InternationalJournalofEmergingTechnologyandAdvancedEngineeringWebsite:www.
ijetae.
com(ISSN2250-2459,ISO9001:2008CertifiedJournal,Volume3,Issue9,September2013)365AnOverviewofUseofLinearDataStructureinHeuristicSearchTechniqueGirishPPotdar1,Dr.
RCThool21AssociateProfessor,ComputerEngineeringDepartment,P.
I.
C.
T,Pune,2Professor,DepartmentofInformationTechnology,SGGSIE&T,Nanded,Abstract—Searchproblemscanbeclassifiedbytheamountofinformationthatisavailabletothesearchprocess.
Whennoinformationisknownapriori,asearchprogrammustperformblindoruninformedsearch.
Whenmoreinformationthaninitialstate,operatorandthegoaltestisavailablethesizeofsearchspacecanusuallybeconstrained.
Thesemethodsareknownasinformedsearchmethods.
Theseoftendependonuseofheuristicinformation.
Aheuristicisaruleofthumb,strategy,trick,simplificationoranyotherkindofdevicewhichdrasticallylimitssearchforsolutionsinlargeproblemspaces.
Heuristicsdoesn'tguaranteeoptimalsolutions;infacttheydonotguaranteeanysolutionatall;theyoffersolutionswhicharegoodenoughmostofthetime.
Optimizationistheprocessoffindingthebestsolutionfromasetofsolutions.
Insomecasesoptimizationmaynotbepossibleorsimplynotefficientenoughtogeneratesolutionsintherequiredtime,soheuristicmaybeusedinstead.
Ifaproblemissolvedrepetitivelyandtheparameterschangeoften,heuristicsaremorelikelytofallapart.
Heuristicperformancemaybeimprovedbyincorporatingoptimizationalgorithms.
Bettersolutionsaregeneratedforabroaderrangeofparametersbyoptimizinginsidesomestepsoftheheuristicsearchalgorithm.
ThepaperexploredifferentheuristicsearchtechniquesandproposeaheuristicsearchmethodthataimstoovercomethedrawbacksofexistingtechniquesbymakingchangesinthedatastructuresusedinordertoachievebestpossiblesolutionandtoimprovetheperformanceefficiencyKeywords—MultiLevelLinkedList,A*algorithm,AO*algorithm,hillclimbing,Generalizedlinkedlist.
I.
INTRODUCTIONArtificialIntelligencetechniquesarebeingusedinanincreasingnumberofcomputerapplicationsincludingspeechrecognition,robotics,expertsystems,drugdesign,andmoleculesynthesis.
Almostallthesearchingalgorithmsgeneratethesearchtree.
ThesesearchingtechniquesarealsocalledastheHeuristicsearchingtechniques[1,12].
Aswebeginfromthestartstate,generatethesearchtree;selecttheavailableoptimalpathtillwegetthegoalstate.
Priorwegoaheadwiththediscussion,let'sdefinetheterm"Heuristic".
Heuristicmeanstodiscover.
Onecandefineheuristicsearch,as"Itisthesearchingprocesswhichtriestolocatethepredefinedstatebyapplyingheuristic.
"Theprogramstatements,whichrefertotheheuristic,arecalled"heuristicfunction".
Onemayidentifythefollowingconditionswhereinwemaymakeuseofheuristicsuchas:1.
Whenanuncertaintyinthestatespaceisforesighted.
2.
Whentheproblemspacedemandsit.
3.
Retrievalwithconstraintandreasoningisessential.
Thesearevariousheuristicsearchingtechniqueslike:BESTFIRSTSEARCH,A*algorithm[3,4,9].
Theaimhereistodesignanovelheuristicalgorithmwithadifferentdatastructurethantheconventionaloneandprovideheuristicsearchalgorithmresultsusingvariousmeasurementsparametersliketime,space,solutionquality,andsearcheffectiveness.
Generally,searchalgorithmscanbeclassifiedintothreegroups.
Theseare,constant-space,linear-space,andexponential-spacestrategies[7,8,9,10].
Inaconstant-spacesearchstrategy,anapplicableruleisselectedandappliedirrevocablywithoutleavinganymeansforreconsiderationatalaterpoint.
