CS347–IntroductiontoArtificialIntelligenceDr.
DanielTauritz(Dr.
T)DepartmentofComputerSciencetauritzd@mst.
eduhttp://web.
mst.
edu/~tauritzd/CS347coursewebsite:http://web.
mst.
edu/~tauritzd/courses/cs347/WhatisAISystemsthat…actlikehumans(TuringTest)thinklikehumansthinkrationallyactrationallyPlayUltimatumGameKeyhistoricaleventsforAI4thcenturyBCAristotlepropositionallogic1600'sDescartesmind-bodyconnection1805FirstprogrammablemachineMid1800'sCharlesBabbage's"differenceengine"&"analyticalengine"LadyLovelace'sObjection1847GeorgeBoolepropositionallogic1879GottlobFregepredicatelogicKeyhistoricaleventsforAI1931KurtGodel:IncompletenessTheoremInanylanguageexpressiveenoughtodescribenaturalnumberproperties,thereareundecidable(incomputable)truestatements1943McCulloch&Pitts:NeuralComputation1956Term"AI"coined1976Newell&Simon's"PhysicalSymbolSystemHypothesis"Aphysicalsymbolsystemhasthenecessaryandsufficientmeansforgeneralintelligentaction.
HowdifficultisittoachieveAIThreeSistersPuzzleRationalAgentsEnvironmentSensors(percepts)Actuators(actions)AgentFunctionAgentProgramPerformanceMeasuresRationalBehaviorDependson:Agent'sperformancemeasureAgent'spriorknowledgePossibleperceptsandactionsAgent'sperceptsequenceRationalAgentDefinition"Foreachpossibleperceptsequence,arationalagentselectsanactionthatisexpectedtomaximizeitsperformancemeasure,giventheevidenceprovidedbytheperceptsequenceandanypriorknowledgetheagenthas.
"TaskEnvironmentsPEASdescription&properties:Fully/PartiallyObservableDeterministic,Stochastic,StrategicEpisodic,SequentialStatic,Dynamic,Semi-dynamicDiscrete,ContinuousSingleagent,MultiagentCompetitive,CooperativeProblem-solvingagentsAdefinition:Problem-solvingagentsaregoalbasedagentsthatdecidewhattodobasedonanactionsequenceleadingtoagoalstate.
Problem-solvingstepsProblem-formulation(actions&states)Goal-formulation(states)Search(actionsequences)ExecutesolutionWell-definedproblemsInitialstateActionsetTransitionmodel:RESULT(s,a)GoaltestPathcostSolution/optimalsolutionExampleproblemsVacuumworldTic-tac-toe8-puzzle8-queensproblemSearchtreesRootcorrespondswithinitialstateVacuumstatespacevs.
searchtreeSearchalgorithmsiteratethroughgoaltestingandexpandingastateuntilgoalfoundOrderofstateexpansioniscritical!
Searchnodedatastructuren.
STATEn.
PARENT-NODEn.
ACTIONn.
PATH-COSTStatesareNOTsearchnodes!
FrontierFrontier=SetofleafnodesImplementedasaqueuewithops:EMPTY(queue)POP(queue)INSERT(element,queue)Queuetypes:FIFO,LIFO(stack),andpriorityqueueProblem-solvingperformanceCompletenessOptimalityTimecomplexitySpacecomplexityComplexityinAIb–branchingfactord–depthofshallowestgoalnodem–maxpathlengthinstatespaceTimecomplexity:#generatednodesSpacecomplexity:max#nodesstoredSearchcost:time+spacecomplexityTotalcost:search+pathcostTreeSearchBreadthFirstTreeSearch(BFTS)UniformCostTreeSearch(UCTS)Depth-FirstTreeSearch(DFTS)Depth-LimitedTreeSearch(DLTS)Iterative-DeepeningDepth-FirstTreeSearch(ID-DFTS)Examplestatespace#1BreadthFirstTreeSearch(BFTS)Frontier:FIFOqueueComplete:ifbanddarefiniteOptimal:ifpath-costisnon-decreasingfunctionofdepthTimecomplexity:O(b^d)Spacecomplexity:O(b^d)UniformCostTreeSearch(UCTS)Frontier:priorityqueueorderedbyg(n)DepthFirstTreeSearch(DFTS)Frontier:LIFOqueue(a.
