InternationalJournalofEmergingTechnologyandAdvancedEngineeringWebsite:www.
ijetae.
com(ISSN2250-2459,ISO9001:2008CertifiedJournal,Volume3,Issue9,September2013)365AnOverviewofUseofLinearDataStructureinHeuristicSearchTechniqueGirishPPotdar1,Dr.
RCThool21AssociateProfessor,ComputerEngineeringDepartment,P.
I.
C.
T,Pune,2Professor,DepartmentofInformationTechnology,SGGSIE&T,Nanded,Abstract—Searchproblemscanbeclassifiedbytheamountofinformationthatisavailabletothesearchprocess.
Whennoinformationisknownapriori,asearchprogrammustperformblindoruninformedsearch.
Whenmoreinformationthaninitialstate,operatorandthegoaltestisavailablethesizeofsearchspacecanusuallybeconstrained.
Thesemethodsareknownasinformedsearchmethods.
Theseoftendependonuseofheuristicinformation.
Aheuristicisaruleofthumb,strategy,trick,simplificationoranyotherkindofdevicewhichdrasticallylimitssearchforsolutionsinlargeproblemspaces.
Heuristicsdoesn'tguaranteeoptimalsolutions;infacttheydonotguaranteeanysolutionatall;theyoffersolutionswhicharegoodenoughmostofthetime.
Optimizationistheprocessoffindingthebestsolutionfromasetofsolutions.
Insomecasesoptimizationmaynotbepossibleorsimplynotefficientenoughtogeneratesolutionsintherequiredtime,soheuristicmaybeusedinstead.
Ifaproblemissolvedrepetitivelyandtheparameterschangeoften,heuristicsaremorelikelytofallapart.
Heuristicperformancemaybeimprovedbyincorporatingoptimizationalgorithms.
Bettersolutionsaregeneratedforabroaderrangeofparametersbyoptimizinginsidesomestepsoftheheuristicsearchalgorithm.
ThepaperexploredifferentheuristicsearchtechniquesandproposeaheuristicsearchmethodthataimstoovercomethedrawbacksofexistingtechniquesbymakingchangesinthedatastructuresusedinordertoachievebestpossiblesolutionandtoimprovetheperformanceefficiencyKeywords—MultiLevelLinkedList,A*algorithm,AO*algorithm,hillclimbing,Generalizedlinkedlist.
I.
INTRODUCTIONArtificialIntelligencetechniquesarebeingusedinanincreasingnumberofcomputerapplicationsincludingspeechrecognition,robotics,expertsystems,drugdesign,andmoleculesynthesis.
Almostallthesearchingalgorithmsgeneratethesearchtree.
ThesesearchingtechniquesarealsocalledastheHeuristicsearchingtechniques[1,12].
Aswebeginfromthestartstate,generatethesearchtree;selecttheavailableoptimalpathtillwegetthegoalstate.
Priorwegoaheadwiththediscussion,let'sdefinetheterm"Heuristic".
Heuristicmeanstodiscover.
Onecandefineheuristicsearch,as"Itisthesearchingprocesswhichtriestolocatethepredefinedstatebyapplyingheuristic.
"Theprogramstatements,whichrefertotheheuristic,arecalled"heuristicfunction".
Onemayidentifythefollowingconditionswhereinwemaymakeuseofheuristicsuchas:1.
Whenanuncertaintyinthestatespaceisforesighted.
2.
Whentheproblemspacedemandsit.
3.
Retrievalwithconstraintandreasoningisessential.
Thesearevariousheuristicsearchingtechniqueslike:BESTFIRSTSEARCH,A*algorithm[3,4,9].
Theaimhereistodesignanovelheuristicalgorithmwithadifferentdatastructurethantheconventionaloneandprovideheuristicsearchalgorithmresultsusingvariousmeasurementsparametersliketime,space,solutionquality,andsearcheffectiveness.
Generally,searchalgorithmscanbeclassifiedintothreegroups.
Theseare,constant-space,linear-space,andexponential-spacestrategies[7,8,9,10].
Inaconstant-spacesearchstrategy,anapplicableruleisselectedandappliedirrevocablywithoutleavinganymeansforreconsiderationatalaterpoint.
Theprocedurerepeatedlyexpandsnodes,inspectingnewlygeneratedsuccessorsandselectingforexpansionthebestamongthesuccessors,whileretainingnofurtherreferencetothefatherortheancestor.
