topographicalts60.com
ts60.com 时间:2021-04-10 阅读:(
)
ORIGINALARTICLEOpenAccessReturns,setbacks,andfutureprospectsofbio-energypromotioninnorthernEthiopia:thecaseoffamily-sizedbiogasenergyHaftuEtsayKelebeAbstractBackground:Solidbiomass-basedenergyisexpectedtoretainitspositionasasolefuelsourceforhouseholdsintheruralpartofEthiopiaunlessalternativeenergysourcesareintroduced.
Synthesizingsmall-scalerenewablealternativeenergysources,suchasbiogasenergy,intotheenergymixhasbecomeanimportantstrategytoovercometheenergyhungerofitsruralresidents.
Aspartofthegovernmentpolicy,small-scalebiogasdigestershavebeeninstalledinselecteddistrictsandregionsofthecountrysince2007.
Thereis,however,limitedevidenceonwhetherornottheintendedobjectivesofthedomesticbiogasinitiativehavebeenactualizedbytheparticipantsoftheproject.
Thispaper,therefore,intendstoinvestigatetheeconomicbenefitsofdomesticbiogasplantsalongwiththechallengesfacingitandfutureprospectsofthebiogasinitiativeinselecteddistrictsofnorthernEthiopia.
Methods:Qualitativedataweregatheredusingfocusgroupdiscussionandkeyinformantinterviews.
Asurveyof400householdswasalsoadministeredtocapturecrosssectionaldatausingstructuredquestionnaires.
Thequalitativedatawereanalyzedusingcontentanalysis.
Apropensityscorematchingmodelwasemployedtoevaluatetheeffectsofdomesticbiogastechnologyonenergyexpenditure,cropyield,andthesubstitutionofchemicalfertilizers.
Results:Thestudyfindsthatbiogasadoptershavereducedtheirmonthlyenergyexpenditureonaverageby20–36%.
Moreover,theexistenceofapositivecropyieldpremiumof1.
5quintal/year/householdwasobservedasaresultofusingbio-slurryasafertilizer.
Thekeyfactorsthatlimittheextensionofbiogastechnologytopotentialbiogasadoptersarethepresenceoffaileddigesters,aninadequateplotoflandforthedigesterconstructionandawateravailabilityproblem.
Inlightofsuchbarriers,however,thestudyfindsthatmorefavorableenvironmentsforthewidespreaduseofthetechnologyexist.
Conclusions:Biogasuserhouseholdshavesignificantlyreducedtheirenergyexpenditurecomparedtonon-biogasadopters.
Nevertheless,despitethemodestincreaseincropyield,theoveralleffectofbio-slurryapplicationoncropproductivityandsubstitutingchemicalfertilizerswasnotsignificantbecauseofanimproperbio-slurryutilizationandmanagement.
Keywords:Biogasenergy,Bio-slurry,Energyexpenditure,Futureprospects,TigraiCorrespondence:haftu.
etsay@mu.
edu.
et;haftu04@gmail.
comDepartmentofAgriculturalandResourcesEconomics,MekelleUniversity,Mekelle,EthiopiaEnergy,SustainabilityandSocietyTheAuthor(s).
2018OpenAccessThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.
0InternationalLicense(http://creativecommons.
org/licenses/by/4.
0/),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.
KelebeEnergy,SustainabilityandSociety(2018)8:30https://doi.
org/10.
1186/s13705-018-0171-2BackgroundIndevelopingcountries,around2.
5billionpeoplerelyonsolidbiomasssuchasfuelwood,charcoal,agriculturalwaste,andanimaldungtomeettheirenergyneeds,pri-marilyforcookingandlighting[1].
Inmanycountries,particularlyinruralareas,theseresourcesaccountforover90%ofhouseholdenergyconsumption[2].
Suchahighbiomassenergyconsumptionhabitindevelopingcoun-trieshasresultedinvariousenvironmentalproblemslikedeforestation,soilerosion,andpoverty[3,4].
AreportbytheFAO[5],forinstance,showsthat5%ofglobaldefor-estationisduetofuelwoodconsumption,and55%ofthewoodextractedfromforestsisusedforfuelpurposes.
