CS347–IntroductiontoArtificialIntelligenceDr.
DanielTauritz(Dr.
T)DepartmentofComputerSciencetauritzd@mst.
eduhttp://web.
mst.
edu/~tauritzd/CS347coursewebsite:http://web.
mst.
edu/~tauritzd/courses/cs347/WhatisAISystemsthat…actlikehumans(TuringTest)thinklikehumansthinkrationallyactrationallyPlayUltimatumGameKeyhistoricaleventsforAI4thcenturyBCAristotlepropositionallogic1600'sDescartesmind-bodyconnection1805FirstprogrammablemachineMid1800'sCharlesBabbage's"differenceengine"&"analyticalengine"LadyLovelace'sObjection1847GeorgeBoolepropositionallogic1879GottlobFregepredicatelogicKeyhistoricaleventsforAI1931KurtGodel:IncompletenessTheoremInanylanguageexpressiveenoughtodescribenaturalnumberproperties,thereareundecidable(incomputable)truestatements1943McCulloch&Pitts:NeuralComputation1956Term"AI"coined1976Newell&Simon's"PhysicalSymbolSystemHypothesis"Aphysicalsymbolsystemhasthenecessaryandsufficientmeansforgeneralintelligentaction.
HowdifficultisittoachieveAIThreeSistersPuzzleRationalAgentsEnvironmentSensors(percepts)Actuators(actions)AgentFunctionAgentProgramPerformanceMeasuresRationalBehaviorDependson:Agent'sperformancemeasureAgent'spriorknowledgePossibleperceptsandactionsAgent'sperceptsequenceRationalAgentDefinition"Foreachpossibleperceptsequence,arationalagentselectsanactionthatisexpectedtomaximizeitsperformancemeasure,giventheevidenceprovidedbytheperceptsequenceandanypriorknowledgetheagenthas.
"TaskEnvironmentsPEASdescription&properties:Fully/PartiallyObservableDeterministic,Stochastic,StrategicEpisodic,SequentialStatic,Dynamic,Semi-dynamicDiscrete,ContinuousSingleagent,MultiagentCompetitive,CooperativeProblem-solvingagentsAdefinition:Problem-solvingagentsaregoalbasedagentsthatdecidewhattodobasedonanactionsequenceleadingtoagoalstate.
Problem-solvingstepsProblem-formulation(actions&states)Goal-formulation(states)Search(actionsequences)ExecutesolutionWell-definedproblemsInitialstateActionsetTransitionmodel:RESULT(s,a)GoaltestPathcostSolution/optimalsolutionExampleproblemsVacuumworldTic-tac-toe8-puzzle8-queensproblemSearchtreesRootcorrespondswithinitialstateVacuumstatespacevs.
searchtreeSearchalgorithmsiteratethroughgoaltestingandexpandingastateuntilgoalfoundOrderofstateexpansioniscritical!
Searchnodedatastructuren.
STATEn.
PARENT-NODEn.
ACTIONn.
PATH-COSTStatesareNOTsearchnodes!
FrontierFrontier=SetofleafnodesImplementedasaqueuewithops:EMPTY(queue)POP(queue)INSERT(element,queue)Queuetypes:FIFO,LIFO(stack),andpriorityqueueProblem-solvingperformanceCompletenessOptimalityTimecomplexitySpacecomplexityComplexityinAIb–branchingfactord–depthofshallowestgoalnodem–maxpathlengthinstatespaceTimecomplexity:#generatednodesSpacecomplexity:max#nodesstoredSearchcost:time+spacecomplexityTotalcost:search+pathcostTreeSearchBreadthFirstTreeSearch(BFTS)UniformCostTreeSearch(UCTS)Depth-FirstTreeSearch(DFTS)Depth-LimitedTreeSearch(DLTS)Iterative-DeepeningDepth-FirstTreeSearch(ID-DFTS)Examplestatespace#1BreadthFirstTreeSearch(BFTS)Frontier:FIFOqueueComplete:ifbanddarefiniteOptimal:ifpath-costisnon-decreasingfunctionofdepthTimecomplexity:O(b^d)Spacecomplexity:O(b^d)UniformCostTreeSearch(UCTS)Frontier:priorityqueueorderedbyg(n)DepthFirstTreeSearch(DFTS)Frontier:LIFOqueue(a.