Theprocedurerepeatedlyexpandsnodes,inspectingnewlygeneratedsuccessorsandselectingforexpansionthebestamongthesuccessors,whileretainingnofurtherreferencetothefatherortheancestor.
Inlinear-spacesearchstrategies,iftheselectedruledoesn'tleadtoasolution,theintermediatestepsarediscardedandanotherruleisselectedinstead.
Linear-spacestrategiesareperfectlyadequateforproblemsrequiringsmallamountofsearch.
TheAIapplicationsthatusetheheuristictechniqueneed,andhencebuildtheirownheuristicfunctionwithintheapplicationconstraints.
Theexistenceofheuristicfunctionisbasicallytoevaluatethetwocosts,gandh'.
Whereingreferstothecostfromstartstatetothecurrentstate,andh'referstotheevaluatedcostfromcurrentstatetothegoalstate.
InternationalJournalofEmergingTechnologyandAdvancedEngineeringWebsite:www.
ijetae.
com(ISSN2250-2459,ISO9001:2008CertifiedJournal,Volume3,Issue9,September2013)366Sothetotalevaluatedcostfromtheheuristicfunctionf'isthesummationofthetwocostsgandh'.
Thatisf'=g+h'.
Thistotalevaluatedcostrefersto,howfarthegoalstateisfromthecurrentstate.
TheheuristicsearchingtechniqueslikeA*evaluatetheheuristiccostusingheuristicfunction,[2,3].
GRAPHSEARCHprocedure[1,9,10,11,16]usestwolists,OPENandCLOSED,inordertostoresearch-graphnodes.
NodesonOPENarethosetipnodesofthesearch-graphthathavenotbeenselectedforexpansion.
NodesinCLOSEDareeithertipnodesselectedforexpansionandgeneratednosuccessors,ornon-tipnodes.
NodesinOPENaretraversedbytheproceduresothatthe"bestnodeisselectedforexpansion.
Theselectioncanbebasedonavarietyofheuristicideas.
Wheneverthenodeselectedforexpansionisagoalnode,theprocessterminatessuccessfullyandthepathisdeterminedfromthestartnodetothefoundgoalbytracingbackthepointers.
Theprocessterminatesunsuccessfullywheneverthesearchtreehasnoremainingtipnodes(i.
e.
OPENisempty).
Inthiscasethegoalnodeisinaccessiblefromthestartnode.
Normally,Heuristicsearchalgorithmsuseaevaluationfunctionf--real-valuedfunctiontoselectnodesfromOPENforfurtherexpansion.
Thisevaluationfunctioniscomputedforanodeninthesearch-graphasfollows[5,11,14,15]:f(n)=wg(n)+(1-w)h(n)Whereg(n)isthecostofthemshortestpathfromthestartnodetothenoden,h(n)iscostoftheoptimalpathfromntoagoalnode,and0w1istheweightgiventotheestimatesgandh.
Indeterminingtheestimateh,werelyonheuristicinformationavailablefromtheproblemdomain.
Theestimatehiscalledtheheuristicfunction.
TheheuristicfunctionhissaidtobeadmissibleifitisalowerboundontheactualcostTheestimatehissaidtobeconsistentif,foreachpairofnodesnandm,h(m)-h(n)islessthanorequaltotheactualdistancebetweenthetwonodesnandm.
Anybest-firstheuristicsearchalgorithmthatusesanadmissibleheuristicfunctionalwaysterminatewiththeoptimalsolutionpath,ifsuchpathexists.
Suchalgorithmsarecalledadmissiblealgorithms[6,10].
Thememoryrequirementforaheuristicsearchalgorithmisprimarilymeasuredbytheaveragesizeofthesearch-graph.
ThisisequaltothesizeofthetwolistsOPENandCLOSED.
BasicideaTheideaofbehindthispaperistooptimizetheperformanceofheuristicsearchalgorithm.
Hereweproposeanewapproachbymakingchangesinthedatastructuresandmethodsusedinconventionalalgorithms.
NeedTherearemanyexistingheuristicsearchalgorithmslikehillclimbing,A*,AO*,simulatedannealing.
Hillclimbingsuffersfromproblemslikelocalmaximum,plateau,ridge.
ThegracefuldecayofadmissibilityisthemajordrawbackofA*algorithm.
AO*hasoverheadofexpandingthepartialgraphonestateatatimeandrecomputingthebestpolicyoverthegraphaftereachstep.