Sub-SaharanAfrica(SSA)inparticularisthehighestsub-regionintermsofbiomassenergyutilization,whichaccountsforabout85–95%oftotalenergy,whereas60–90%isusedforthedevelopingworldasawhole[6,7].
Inthissub-regionwheretraditionalenergysourcesentirelysatisfythemajorityoftheenergyneedsofruralhouseholds,biogastechnologycanbeviewedasoneoftherenewableandsustainabletechnologiestoreduceitsenergyhungerandenvironmentalproblems[8].
TheauthorfurtherassertsthatAfricancountrieshaveatremendousbiogaspotentialasitisproducedfromagriculturalresidues,isrelativelysimpleandcanoperateonasmallandalargescaleinbothurbanandrurallocations.
Moreover,themajorityofpeopleinSSAalsoexceedinglydependoncombustiblesfordo-mesticcookingandheatingpurposes.
Combustiblere-newableenergyresources,inparticularcharcoal,woodfuel,driedcrop,andanimalresidues,haveenvironmen-talandhealtheffectsduetoitsincompletecombustion[9].
Therehavebeenglobalandcontinentalinitiativestowardsthedevelopmentandpromotionofalternativeenergysourcesinthepastthreedecadestoaddresstheadverseimpactsofsolidbiomassenergyconsumption[10].
TheimportantcontinentalinitiativeinAfricaisthe"AfricaBiogasPartnershipProgramme,"whichwaslaunchedin2007todisseminatesmall-scalebiogasplantsinselectedcountriesofthecontinent.
TheAfricaBiogasPartnershipProgrammeisapartnershipbe-tweentwoDutchnon-profitorganizations,HumanistInstituteforDevelopmentCooperation(Hivos)andtheNetherlandsDevelopmentOrganization(SNV),whichsupportsdomesticbiogasprogramsintenSSAcoun-tries,ofwhichEthiopiaisoneamongthebeneficiariesoftheprogram[11].
Ethiopia'senergychallengeshavebeendescribedasacutedespitetheavailabilityofalargeenergyreserveinthecountry.
Thisenergyscarcityproblemismanifestedmainlyintheformofaverylowper-capitaelectricityconsumptionandthedominanceoftheuseoftrad-itionalbiomassfuels.
Therearereportswhichshowthattheper-capitaenergysupplyandconsumptionofEthiopiaislowerthaneventhatofmostofthesub-SaharanAfricancountries.
AreportbytheInter-nationalEnergyOrganization[12],forexample,showsthattheper-capitatotalprimaryenergysupplyinEthiopiawasmerely0.
4tonoftheoilequivalentwhiletheaverageforAfricaamountedto0.
67in2011.
Thesamesourcealsoindicatesthattheannualper-capitaelectricityconsumptioninEthiopiawasonly55kWhwhileitwas592kWhforthewholeofAfrica.
Moreover,thepercentageofpopulationwhoreliedonthetraditionaluseofbiomassfuelforcookingwas93%inEthiopiain2009,whileitwas65%inAfrica,77%insub-SaharanAfrica,and39%intheworldasawhole[13].
ThisoverdependenceontraditionalfuelsourcesinEthiopiahassignificantlycontributedtosevereenvironmentaldeg-radationssuchasdeforestation,soildegradation,andlossofbio-diversity[14].
Itisanticipatedthattraditionalbio-massfuelswillcontinuetobetheprimarycookingfuelsinmostruralcommunitiesofthecountryatleastinthenearfuture.
Hence,reducingenergy-povertyinsuchcontextdependsonthescaleofutilizingtechnologiesthatminimizetheharmfuleffectsoftraditionalbiomassfuels.
Amongothers,theuseofbiogasenergyhasbeenindi-catedtobevitaltoincreasecookingefficiency,reducesmoke,reducesolidfuelwoodconsumption,andimprovetheoverallsafetyofruralhouseholds[14].
Biogasenergyisgeneratedthroughanaerobicdiges-tion.
Itcontainsmainlymethane(50–70%)whiletherestismostlycarbondioxideandasmallamountofothergases[15].