Inlinear-spacesearchstrategies,iftheselectedruledoesn'tleadtoasolution,theintermediatestepsarediscardedandanotherruleisselectedinstead.
Linear-spacestrategiesareperfectlyadequateforproblemsrequiringsmallamountofsearch.
TheAIapplicationsthatusetheheuristictechniqueneed,andhencebuildtheirownheuristicfunctionwithintheapplicationconstraints.
Theexistenceofheuristicfunctionisbasicallytoevaluatethetwocosts,gandh'.
Whereingreferstothecostfromstartstatetothecurrentstate,andh'referstotheevaluatedcostfromcurrentstatetothegoalstate.
InternationalJournalofEmergingTechnologyandAdvancedEngineeringWebsite:www.
ijetae.
com(ISSN2250-2459,ISO9001:2008CertifiedJournal,Volume3,Issue9,September2013)366Sothetotalevaluatedcostfromtheheuristicfunctionf'isthesummationofthetwocostsgandh'.
Thatisf'=g+h'.
Thistotalevaluatedcostrefersto,howfarthegoalstateisfromthecurrentstate.
TheheuristicsearchingtechniqueslikeA*evaluatetheheuristiccostusingheuristicfunction,[2,3].
GRAPHSEARCHprocedure[1,9,10,11,16]usestwolists,OPENandCLOSED,inordertostoresearch-graphnodes.
NodesonOPENarethosetipnodesofthesearch-graphthathavenotbeenselectedforexpansion.
NodesinCLOSEDareeithertipnodesselectedforexpansionandgeneratednosuccessors,ornon-tipnodes.
NodesinOPENaretraversedbytheproceduresothatthe"bestnodeisselectedforexpansion.
Theselectioncanbebasedonavarietyofheuristicideas.
Wheneverthenodeselectedforexpansionisagoalnode,theprocessterminatessuccessfullyandthepathisdeterminedfromthestartnodetothefoundgoalbytracingbackthepointers.
Theprocessterminatesunsuccessfullywheneverthesearchtreehasnoremainingtipnodes(i.
e.
OPENisempty).
Inthiscasethegoalnodeisinaccessiblefromthestartnode.
Normally,Heuristicsearchalgorithmsuseaevaluationfunctionf--real-valuedfunctiontoselectnodesfromOPENforfurtherexpansion.
Thisevaluationfunctioniscomputedforanodeninthesearch-graphasfollows[5,11,14,15]:f(n)=wg(n)+(1-w)h(n)Whereg(n)isthecostofthemshortestpathfromthestartnodetothenoden,h(n)iscostoftheoptimalpathfromntoagoalnode,and0w1istheweightgiventotheestimatesgandh.
Indeterminingtheestimateh,werelyonheuristicinformationavailablefromtheproblemdomain.
Theestimatehiscalledtheheuristicfunction.
TheheuristicfunctionhissaidtobeadmissibleifitisalowerboundontheactualcostTheestimatehissaidtobeconsistentif,foreachpairofnodesnandm,h(m)-h(n)islessthanorequaltotheactualdistancebetweenthetwonodesnandm.
Anybest-firstheuristicsearchalgorithmthatusesanadmissibleheuristicfunctionalwaysterminatewiththeoptimalsolutionpath,ifsuchpathexists.
Suchalgorithmsarecalledadmissiblealgorithms[6,10].
Thememoryrequirementforaheuristicsearchalgorithmisprimarilymeasuredbytheaveragesizeofthesearch-graph.
ThisisequaltothesizeofthetwolistsOPENandCLOSED.
BasicideaTheideaofbehindthispaperistooptimizetheperformanceofheuristicsearchalgorithm.
Hereweproposeanewapproachbymakingchangesinthedatastructuresandmethodsusedinconventionalalgorithms.
NeedTherearemanyexistingheuristicsearchalgorithmslikehillclimbing,A*,AO*,simulatedannealing.
Hillclimbingsuffersfromproblemslikelocalmaximum,plateau,ridge.
ThegracefuldecayofadmissibilityisthemajordrawbackofA*algorithm.
AO*hasoverheadofexpandingthepartialgraphonestateatatimeandrecomputingthebestpolicyoverthegraphaftereachstep.