Mostoftheseexistingheuristicsearchalgorithmsmaintainlistswhichareentered,updatedandmanipulatedon.
Maintainingandmanagingtheselistssimultaneouslyistediousandcomplextask.
Toreducethiscomplexityweuseadatastructurethataimsatmakingagooduseofmemoryspacewithoutcompromisingonthecompletenessandoptimalityofthealgorithm[13].
ScopeThescopeoftheworkisrestricteduseheuristicsearchmethodusingMultiLevelLinkedList(MLL)toimprovetheperformanceofthesealgorithms.
Proposedworkistoimprovetheperformancebyoptimizinginsidethestepsofalgorithmbyremovingtheredundantlistswhichisthemaindrawbackofmostexistingalgorithms.
Thealgorithmmaybeappliedtoanygraphbasedrealtimeapplications.
II.
BLOCKSCHEMATICTheproposedworkcanbeseeninFig1.
Fig1.
Overviewofblockschematic.
InputmoduleHeuristicSystemProcessingUnitComparatorUnitTimeandspacemonitorDisplayUnitInternationalJournalofEmergingTechnologyandAdvancedEngineeringWebsite:www.
ijetae.
com(ISSN2250-2459,ISO9001:2008CertifiedJournal,Volume3,Issue9,September2013)367III.
DATADESCRIPTIONDataconsistsofdatarelatedtotheapplicationthealgorithmwillbeappliedon.
Thealgorithmifimplementedontravellingsalesmanproblemasanexample;wheredataconsistsofthedistancematrixandthestartingcity.
ThedataisorganizedintoMultilinkedlist(MLL)insteadoftheconventionalGeneralizedlinkedlist(GLL).
Fig2-DFDTheaboveDFDgivesdifferentpossiblemodulesthatcanbeusedwhileimplementingtheproposedworkandpossibledatainteractionbetweenthesemodules.
IV.
ARCHITECTURALDESIGNThefigure3describesthecompletemoduledescriptionforthecurrentwork.
Theuseofproposeddatastructurecanresultinsubstantialtimesavingforlargedataset.
Thesamemaybeappliedtographbasedapplicationssuchastravellingsalespersonproblem,graphpartionioningandmanysuchapplications.
Fig3.
ArchitecturalDesignV.
INTERNALSOFTWAREDATASTRUCTUREMultilinklist(MLL)isusedintheproposedalgorithm.
Itisadynamicallocationmethod.
MLLmaintainsaparentlistandsuccessorlist.
Everyparentnodemaintainsitslistofsuccessors.
AlltheseparentnodesarelinkedtogethertoformMLL.
Fig4.
MLLdatastructureInputModuleAcceptInputProcessInputHeuristicSearchSystemTime&SpaceMonitorGenerateoutput&measureperformanceComparetheResultsDisplayPanelResultGraphDataTimeandspaceparametersSolutionOrganizeddataInputModuleOuralgorithmmoduleAO*algorithmmoduleA*algorithmmoduleComparemoduleOutputModuleP1S1S2P2S1S2P3S1S2InternationalJournalofEmergingTechnologyandAdvancedEngineeringWebsite:www.
ijetae.
com(ISSN2250-2459,ISO9001:2008CertifiedJournal,Volume3,Issue9,September2013)368VI.
CONCLUSIONMLLcanbeprovedtobeverypowerfulstructure.
Iftheapplicationpermitsthenonecanusethereferencelistasthesupportinglist,thuscanavoidstoringthesamestatesagainandagain.
Thusweaimatconductingexperimentationdesignedtogiveresultsconcerningtheroleofheuristicsinachievingsearchefficiency.
ThisapproachusingMLLisidealforcommunicationapplications.
REFERENCES[1]EricHansen,RongZhou–"AnytimeHeuristicSearch",JournalofArtificialIntelligenceResearch28,2007.
[2]Davis,H.
,R.
PollackandD.
Golden,TowardsaDomainIndependentMethodforComparingSearchAlgorithmRun-times,Proceedingsofthe6thCanadianConferenceonAI,240-244(1986b).
[3]AnneL.
Gardner"Search:AnOverview",AImagazine,Volume2,Number1,Sept1980.