Anaerobicdigestionconvertshumanexcreta,animaldungandotheragriculturalresiduesintoacleanandenvironmentallyfriendlyenergycommodity.
Biogashasalsobeenrecognizedasatechnologywiththepoten-tialforvastenvironmental,economic,andhealthbene-fits[16].
Regardingtheenvironmentalbenefits,anaerobicdigestioncansignificantlylowergreenhousegasemissionsfrommanureanddirectcombustionofsolidfuelwood.
Inadditiontothis,bysubstitutingthesolidfuelscommonlyusedforcookingindevelopingcountries,suchaswoodandcharcoal,alleviatespressureontheforests[17].
Furthermore,usingbiogasenergyasasubstituteforfossilfuelscansignificantlyreducetheamountofgreenhousegasemissions.
Italsosavessub-stantialtimebyreducingfuelwoodcollectionandcook-ingtimes[18].
Thetechnologycanalsooffersubstantialeconomicbenefitsespeciallytowomen,whoaretheprimevictimsofdirtyfueluse[19].
Apartfromthepro-ductionofbiogas(methane),anaerobicdigestiontrans-formstheaddedfeedstockintoabio-slurrythatcanbeusedasanorganicfertilizerandsubstitutechemicalfertilizerforcropproduction.
Itis,therefore,apparentthatbiogastechnologyessentiallymeetsmostofthekeyrequirementsforaddressingtheenergyaccessandenvir-onmentalproblems.
ItalsoprovidessomeeconomicKelebeEnergy,SustainabilityandSociety(2018)8:30Page2of14gains.
Biogastechnologycanalsobeappliedwherevertherearesufficientorganicandlocallyavailablemate-rials.
However,theconcernofmanystakeholdersofthebiogasprogramcannotbeneglected,whoaskwhythediffusionofthetechnologyremainslowandabandonedinmanypartsofEthiopiadespitetheinternationalandnationaleffortstopromotethetechnologyinthatplace.
Manystudieshavebeenconducteddealingwiththebenefitsandbarriersofbiogastechnologyinsomere-gionsofEthiopia.
Regardingitspotential,forinstance,KampandForn[20]statedthatthephysicalgeographyofmanypartsofEthiopiacomplieswiththetechnicalcriteriaoftheoperationofbiogasplantsintermsoftemperatureandavailabilityofwasteorganicmatter.
Similarly,theavailabilityofcheapfeedstocksfromlive-stockandagriculturalresiduesarereportedtobethecountry'sfuturepotentialforinstallingsmall-scalebiogastechnology[21].
Onthecontrary,someotherliteraturedatashowthatsocio-economicattributes,demography,technicalchallenges,andinstitutionalbarriersarethemajorchallengesfacingbiogastechnologyinEthiopia[20,22,23].
Besides,lackofproperlyeducatedpersonnel,inadequateaccesstobiogasappliancesandaccessories,poorprivatesectorparticipation,inadequatemaintenanceandrepairservices,andpoorqualityofdi-gestersarealsofoundtobeseriousbottlenecksthatin-hibitthediffusionofthetechnologyineastAfricaandparticularlyinEthiopia,Rwanda,andUganda[24–28].
Ontheotherside,therearealsostudiesconductedintermsoftheincentivestowardsthepromotionofbiogastechnologyinsub-SaharanAfricaandinEthiopiainpar-ticular.
AccordingtoAmigunetal.
[29],biogasadoptersinEthiopiahavealreadystartedexperiencingthebenefitsoftheproject;suchastheuseofcleancookingfuelandincomesavingsmadeintermsoftimeandmoneytosearchforfuelandtopurchaseothertraditionalfuels(firewood,charcoal,andkerosene),therebymotivatingotherpotentialbiogasuserstoadopt.
Inlightofsuchbenefits,thispaperasksthecriticalquestionofwhythewidespreaddisseminationofthistechnologyhasbeenprevented,asthepreviousstudiesintheTigrairegiondidnotfullyaddresswhetherornottheintendedobjectivesofthedomesticbiogasprogramofEthiopiahavebeenactualizedbytheparticipants.
