CS347–IntroductiontoArtificialIntelligenceDr.
DanielTauritz(Dr.
T)DepartmentofComputerSciencetauritzd@mst.
eduhttp://web.
mst.
edu/~tauritzd/CS347coursewebsite:http://web.
mst.
edu/~tauritzd/courses/cs347/WhatisAISystemsthat…actlikehumans(TuringTest)thinklikehumansthinkrationallyactrationallyPlayUltimatumGameKeyhistoricaleventsforAI4thcenturyBCAristotlepropositionallogic1600'sDescartesmind-bodyconnection1805FirstprogrammablemachineMid1800'sCharlesBabbage's"differenceengine"&"analyticalengine"LadyLovelace'sObjection1847GeorgeBoolepropositionallogic1879GottlobFregepredicatelogicKeyhistoricaleventsforAI1931KurtGodel:IncompletenessTheoremInanylanguageexpressiveenoughtodescribenaturalnumberproperties,thereareundecidable(incomputable)truestatements1943McCulloch&Pitts:NeuralComputation1956Term"AI"coined1976Newell&Simon's"PhysicalSymbolSystemHypothesis"Aphysicalsymbolsystemhasthenecessaryandsufficientmeansforgeneralintelligentaction.
HowdifficultisittoachieveAIThreeSistersPuzzleRationalAgentsEnvironmentSensors(percepts)Actuators(actions)AgentFunctionAgentProgramPerformanceMeasuresRationalBehaviorDependson:Agent'sperformancemeasureAgent'spriorknowledgePossibleperceptsandactionsAgent'sperceptsequenceRationalAgentDefinition"Foreachpossibleperceptsequence,arationalagentselectsanactionthatisexpectedtomaximizeitsperformancemeasure,giventheevidenceprovidedbytheperceptsequenceandanypriorknowledgetheagenthas.
"TaskEnvironmentsPEASdescription&properties:Fully/PartiallyObservableDeterministic,Stochastic,StrategicEpisodic,SequentialStatic,Dynamic,Semi-dynamicDiscrete,ContinuousSingleagent,MultiagentCompetitive,CooperativeProblem-solvingagentsAdefinition:Problem-solvingagentsaregoalbasedagentsthatdecidewhattodobasedonanactionsequenceleadingtoagoalstate.
Problem-solvingstepsProblem-formulation(actions&states)Goal-formulation(states)Search(actionsequences)ExecutesolutionWell-definedproblemsInitialstateActionsetTransitionmodel:RESULT(s,a)GoaltestPathcostSolution/optimalsolutionExampleproblemsVacuumworldTic-tac-toe8-puzzle8-queensproblemSearchtreesRootcorrespondswithinitialstateVacuumstatespacevs.
searchtreeSearchalgorithmsiteratethroughgoaltestingandexpandingastateuntilgoalfoundOrderofstateexpansioniscritical!
Searchnodedatastructuren.
STATEn.
PARENT-NODEn.
ACTIONn.
PATH-COSTStatesareNOTsearchnodes!
FrontierFrontier=SetofleafnodesImplementedasaqueuewithops:EMPTY(queue)POP(queue)INSERT(element,queue)Queuetypes:FIFO,LIFO(stack),andpriorityqueueProblem-solvingperformanceCompletenessOptimalityTimecomplexitySpacecomplexityComplexityinAIb–branchingfactord–depthofshallowestgoalnodem–maxpathlengthinstatespaceTimecomplexity:#generatednodesSpacecomplexity:max#nodesstoredSearchcost:time+spacecomplexityTotalcost:search+pathcostTreeSearchBreadthFirstTreeSearch(BFTS)UniformCostTreeSearch(UCTS)Depth-FirstTreeSearch(DFTS)Depth-LimitedTreeSearch(DLTS)Iterative-DeepeningDepth-FirstTreeSearch(ID-DFTS)Examplestatespace#1BreadthFirstTreeSearch(BFTS)Frontier:FIFOqueueComplete:ifbanddarefiniteOptimal:ifpath-costisnon-decreasingfunctionofdepthTimecomplexity:O(b^d)Spacecomplexity:O(b^d)UniformCostTreeSearch(UCTS)Frontier:priorityqueueorderedbyg(n)DepthFirstTreeSearch(DFTS)Frontier:LIFOqueue(a.