k.
a.
stack)Complete:noOptimal:noTimecomplexity:O(bm)Spacecomplexity:O(bm)BacktrackingversionofDFTShasaspacecomplexityof:O(m)Depth-LimitedTreeSearch(DLTS)Frontier:LIFOqueue(a.
k.
a.
stack)Complete:notwhenl=βPruneiffail-lowforMin-playerPruneiffail-highforMax-playerDLMw/Alpha-BetaPruningTimeComplexityWorst-case:O(bd)Best-case:O(bd/2)[Knuth&Moore,1975]Average-case:O(b3d/4)MoveOrderingHeuristicsKnowledgebasedKillerMove:thelastmoveatagivendepththatcausedAB-pruningorhadbestminimaxvalueHistoryTableExamplegametreeExamplegametreeSearchDepthHeuristicsTimebased/StatebasedHorizonEffect:thephenomenonofdecidingonanon-optimalprincipalvariantbecauseanultimatelyunavoidabledamagingmoveseemstobeavoidedbyblockingittillpassedthesearchdepthSingularExtensions/QuiescenceSearchTimePerMoveConstantPercentageofremainingtimeStatedependentHybridQuiescenceSearchWhensearchdepthreached,computequiescencestateevaluationheuristicIfstatequiescent,thenproceedasusual;otherwiseincreasesearchdepthifquiescencesearchdepthnotyetreachedCallformat:QSDLM(root,depth,QSdepth),QSABDLM(root,depth,QSdepth,α,β),etc.
QSgametreeEx.
1QSgametreeEx.
2ForwardpruningBeamSearch(nbestmoves)ProbCut(forwardpruningversionofalpha-betapruning)TranspositionTables(1)HashtableofpreviouslycalculatedstateevaluationheuristicvaluesSpeedupisparticularlyhugeforiterativedeepeningsearchalgorithms!
GoodforchessbecauseoftenrepeatedstatesinsamesearchTranspositionTables(2)Datastructure:HashtableindexedbypositionElement:StateevaluationheuristicvalueSearchdepthofstoredvalueHashkeyofposition(toeliminatecollisions)(optional)BestmovefrompositionTranspositionTables(3)ZobristhashkeyGenerate3d-arrayofrandom64-bitnumbers(piecetype,locationandcolor)Startwitha64-bithashkeyinitializedto0Loopthroughcurrentposition,XOR'inghashkeywithZobristvalueofeachpiecefound(note:onceakeyhasbeenfound,useanincrementalapporachthatXOR'sthe"from"locationandthe"to"locationtomoveapiece)MTD(f)MTDf(root,guess,depth){lower=-∞;upper=∞;do{beta=guess+(guess==lower);guess=ABMaxV(root,depth,beta-1,beta);if(guessExtendedFutilityPruningRazoringState-SpaceSearchComplete-stateformulationObjectivefunctionGlobaloptimaLocaloptima(don'tusetextbook'sdefinition!
)Ridges,plateaus,andshouldersRandomsearchandlocalsearchSteepest-AscentHill-ClimbingGreedyAlgorithm-makeslocallyoptimalchoicesExample8queensproblemhas88≈17MstatesSAHCfindsglobaloptimumfor14%ofinstancesinonaverage4steps(3stepswhenstuck)SAHCw/upto100consecutivesidewaysmoves,findsglobaloptimumfor94%ofinstancesinonaverage21steps(64stepswhenstuck)StochasticHill-ClimbingChoosesatrandomfromamonguphillmovesProbabilityofselectioncanvarywiththesteepnessoftheuphillmoveOnaverageslowerconvergence,butalsolesschanceofprematureconvergenceMoreLocalSearchAlgorithmsFirst-choicehill-climbingRandom-restarthill-climbingSimulatedAnnealingPopulationBasedLocalSearchDeterministiclocalbeamsearchStochasticlocalbeamsearchEvolutionaryAlgorithmsParticleSwarmOptimizationAntColonyOptimizationParticleSwarmOptimizationPSOisastochasticpopulation-basedoptimizationtechniquewhichassignsvelocitiestopopulationmembersencodingtrialsolutionsPSOupdaterules:PSOdemo:http://www.