Theaimofthispaper,whichfocusesonsmallholderfarmersinNorthernEthiopia,isthereforetoexaminetheimpactofthedomesticbiogasprogramonthethreemainout-comes:whethertheaccesstoadomesticbiogasplantleadstoreductionsinenergy-relatedexpenditure,whetheritaffectedthecropyieldandsubstitutionofchemicalfertilizer,andwhatarethechallengesfacingthealreadyinstalledbiogasplantsandthefuturepoten-tialfortheextensionofthedomesticbiogastechnologyintheTigrairegion.
TheoreticalframeworkThebasictheoreticalframeworkunderlyingthisstudyevolvesfromthetheoryofenergystacking,particularlytransitionandmultipleusesofenergysources.
Accordingtotheexistingliterature,therearetwowell-establishedandofcoursecontradictingviewstobefoundinenergytransitionmodelsonhowhouseholdsmovetowardstheuseofmodernfuels.
Theseincludeenergyladderanden-ergystackinghypotheses[30,31].
Theformeroneisbuiltontheideathatmodernfuelsareconsideredtohavemoreadvantagesthanthetraditionalfuelsinmanystandards,andarethusconsideredtobehigherrungsontheladder.
Themainargumentofthistheoryisthathouseholdsswitchfromtraditionalfuelstotransitionfuels(suchascharcoal,kerosene,andbio-fuels),andlaterontomodernfuels(suchasliquefiedpetroleumgas(LPG)andelectri-city)asaresultofariseinincome.
Inshort,themodelhy-pothesizesthathouseholdsmovealongtheenergyladderastheirincomeincreases.
Morerecently,however,variousstudieshavereportedanumberofpitfallsespeciallyintheapplicabilityofthetheoryoftheenergyladderinde-velopingcountriesandinparticularinaruralsetting.
Odihi[32],forinstance,hasdiscussedthechallengeswithregardtothepracticabilityofthismodelinde-velopingcountriesfortheobviousreasonsthatthepresenceofbothinadequatefueldistributionanden-ergyfacilitiesarebeyondthereachofmanyhouse-holdsregardlessoftheirlevelofincome.
Inreality,indevelopingcountriesparticularlyinruralareas,householdsdonotlinearlyswitchtomodernfuelswithariseinincomesincethechoiceoffuelsisnotde-terminedsolelybydisposableincome[33,34].
Accord-ingtotheenergystackingmodel,householdsmaydevelopastackingbehaviorsothattheycanusemorethanonefueltypesimultaneouslyinsteadofsimplysub-stitutingtheearlierones.
Besides,theenergyladderthe-oryhasbeencontestedinvariousliteraturesmainlyforthefollowingreasons.
Thefirstreason,asthemultiplefuelusebehaviorofhouseholdsisnotconsideredintheenergyladdermodel.
Indevelopingcountries,becauseofanunreliablesupplyofmodernenergy,householdspre-fertouseamixofenergytobeonthesafesideduringthetimeswhenprimaryenergysourcesarenoteasilyavailable.
Secondly,themulti-purposenatureofvariousenergysourcesisalsoanimportantconceptthatdeter-minesthedecisionofhouseholdstowardsfuelprefer-ence.
Thisfactorhasalsobeenoverlookedbytheexistingenergytransitionconcepts.
Nevertheless,theen-ergystackingmodelhasbeenreportedtobeamoreac-ceptabletheoreticalframeworktoexplaintheadoptionbehaviorofhouseholdsindevelopingcountries[34–37].
Therearesomeenergysourceswhichmayhaveimport-antcontributionsnotonlyinsolvingtheenergyproblembutalsoinplayingapivotalroleinothersectors.
ForKelebeEnergy,SustainabilityandSociety(2018)8:30Page3of14instance,theby-productsofsomeofthebiofuelsareusefulforagriculture(soilfertilityenhancementandfor-ageforlivestock).
Theexistingenergytransitionmodelsdonottakeintoconsiderationsuchmultipleservicesofagivenenergysourcewhenexplainingthebehaviorofhouseholdstowardsthepreferencesoffuels.
Inthispaper,theresearchfocusisontheconceptofenergytransitionconstraintsandmultipleusesofenergysources,whichareconsideredtobeimportantvariablesthatexplainthehouseholdbehaviortowardstheuseoffuelsamongasetofenergyoptions.