[4]ABDEL-ELAHAL-AYYOUB,FAWAZMASOUD"HeuristicSearchRevisited",JournalofSystemsandsoftware,Vol55,No2,2000,103-113[5]Hermankaindl,GerhardKainz–"BidirectionalHeuristicsearchreconsidered",JournalofArtificialIntelligenceResearch7,1997.
[6]AlokKumar,AnshulKumar,M.
Balkrihnan"HeuristicSearchasedApproachtoScheduling,AllocationandBindinginDataPathSynthesis"8thInternationalConferenceonVLSIdesign–Jan1995.
[7]JosephCMusto,LKenLauderbaugh"AHeuristicSearchAlgorithmForOnlineSystemIdentfication"IEEEInternationalsymposiumonIntelligentControl,August1991.
[8]Davis,H.
,R.
PollackandD.
Golden,ATechniqueforComparingSearchAlgorithmRuntimes,ProceedingsoftheFourteenthAnnualACMCSC-86,301-308(1986a).
[9]Dechter,R.
andJ.
Pearl,GeneralizedBest-FirstSearchStrategiesandtheOptimalityofA*,JournaloftheACM,Vol.
32,No.
3,505-536(1985).
[10]Korf,R.
,Depth-FirstIterativeDeepening:AnOptimalAdmissibleTreeSearch,ArtificialIntelligence,Vol.
27,97-109(1985).
[11]Bagchi,A.
andA.
Manhanti,SearchAlgorithmsUnderDifferentKindofHeuristics:AComparativeStudy,JournaloftheACM,Vol.
30,1-21(1983).
[12]Annev.
d.
LGardner"SearchanOverview",AIMagazineWinter81.
[13]StevenWalczak"Knowledge-BasedSearchinCompetitiveDomains"[14]LucaDiGasperoAndreaSchaerf"ATabuSearchApproachtotheTravelingTournamentProblem"[15]EugeneCharniakandDrewMcDermott,"IntroductiontoArtificialIntelligence".
AddisonWesley.
[16]NilsJNilsson,"PrincipalsofArtificialIntelligence"NarosaPublishingHouse.
桔子数据(徐州铭联信息科技有限公司)成立于2020年,是国内领先的互联网业务平台服务提供商。公司专注为用户提供低价高性能云计算产品,致力于云计算应用的易用性开发,并引导云计算在国内普及。目前公司研发以及运营云服务基础设施服务平台(IaaS),面向全球客户提供基于云计算的IT解决方案与客户服务,拥有丰富的国内BGP、双线高防、香港等优质的IDC资源。 公司一直秉承”以人为本、客户为尊、永...
妮妮云的来历妮妮云是 789 陈总 张总 三方共同投资建立的网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑妮妮云的市场定位妮妮云主要代理市场稳定速度的云服务器产品,避免新手购买云服务器的时候众多商家不知道如何选择,妮妮云就帮你选择好了产品,无需承担购买风险,不用担心出现被跑路 被诈骗的情况。妮妮云的售后保证妮妮云退款 通过于合作商的友好协商,云服务器提供2天内全额退款到网站余额,超过2天...
cmivps香港VPS带来了3个新消息:(1)双向流量改为单向流量,相当于流量间接扩大一倍;(2)Hong Kong 2T、Hong Kong 3T、Hong Kong 无限流量,这三款VPS开始支持Windows系统,如果需要中文版Windows系统请下单付款完成之后发ticket要求官方更改即可;(3)全场7折年付、8折月付优惠,优惠码有效期一个月!官方网站:https://www.cmivp...
graphsearch为你推荐
thresholdaltoolsgeraudios11设备itunes水土保持ios8支持ipad请仔细阅读在本报告尾部的重要法律声明勒索病毒win7补丁怎么删除 防勒索病毒 打的补丁用itunes备份如何使用itunes完整备份iPhone资料canvas2七尾奈留除了DC canvas2 sola EF 快乐小兔幸运草 以外改编成动画的作品有哪些?360chrome360Chrome 世界之窗极速浏览器 ChromePlus
备案域名购买 中文域名查询 双线主机租用 唯品秀 ddos 哈喽图床 好看的桌面背景大图 tk域名 河南服务器 777te 100m独享 多线空间 atom处理器 测试网速命令 阿里dns 后门 阿里云邮箱怎么注册 博客域名 贵州电信 weblogic部署 更多