borgelt.
net//psopt.
htmlAntColonyOptimizationPopulationbasedPheromonetrailandstigmergeticcommunicationShortestpathsearchingStochasticmovesOnlineSearchOfflinesearchvs.
onlinesearchInterleavingcomputation&actionExplorationproblems,safelyexplorableAgentshaveaccessto:ACTIONS(s)c(s,a,s')GOAL-TEST(s)OnlineSearchOptimalityCR–CompetitiveRatioTAPC–TotalActualPathCostC*-OptimalPathCostBestcase:CR=1Worstcase:CR=∞OnlineSearchAlgorithmsOnline-DFS-AgentRandomWalkLearningReal-TimeA*(LRTA*)OnlineSearchExampleGraph1OnlineSearchExampleGraph2OnlineSearchExampleGraph3AIcoursesatS&TCS345ComputationalRoboticManipulation(SP2012)CS347IntroductiontoArtificialIntelligence(SP2012)CS348EvolutionaryComputing(FS2011)CS434DataMining&KnowledgeDiscovery(FS2011)CS447AdvancedTopicsinAI(SP2013)CS448AdvancedEvolutionaryComputing(SP2012)CpE358ComputationalIntelligence(FS2011)SysEng378IntrotoNeuralNetworks&Applications
百纵科技湖南百纵科技有限公司是一家具有ISP ICP 电信增值许可证的正规公司,多年不断转型探索现已颇具规模,公司成立于2009年 通过多年经营积累目前已独具一格,公司主要经营香港服务器,香港站群服务器,美国高防服务器,美国站群服务器,云服务器,母机租用托管!美国CN2云服务器,美国VPS,美国高防云主机,美国独立服务器,美国站群服务器,美国母机。美国原生IP支持大批量订货 合作 适用电商 亚马逊...
至今为止介绍了很多UCLOUD云服务器的促销活动,UCLOUD业者以前看不到我们的个人用户,即使有促销活动,续费也很少。现在新用户的折扣力很大,包括旧用户在内也有一部分折扣。结果,我们的用户是他们的生存动力。没有共享他们的信息的理由是比较受欢迎的香港云服务器CN2GIA线路产品缺货。这不是刚才看到邮件注意和刘先生的通知,而是补充UCLOUD香港云服务器、INTELCPU配置的服务器。如果我们需要他...
月神科技是由江西月神科技有限公司运营的一家自营云产品的IDC服务商,提供香港安畅、香港沙田、美国CERA、成都电信等机房资源,月神科技有自己的用户群和拥有创宇认证,并且也有电商企业将业务架设在月神科技的平台上。本次带来的是全场八折促销,续费同价。并且上新了国内成都高防服务器,单机100G集群1.2T真实防御,上层屏蔽UDP,可定制CC策略。非常适合网站用户。官方网站:https://www.ysi...
graphsearch为你推荐
蓝牙itunescentrescss点击ipad支持ipad甘肃省政府采购支持ipad2.3ios5photoshop技术PS技术是干什么的,如何使用PS技术?ipad如何上网苹果ipad无线上网卡怎么设置?itunes备份如何用iTunes备份iPhone
私服服务器租用 vps教程 泛域名解析 中国域名网 香港vps99idc softlayer shopex空间 天猫双十一秒杀 网盘申请 什么是刀片服务器 静态空间 腾讯实名认证中心 免费cdn 免费私人服务器 cdn网站加速 深圳域名 工信部icp备案查询 成都主机托管 广东主机托管 服务器硬件配置 更多