Thestudyaddressesthekeyconstraintsandprospectsoftransitiontowardsbiofuelsandhowthemulti-purposenatureofbiofuelsdeterminesthepreferenceofhouseholdstowardsvariousenergyoptionsbytakingfamily-sizedbiogasdigestersasacasestudy,asitsenergytechnologyproducesbiogasenergy(methane)andorganicfertilizer(bio-slurry)whichisusefulforenhancingcropproductionbysubsti-tutingchemicalfertilizer.
MethodsStudysitesThestudywasconductedinthreerandomlyselecteddis-trictsoftheTigrairegion.
TheseareOfla,Hintalo-Wajerat,andEnderta,wheredomesticbiogastechnologyhasre-centlybeenintroducedbytheNationalDomesticBiogasProgrammeofEthiopia.
Thestudyareasarespatiallydis-tributedacrossthreedistrictstocaptureheterogeneousdataonsocio-economicattributes,energyconsumptionpatternsandbiomassenergypotentials.
Thestudysitesarealsocharacterizedbyvariousclimaticandtopographicaldomainsrangingfromaltitudedifferencestotemperatureandrainfallvariationsaswellasendowmentofbiomassenergysources.
Thefarmingsystem,whichwasobservedtobeamixoflivestockandcropproductioninallstudysites,isalsoamongthesourcesoftraditionalenergy.
Theenergyconsumptionpatternacrossthethreestudysitesisobservedtobefairlysimilarwhichisinfactdominatedbybiomassenergy.
Sampledesign,procedures,anddatacollectionThestudyareaswereselectedusingmulti-stagesam-plingtechniques.
Inthefirststageofthesamplingpro-cedure,thethreedistrictswererandomlyselected.
Thenafter,basedonthenumberofdomesticbiogasplantsin-stalled,twohigh-achieving"tabias"1fromeachdistrictwerepurposivelychosenwithasupportofexpertsfromtheofficeofminingandenergyofthestudydistricts.
Thesamplingframeforthisstudywashouseholdswhousetheendproductsofdomesticbiogastechnology(methaneandbio-slurry)forfuelandfertilizerpurposes.
Asimplerandomsamplingtechniquewasthenappliedtoselecttherespondentsfromthelistofbiogasuserhouseholds(hereafterreferredastreatedobservations)andnon-biogasuserhouseholds(hereafterreferredtoascontrolobservations)ofeachselected"tabia.
"Thisstudyusedacross-sectionalsurveyof400ran-domlydrawnhouseholds,bothtreatedandcontrolobser-vationscomprisedof200each,from3districtsand6tabiascarriedoutbetweenFebruaryandApril,2016.
Thesampleforthetreatedobservationswasdrawnfromasetof1887households,whichintroducedafamily-sizedbio-gasplantinthethreedistrictsasofDecember,2015.
Anattemptwasmadetoincludedigesterswhoseconstructionhadbeencompletedatleast6monthspriortothesurveywithanintentionthatthistimelagprovidedadequatetimeforhouseholdstodeveloptheexperienceneededtooperateadigesterandatthesametimeexperiencethebenefitsofowningasmall-sizedbiogasplant.
Themajorityofthebiogasusers(1061)werefromtheHintalo-Wajeratdistrict.
TheOflaandEndertadistrictsalsohad516and310biogasusers,respectively,duringthesurvey.
FollowingWatson[38],thisstudyadoptsEq.
1tocalculatetherepresentativesamplesizefromthetargetpopulation.
Thedistributionofthesamplesizeacrossthedistrictswasbasedontheirrelativeshareofthebiogasuserstothetotalsamplingframe(targetpopulation)asshowninTable1.
np1pe2Z2p1pN1wheren=samplesize.
N=targetpopulation(1887).
e=precisionlevel(0.
065).
Z=1.
96,confidencelevelat95%.
P=0.
5,estimatedpopulationproportionn0:510:50:06521:9620:510:51887n200Therequireddatawerecollectedfromtheselectedheadsofhouseholdsusingstructuredquestionnaires.