Mostoftheseexistingheuristicsearchalgorithmsmaintainlistswhichareentered,updatedandmanipulatedon.
Maintainingandmanagingtheselistssimultaneouslyistediousandcomplextask.
Toreducethiscomplexityweuseadatastructurethataimsatmakingagooduseofmemoryspacewithoutcompromisingonthecompletenessandoptimalityofthealgorithm[13].
ScopeThescopeoftheworkisrestricteduseheuristicsearchmethodusingMultiLevelLinkedList(MLL)toimprovetheperformanceofthesealgorithms.
Proposedworkistoimprovetheperformancebyoptimizinginsidethestepsofalgorithmbyremovingtheredundantlistswhichisthemaindrawbackofmostexistingalgorithms.
Thealgorithmmaybeappliedtoanygraphbasedrealtimeapplications.
II.
BLOCKSCHEMATICTheproposedworkcanbeseeninFig1.
Fig1.
Overviewofblockschematic.
InputmoduleHeuristicSystemProcessingUnitComparatorUnitTimeandspacemonitorDisplayUnitInternationalJournalofEmergingTechnologyandAdvancedEngineeringWebsite:www.
ijetae.
com(ISSN2250-2459,ISO9001:2008CertifiedJournal,Volume3,Issue9,September2013)367III.
DATADESCRIPTIONDataconsistsofdatarelatedtotheapplicationthealgorithmwillbeappliedon.
Thealgorithmifimplementedontravellingsalesmanproblemasanexample;wheredataconsistsofthedistancematrixandthestartingcity.
ThedataisorganizedintoMultilinkedlist(MLL)insteadoftheconventionalGeneralizedlinkedlist(GLL).
Fig2-DFDTheaboveDFDgivesdifferentpossiblemodulesthatcanbeusedwhileimplementingtheproposedworkandpossibledatainteractionbetweenthesemodules.
IV.
ARCHITECTURALDESIGNThefigure3describesthecompletemoduledescriptionforthecurrentwork.
Theuseofproposeddatastructurecanresultinsubstantialtimesavingforlargedataset.
Thesamemaybeappliedtographbasedapplicationssuchastravellingsalespersonproblem,graphpartionioningandmanysuchapplications.
Fig3.
ArchitecturalDesignV.
INTERNALSOFTWAREDATASTRUCTUREMultilinklist(MLL)isusedintheproposedalgorithm.
Itisadynamicallocationmethod.
MLLmaintainsaparentlistandsuccessorlist.
Everyparentnodemaintainsitslistofsuccessors.
AlltheseparentnodesarelinkedtogethertoformMLL.
Fig4.
MLLdatastructureInputModuleAcceptInputProcessInputHeuristicSearchSystemTime&SpaceMonitorGenerateoutput&measureperformanceComparetheResultsDisplayPanelResultGraphDataTimeandspaceparametersSolutionOrganizeddataInputModuleOuralgorithmmoduleAO*algorithmmoduleA*algorithmmoduleComparemoduleOutputModuleP1S1S2P2S1S2P3S1S2InternationalJournalofEmergingTechnologyandAdvancedEngineeringWebsite:www.
ijetae.
com(ISSN2250-2459,ISO9001:2008CertifiedJournal,Volume3,Issue9,September2013)368VI.
CONCLUSIONMLLcanbeprovedtobeverypowerfulstructure.
Iftheapplicationpermitsthenonecanusethereferencelistasthesupportinglist,thuscanavoidstoringthesamestatesagainandagain.
Thusweaimatconductingexperimentationdesignedtogiveresultsconcerningtheroleofheuristicsinachievingsearchefficiency.
ThisapproachusingMLLisidealforcommunicationapplications.
REFERENCES[1]EricHansen,RongZhou–"AnytimeHeuristicSearch",JournalofArtificialIntelligenceResearch28,2007.
[2]Davis,H.
,R.
PollackandD.
Golden,TowardsaDomainIndependentMethodforComparingSearchAlgorithmRun-times,Proceedingsofthe6thCanadianConferenceonAI,240-244(1986b).
[3]AnneL.
Gardner"Search:AnOverview",AImagazine,Volume2,Number1,Sept1980.