k.
a.
stack)Complete:noOptimal:noTimecomplexity:O(bm)Spacecomplexity:O(bm)BacktrackingversionofDFTShasaspacecomplexityof:O(m)Depth-LimitedTreeSearch(DLTS)Frontier:LIFOqueue(a.
k.
a.
stack)Complete:notwhenl=βPruneiffail-lowforMin-playerPruneiffail-highforMax-playerDLMw/Alpha-BetaPruningTimeComplexityWorst-case:O(bd)Best-case:O(bd/2)[Knuth&Moore,1975]Average-case:O(b3d/4)MoveOrderingHeuristicsKnowledgebasedKillerMove:thelastmoveatagivendepththatcausedAB-pruningorhadbestminimaxvalueHistoryTableExamplegametreeExamplegametreeSearchDepthHeuristicsTimebased/StatebasedHorizonEffect:thephenomenonofdecidingonanon-optimalprincipalvariantbecauseanultimatelyunavoidabledamagingmoveseemstobeavoidedbyblockingittillpassedthesearchdepthSingularExtensions/QuiescenceSearchTimePerMoveConstantPercentageofremainingtimeStatedependentHybridQuiescenceSearchWhensearchdepthreached,computequiescencestateevaluationheuristicIfstatequiescent,thenproceedasusual;otherwiseincreasesearchdepthifquiescencesearchdepthnotyetreachedCallformat:QSDLM(root,depth,QSdepth),QSABDLM(root,depth,QSdepth,α,β),etc.
QSgametreeEx.
1QSgametreeEx.
2ForwardpruningBeamSearch(nbestmoves)ProbCut(forwardpruningversionofalpha-betapruning)TranspositionTables(1)HashtableofpreviouslycalculatedstateevaluationheuristicvaluesSpeedupisparticularlyhugeforiterativedeepeningsearchalgorithms!
GoodforchessbecauseoftenrepeatedstatesinsamesearchTranspositionTables(2)Datastructure:HashtableindexedbypositionElement:StateevaluationheuristicvalueSearchdepthofstoredvalueHashkeyofposition(toeliminatecollisions)(optional)BestmovefrompositionTranspositionTables(3)ZobristhashkeyGenerate3d-arrayofrandom64-bitnumbers(piecetype,locationandcolor)Startwitha64-bithashkeyinitializedto0Loopthroughcurrentposition,XOR'inghashkeywithZobristvalueofeachpiecefound(note:onceakeyhasbeenfound,useanincrementalapporachthatXOR'sthe"from"locationandthe"to"locationtomoveapiece)MTD(f)MTDf(root,guess,depth){lower=-∞;upper=∞;do{beta=guess+(guess==lower);guess=ABMaxV(root,depth,beta-1,beta);if(guessExtendedFutilityPruningRazoringState-SpaceSearchComplete-stateformulationObjectivefunctionGlobaloptimaLocaloptima(don'tusetextbook'sdefinition!
)Ridges,plateaus,andshouldersRandomsearchandlocalsearchSteepest-AscentHill-ClimbingGreedyAlgorithm-makeslocallyoptimalchoicesExample8queensproblemhas88≈17MstatesSAHCfindsglobaloptimumfor14%ofinstancesinonaverage4steps(3stepswhenstuck)SAHCw/upto100consecutivesidewaysmoves,findsglobaloptimumfor94%ofinstancesinonaverage21steps(64stepswhenstuck)StochasticHill-ClimbingChoosesatrandomfromamonguphillmovesProbabilityofselectioncanvarywiththesteepnessoftheuphillmoveOnaverageslowerconvergence,butalsolesschanceofprematureconvergenceMoreLocalSearchAlgorithmsFirst-choicehill-climbingRandom-restarthill-climbingSimulatedAnnealingPopulationBasedLocalSearchDeterministiclocalbeamsearchStochasticlocalbeamsearchEvolutionaryAlgorithmsParticleSwarmOptimizationAntColonyOptimizationParticleSwarmOptimizationPSOisastochasticpopulation-basedoptimizationtechniquewhichassignsvelocitiestopopulationmembersencodingtrialsolutionsPSOupdaterules:PSOdemo:http://www.