Focusgroupdiscussions,keyinformantinterviews,andfieldobservationswerealsousedtovalidatethehouse-holdsurveyandtoacquirein-depthqualitativedata.
ATable1SamplesizefromeachstudysiteStudysiteTargetpopulationSamplesizeBiogasusers(treatment)Non-biogasusers(control)TotalOfla5165555110Hintalo-Wajerat1061112112224Enderta310333366Total1887200200400KelebeEnergy,SustainabilityandSociety(2018)8:30Page4of14pre-testedquestionnairewasdeployedtogatherthedatawithregardtoawiderangeofsocio-economicaspectsandhouseholddemographics,occupation,education,cookingbehavior,energy-relatedexpenses,andfueluse.
Inaddition,thequestionnairecontainedasectionaboutthereasonsfor(not)adoptingbiogas,thesourceoffundsforthedigesterandfollowupandtechnicalsup-portsbytheNationalBiogasProgrammeofEthiopia.
Furthermore,qualitativedataonchallengesandoppor-tunitiesofthebiogassectorwereacquiredusingfocusgroupdiscussionsandkeyinformantinterviews.
Thesecondarydatawerecollectedfrompublishedarticlesandunpublishedgovernmentalreports;inparticular,re-portsoftheNationalBiogasProgrammeofEthiopia,theTigraiRegionalBiogasProgrammeCoordinationOfficeandtheCentralStatisticalAgencyofEthiopia.
DataanalysisToanalyzethetrends,impedimentsandprospectsofthebiogassector,acontentanalysiswasused.
Descrip-tivestatisticssuchasmeasuresofcentraltendencyanddispersionswereemployed.
Statisticaltests(mainlyttests)werealsodeployedtodeterminethedifferencesbetweentreatedandcontrolobservationsinregardtovarioussocio-economicattributes.
Inordertoanalyzetheimpactofthebiogastechnologyinterventiononen-ergyexpenditure,cropyieldanduptakeofchemicalfertilizer,propensityscorematchingwasdeployedtore-ducethepossiblesamplingbiasastheparticipationinthedomesticbiogasprogramisnotrandom.
Propensityscorematchingmodel(PSM)Therearetwomainconcernswithregardtothepar-ticipationinabiogasprograminrelationtoemploy-ingPSMfortheanalysisinthisstudy.
First,thebiogasinitiativeisvoluntaryandhouseholdsneedtoapplyforabiogasplant.
Second,conditionalonappli-cation,programbeneficiariesarenotselectedatran-dombutneedtofulfilltheeligibilityconditionssuchasownershipofatleastfourcattle(localbread)toensureadequatecattledungforanaerobicdigestionandanadequatespaceforthebiogasdigestertanktobebuilt.
Duetothesetworeasons,self-selectiontoparticipateintheprogramandtheimpositionofeligi-bilityconditions,itismorelikelythatthosewhoapplyandobtainabiogasplantaresystematicallydif-ferentfromthosewhodonot.
Hence,comparisonbe-tweenhouseholdswhohaveabiogasplantandthosewhodonot,withoutaccountingforpotentialdiffer-encesinfactorsthatdetermineselectionintothepro-gramaremorelikelytoyieldincredibleestimates.
Tocapturesuchaproblemofbiasedness,householdsthathaveparticipatedinthenationaldomesticbiogaspro-gramofEthiopiawerebasicallycomparedtothosethathavenotyetparticipatedinemployingthepropensityscorematchingmodel.
Thetreatmentinthiscaseispar-ticipatinginthedomesticbiogasprogramwheretheout-comeswerechangeinenergyexpenditure,uptakeofchemicalfertilizerandcropyield.
Thestudypassedthroughtwostepstoanalyzetheimpactofthedomesticbiogasinitiativeontheoutcomevariables.
Initially,follow-ingBecherandIchino[39],theprobabilityofinstallingadomesticbiogasplant,alsoknownasthepropensityscore,forthetreatedandcontrolobservationswasestimatedbymeansofselectionEq.
2thatusesabinarylogitmodel(Table5).
ThefulllistsofexplanatoryvariablesincludedinthisstudyarepresentedinTable2.