[4]ABDEL-ELAHAL-AYYOUB,FAWAZMASOUD"HeuristicSearchRevisited",JournalofSystemsandsoftware,Vol55,No2,2000,103-113[5]Hermankaindl,GerhardKainz–"BidirectionalHeuristicsearchreconsidered",JournalofArtificialIntelligenceResearch7,1997.
[6]AlokKumar,AnshulKumar,M.
Balkrihnan"HeuristicSearchasedApproachtoScheduling,AllocationandBindinginDataPathSynthesis"8thInternationalConferenceonVLSIdesign–Jan1995.
[7]JosephCMusto,LKenLauderbaugh"AHeuristicSearchAlgorithmForOnlineSystemIdentfication"IEEEInternationalsymposiumonIntelligentControl,August1991.
[8]Davis,H.
,R.
PollackandD.
Golden,ATechniqueforComparingSearchAlgorithmRuntimes,ProceedingsoftheFourteenthAnnualACMCSC-86,301-308(1986a).
[9]Dechter,R.
andJ.
Pearl,GeneralizedBest-FirstSearchStrategiesandtheOptimalityofA*,JournaloftheACM,Vol.
32,No.
3,505-536(1985).
[10]Korf,R.
,Depth-FirstIterativeDeepening:AnOptimalAdmissibleTreeSearch,ArtificialIntelligence,Vol.
27,97-109(1985).
[11]Bagchi,A.
andA.
Manhanti,SearchAlgorithmsUnderDifferentKindofHeuristics:AComparativeStudy,JournaloftheACM,Vol.
30,1-21(1983).
[12]Annev.
d.
LGardner"SearchanOverview",AIMagazineWinter81.
[13]StevenWalczak"Knowledge-BasedSearchinCompetitiveDomains"[14]LucaDiGasperoAndreaSchaerf"ATabuSearchApproachtotheTravelingTournamentProblem"[15]EugeneCharniakandDrewMcDermott,"IntroductiontoArtificialIntelligence".
AddisonWesley.
[16]NilsJNilsson,"PrincipalsofArtificialIntelligence"NarosaPublishingHouse.
Sharktech最近洛杉矶和丹佛低价配置大部分都无货了,只有荷兰机房还有少量库存,商家又提供了两款洛杉矶特价独立服务器,价格不错,CPU/内存/硬盘都是高配,1-10Gbps带宽不限流量最低129美元/月起。鲨鱼机房(Sharktech)我们也叫它SK机房,是一家成立于2003年的老牌国外主机商,提供的产品包括独立服务器租用、VPS主机等,自营机房在美国洛杉矶、丹佛、芝加哥和荷兰阿姆斯特丹等,主...
妮妮云的来历妮妮云是 789 陈总 张总 三方共同投资建立的网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑妮妮云的市场定位妮妮云主要代理市场稳定速度的云服务器产品,避免新手购买云服务器的时候众多商家不知道如何选择,妮妮云就帮你选择好了产品,无需承担购买风险,不用担心出现被跑路 被诈骗的情况。妮妮云的售后保证妮妮云退款 通过于合作商的友好协商,云服务器提供2天内全额退款到网站余额,超过2天...
香港大带宽服务器香港大带宽云服务器目前市场上可以选择的商家十分少,这次给大家推荐的是我们的老便宜提速啦的香港大带宽云服务器,默认通用BGP线路(即CN2+BGP)是由三网直连线路 中国电信骨干网以及HGC、NTT、PCCW等国际线路混合而成的高品质带宽(精品带宽)线路,可有效覆盖全球200多个国家和地区。(适用于绝大部分应用场景,适合国内外访客访问,域名无需备案)提速啦官网链接:点击进入香港Cer...
graphsearch为你推荐
支出127支持ipad支持ipad请仔细阅读在本报告尾部的重要法律声明eacceleratorCentOS5.2下安装eAccelerator,怎么都装不上重庆宽带测速重庆电信测速我的网速溢出win10445端口windows server2008怎么开放4443端口iphonewifi苹果手机怎么扫二维码连wificsshack关于CSS hack的写法css选择器css3的选择器有哪些?
域名反查 新网域名解析 主机优惠码 赵容 荷兰服务器 cpanel 天猫双十一抢红包 css样式大全 2017年万圣节 免费网站申请 jsp空间 最好的免费空间 空间技术网 息壤代理 环聊 空间首页登陆 太原联通测速 starry 中国联通宽带测试 博客域名 更多