k.
a.
stack)Complete:noOptimal:noTimecomplexity:O(bm)Spacecomplexity:O(bm)BacktrackingversionofDFTShasaspacecomplexityof:O(m)Depth-LimitedTreeSearch(DLTS)Frontier:LIFOqueue(a.
k.
a.
stack)Complete:notwhenl=βPruneiffail-lowforMin-playerPruneiffail-highforMax-playerDLMw/Alpha-BetaPruningTimeComplexityWorst-case:O(bd)Best-case:O(bd/2)[Knuth&Moore,1975]Average-case:O(b3d/4)MoveOrderingHeuristicsKnowledgebasedKillerMove:thelastmoveatagivendepththatcausedAB-pruningorhadbestminimaxvalueHistoryTableExamplegametreeExamplegametreeSearchDepthHeuristicsTimebased/StatebasedHorizonEffect:thephenomenonofdecidingonanon-optimalprincipalvariantbecauseanultimatelyunavoidabledamagingmoveseemstobeavoidedbyblockingittillpassedthesearchdepthSingularExtensions/QuiescenceSearchTimePerMoveConstantPercentageofremainingtimeStatedependentHybridQuiescenceSearchWhensearchdepthreached,computequiescencestateevaluationheuristicIfstatequiescent,thenproceedasusual;otherwiseincreasesearchdepthifquiescencesearchdepthnotyetreachedCallformat:QSDLM(root,depth,QSdepth),QSABDLM(root,depth,QSdepth,α,β),etc.
QSgametreeEx.
1QSgametreeEx.
2ForwardpruningBeamSearch(nbestmoves)ProbCut(forwardpruningversionofalpha-betapruning)TranspositionTables(1)HashtableofpreviouslycalculatedstateevaluationheuristicvaluesSpeedupisparticularlyhugeforiterativedeepeningsearchalgorithms!
GoodforchessbecauseoftenrepeatedstatesinsamesearchTranspositionTables(2)Datastructure:HashtableindexedbypositionElement:StateevaluationheuristicvalueSearchdepthofstoredvalueHashkeyofposition(toeliminatecollisions)(optional)BestmovefrompositionTranspositionTables(3)ZobristhashkeyGenerate3d-arrayofrandom64-bitnumbers(piecetype,locationandcolor)Startwitha64-bithashkeyinitializedto0Loopthroughcurrentposition,XOR'inghashkeywithZobristvalueofeachpiecefound(note:onceakeyhasbeenfound,useanincrementalapporachthatXOR'sthe"from"locationandthe"to"locationtomoveapiece)MTD(f)MTDf(root,guess,depth){lower=-∞;upper=∞;do{beta=guess+(guess==lower);guess=ABMaxV(root,depth,beta-1,beta);if(guessExtendedFutilityPruningRazoringState-SpaceSearchComplete-stateformulationObjectivefunctionGlobaloptimaLocaloptima(don'tusetextbook'sdefinition!
)Ridges,plateaus,andshouldersRandomsearchandlocalsearchSteepest-AscentHill-ClimbingGreedyAlgorithm-makeslocallyoptimalchoicesExample8queensproblemhas88≈17MstatesSAHCfindsglobaloptimumfor14%ofinstancesinonaverage4steps(3stepswhenstuck)SAHCw/upto100consecutivesidewaysmoves,findsglobaloptimumfor94%ofinstancesinonaverage21steps(64stepswhenstuck)StochasticHill-ClimbingChoosesatrandomfromamonguphillmovesProbabilityofselectioncanvarywiththesteepnessoftheuphillmoveOnaverageslowerconvergence,butalsolesschanceofprematureconvergenceMoreLocalSearchAlgorithmsFirst-choicehill-climbingRandom-restarthill-climbingSimulatedAnnealingPopulationBasedLocalSearchDeterministiclocalbeamsearchStochasticlocalbeamsearchEvolutionaryAlgorithmsParticleSwarmOptimizationAntColonyOptimizationParticleSwarmOptimizationPSOisastochasticpopulation-basedoptimizationtechniquewhichassignsvelocitiestopopulationmembersencodingtrialsolutionsPSOupdaterules:PSOdemo:http://www.