Thesecondstepwascomputingtheaveragetreatmenteffectontreated(ATT)overtheoutcomeofEq.
5;(wheretheATTistheaverageeffectofthetreatmentforcasesthataretreatedandmustaverageovertheoutcomesoftreatmentforthetreatedobservations(Y1|T=1)presentedinEq.
5.
ThismeansthatATTistheaveragedifferenceinenergyex-penditure,cropyield,anduptakeofchemicalfertilizerbe-tweenhouseholdswithandwithoutbiogasenergyaftermatching(Tables6and7).
Thiswasachievedbymatchingbiogasuserandnon-userhouseholdsaccordingtotheirpropensityscoreusingthenearestneighbor,radius,kernel,andstratificationmatchingmethodsassuggestedbyBeckerandIchino[39].
TreatmentDisabinaryvariablethatdeterminesifthehouseholdusesbiogastechnologyornot,D=1fortheusersandD=0otherwise.
Xidenotesthepre-treatmentcharacteristics(charac-teristicsofhouseholdsthatmightaffecttheadoptionde-cisionofbiogastechnology).
PXiprobD1=XiED=Xi2Eq.
2indicatesthattheprobabilityofadoptiondeci-sionofhouseholdstowardsbiogastechnologyiscondi-tionaltothepre-treatmentcharacteristicsofhouseholds.
yy1ifD1y0ifD03InEq.
3,Ydenotesthetreatmenteffects(impactofadoptingbiogastechnologyonenergyexpenditure,cropyield,andutilizationofchemicalfertilizer).
Inordertoknowwhatwouldhavehappenedtotheoutcomevari-ables(energyexpenditure,cropyield,anduptakeofchemicalfertilizer)hadthehouseholdsnotusedbiogasenergyandbio-slurry,theoutcomeYamongthepartici-pants(Y1)andnon-participants(Y0)aftermatchingoughttobecompared.
Averagetreatmenteffect(ATE):TheATEshowsthedifferencebetweentheaverageenergyconsumption,cropKelebeEnergy,SustainabilityandSociety(2018)8:30Page5of14yield,andchemicalfertilizeramongthebiogasuserandnon-userhouseholdswithoutmatchingasshowninEq.
4.
Δy1y0ATEEΔEy1jx;D1Ey0jx;D04Equation4maybebiasedincasethetreatedandcon-trolvariablesarenotsimilar,whichisobviousinobser-vationalstudiesincontrasttoexperimentalstudies.
Toovercomethisproblem,itisrecommendedtousetheaveragetreatmenteffectonthetreatedcases(Eq.
5).
Averagetreatmenteffectonthetreated(ATT):Eq.
5isacounterfactualsituationwhichcomparestheaverageenergyexpenditure,cropyield,anduptakeofchemicalfertilizerofthebiogasadopterandnon-adopterhouse-holdsaftermatchingbasedontheirpropensityscorestoadoptbiogasenergytechnology.
ATTEΔjpx;D1Ey1jpx;D1Ey0jpx;D05ResultsanddiscussionDescriptionofthesampledhouseholdsTable3summarizesthesocio-economicanddemo-graphicattributesofsampledhouseholds.
Thereisasig-nificantdifferencebetweenthebiogasuserandnon-userhouseholdsinmanyofthesocio-economicalanddemo-graphicalvariablesthatareincludedinthisstudy.
Forinstance,theaverageage,levelofeducation,familysize,farmsize,andannualincomeofthetreatedcases(biogasusers)werefoundtobesignificantlyhighercomparedtothatofthecomparisonobservationsasshowninTable3.
Morespecifically,householdswhoadoptedbiogastech-nologyarefoundtobeolderthantheirnon-adoptercounterparts.
Thisgivestheimpressionthatolderhouseholdstendmoretousebetterenergysourcessuchasbiogasenergyduetothepossibilityofabetterwealthaccumulationcomparedtotheyoungsters.
Theprofileofthehouseholdsalsoindicatesthatthebiogasuserhouseholdswerefoundtohavehighereducationalat-tainmentsthanthatofnon-users,whichimplieseduca-tionisakeyelementformoderntechnologyadoptionanduse.
Besides,theaveragefarmsizeofbiogasusersandnon-userswas2.
