用DNS服务器是干嘛的?360云盘360云盘和百度云盘哪个更好
com域名空间 cn域名备案 最便宜虚拟主机 132邮箱 pccw 外贸主机 香港主机 日本空间 南昌服务器托管 亚洲小于500m 中国智能物流骨干网 新天域互联 阿里校园 hdd 台湾谷歌 环聊 服务器是干什么用的 谷歌台湾 登陆qq空间 阵亡将士纪念日 更多