borgelt.
net//psopt.
htmlAntColonyOptimizationPopulationbasedPheromonetrailandstigmergeticcommunicationShortestpathsearchingStochasticmovesOnlineSearchOfflinesearchvs.
onlinesearchInterleavingcomputation&actionExplorationproblems,safelyexplorableAgentshaveaccessto:ACTIONS(s)c(s,a,s')GOAL-TEST(s)OnlineSearchOptimalityCR–CompetitiveRatioTAPC–TotalActualPathCostC*-OptimalPathCostBestcase:CR=1Worstcase:CR=∞OnlineSearchAlgorithmsOnline-DFS-AgentRandomWalkLearningReal-TimeA*(LRTA*)OnlineSearchExampleGraph1OnlineSearchExampleGraph2OnlineSearchExampleGraph3AIcoursesatS&TCS345ComputationalRoboticManipulation(SP2012)CS347IntroductiontoArtificialIntelligence(SP2012)CS348EvolutionaryComputing(FS2011)CS434DataMining&KnowledgeDiscovery(FS2011)CS447AdvancedTopicsinAI(SP2013)CS448AdvancedEvolutionaryComputing(SP2012)CpE358ComputationalIntelligence(FS2011)SysEng378IntrotoNeuralNetworks&Applications
BuyVM商家属于比较老牌的服务商,早年有提供低价年付便宜VPS主机还记得曾经半夜的时候抢购的。但是由于这个商家风控非常严格,即便是有些是正常的操作也会导致被封账户,所以后来陆续无人去理睬,估计被我们风控的抢购低价VPS主机已经手足无措。这两年商家重新调整,而且风控也比较规范,比如才入手他们新上线的流媒体优化VPS主机也没有不适的提示。目前,BuyVM商家有提供新泽西、迈阿密等四个机房的VPS主机...
优惠码50SSDOFF 首月5折50WHTSSD 年付5折15OFF 85折优惠,可循环使用荷兰VPSCPU内存SSD带宽IPv4价格购买1核1G50G1Gbps/3TB1个$ 9.10/月链接2核2G80G1Gbps/5TB1个$ 12.70/月链接2核3G100G1Gbps/7TB1个$ 16.30/月链接3核4G150G1Gbps/10TB1个$ 18.10/月链接阿联酋VPSCPU内存SS...
diyvm怎么样?diyvm商家VPS主机均2GB内存起步,三个地区机房可选,使用优惠码后每月69元起;DiyVM独立服务器开设在香港沙田电信机房,CN2线路,5M带宽,自动化开通上架,最低499元/月,配置是L5630*2/16G内存/120G SSD硬盘。DiyVM是一家成立于2009年的国人主机商,提供的产品包括VPS主机、独立服务器租用等,产品数据中心包括中国香港、日本大阪和美国洛杉矶等,...
graphsearch为你推荐
新会区人民政府公报贵州省127特斯拉苹果5ipad如何上网苹果ipad无线上网卡怎么设置?ipad如何上网ipad怎么设置网络?itunes备份怎样用itunes备份iphone127.0.0.1为什么输入127.0.0.1无法打开页面ipad上网为什么我的ipad 显示无法连接到网络win7telnetwindows7的TELNET服务在哪里开启啊重庆电信宽带管家如何才能以正确的流程在重庆电信安装上宽带
最好的虚拟主机 购买域名和空间 英语简历模板word 国内php空间 云全民 100x100头像 新天域互联 hostker 柚子舍官网 国外代理服务器地址 东莞数据中心 世界测速 能外链的相册 银盘服务 环聊 域名dns 空间租赁 免费的asp空间 贵阳电信测速 日本代理ip 更多