borgelt.
net//psopt.
htmlAntColonyOptimizationPopulationbasedPheromonetrailandstigmergeticcommunicationShortestpathsearchingStochasticmovesOnlineSearchOfflinesearchvs.
onlinesearchInterleavingcomputation&actionExplorationproblems,safelyexplorableAgentshaveaccessto:ACTIONS(s)c(s,a,s')GOAL-TEST(s)OnlineSearchOptimalityCR–CompetitiveRatioTAPC–TotalActualPathCostC*-OptimalPathCostBestcase:CR=1Worstcase:CR=∞OnlineSearchAlgorithmsOnline-DFS-AgentRandomWalkLearningReal-TimeA*(LRTA*)OnlineSearchExampleGraph1OnlineSearchExampleGraph2OnlineSearchExampleGraph3AIcoursesatS&TCS345ComputationalRoboticManipulation(SP2012)CS347IntroductiontoArtificialIntelligence(SP2012)CS348EvolutionaryComputing(FS2011)CS434DataMining&KnowledgeDiscovery(FS2011)CS447AdvancedTopicsinAI(SP2013)CS448AdvancedEvolutionaryComputing(SP2012)CpE358ComputationalIntelligence(FS2011)SysEng378IntrotoNeuralNetworks&Applications
LOCVPS发布了7月份促销信息,全场VPS主机8折优惠码,续费同价,同时香港云地/邦联机房带宽免费升级不加价,原来3M升级至6M,2GB内存套餐优惠后每月44元起。这是成立较久的一家国人VPS服务商,提供美国洛杉矶(MC/C3)、和中国香港(邦联、沙田电信、大埔)、日本(东京、大阪)、新加坡、德国和荷兰等机房VPS主机,基于XEN或者KVM虚拟架构,均选择国内访问线路不错的机房,适合建站和远程办...
zji怎么样?zji最近新上韩国BGP+CN2线路服务器,国内三网访问速度优秀,适用8折优惠码zji,优惠后韩国服务器最低每月440元起。zji主机支持安装Linux或者Windows操作系统,会员中心集成电源管理功能,8折优惠码为终身折扣,续费同价,全场适用。ZJI是原Wordpress圈知名主机商:维翔主机,成立于2011年,2018年9月启用新域名ZJI,提供中国香港、台湾、日本、美国独立服...
酷番云怎么样?酷番云就不讲太多了,介绍过很多次,老牌商家完事,最近有不少小伙伴,一直问我台湾VPS,比较难找好的商家,台湾VPS本来就比较少,也介绍了不少商家,线路都不是很好,有些需求支持Windows是比较少的,这里我们就给大家测评下 酷番云的台湾VPS,支持多个版本Linux和Windows操作系统,提供了CN2线路,并且还是原生IP,更惊喜的是提供的是无限流量。有需求的可以试试。可以看到回程...
graphsearch为你推荐
中平迅雷内存nod32支持ipad张女士苹果5重庆网通重庆联通网上营业厅手机版重庆电信网速测试如何测量网速win7关闭135端口windows 7如何关闭139端口csshackcss中 *bottom是什么意思?如何用itunes备份如何使用iTunes最新版进行备份?急!!ipad上不了网ipad连上家里的无线却不能上网
如何申请域名 网址域名注册 免费cn域名 budgetvm 阿里云搜索 site5 godaddy域名转出 建站代码 三拼域名 52测评网 softbank邮箱 169邮箱 爱奇艺vip免费试用7天 php空间购买 四核服务器 联通网站 免费asp空间申请 买空间网 网络速度 双11促销 更多