5and2tsimad2respectivelywithasignificantdifferencebetweenthetwogroups.
Similarly,biogasuserswerefoundtohavehigherannualincomeandfamilysizethanthatofnon-userhouseholdswhichhighlightsthathigherincomemaybeassociatedwiththeutilizationofbetterenergyfacilities.
Thedescriptivestatisticsofthisstudyconfirmsthathouseholdsthathavealreadyadoptedbiogastechnologyhavehigherin-comesthanthatofnon-adopters(Table3).
Thecoeffi-cientofbinarylogitregression(Table5)alsoconfirmsapositiveandsignificantrelationshipbetweenthetwovariables.
Thisimpliesthatariseinincomeofhouse-holdsmaycauseapartialshifttorelativelybetterenergysourcessuchasbiogastechnology.
Ontheotherhand,ahouseholds'incomerisesasaresultofreductioninen-ergyexpenditure.
Therefore,abi-directionalrelationshipbetweenincomeandbiogasadoptionisevident.
Table2DescriptionoftheindependentvariablesusedtoexplaintheprobabilityofadoptingbiogastechnologyNameofthevariableNatureofthevariableHypothesizedrelationshipwiththedependentvariable(biogasadoption)DescriptionofthevariableAgeContinuousPositive/negativeAgeofthehouseholdheadinyearsSexDummyPositive/negativeSexofthehouseholdhead;adummyvariableforgenderrelationships(male=1,female=0)FamilysizeContinuousPositive/negativeFamilysizeofthehouseholdEducationContinuousPositiveEducationlevelofthehouseholdheadinyearsCattleholdingContinuousPositiveNumberofcattleownedbythehousehold(heads/hh)AnnualincomeContinuousPositiveAnnualincomeofthehouseholdinETBDistFireContinuousPositiveDistancetonearestfirewoodcollectionsiteinkilometerDistWaterContinuousNegativeDistancetonearestpermanentwaterpointinkilometerDistMarketContinuousPositive/negativeDistancetonearestmarketinkilometerAvailabilityofelectricityDummyNegativeAvailabilityofmodernfuelsmainlyelectricity(yes=1,otherwise=0)FarmsizeContinuousPositiveTotalsizeoffarmplotsownedandoperatedbythehouseholdinTsimadFertilitystatusCategoricalPositive/negativeFertilitystatusoffarmplot(1=poor,2=medium,3=good)FarmlocationContinuousNegativeDistancebetweenhouseandfarmofthehouseholdinkilometerExtensionserviceContinuousPositiveFrequencyofcontactsbetweenagriculturalextensionworkerandthehousehold(frequencyinayear)KelebeEnergy,SustainabilityandSociety(2018)8:30Page6of14Thestudyshowsthattherewerenostatisticallysignifi-cantdifferencesobservedinthecattleholdingbetweenthetwoobservationssignalingthatavailabilityoffeedstockisnolongerachallengeforabiogasadoptiondecisionatthestudysitessincetheaveragecattleholdingforbothobservedcaseswas5headswhichisquitehigherthantheminimumheadsofcattlerequiredtooperatea6m3biogasdigester(accordingtoNationalBiogasProgrammeofEthiopia,aminimumof4headsofcattleisrequiredinthecontextoftheruralpartofthecountry.
ChallengesfacingthebiogastechnologyandfutureprospectsThehouseholdsurveyshowsthatinadequateenergy(methane)production,frequentdamageofinstalleddi-gestersandinadequateinstitutionalsupportarethemajorchallengeshamperingthesmoothoperationofbiogasplantswhichaccountfor32%,31%,and22%ofthetotalbiogasuserrespondents,respectively(Table4).
Thesefiguresimplythataconsiderablenumberofbio-gasdigesterownersfacetechnical-relatedchallenges,asalowlevelofenergyproductionanddamageofthebio-gassystemusuallyinducedbytechnicalrelatedfaults.
ThereportoftheNationalBiogasProgrammeofEthiopia[40]alsoshowsthattheuptakeofbiogastech-nologyislaggingbehindthetargetwhichstrengthensthefindingsofthehouseholdsurvey(Fig.
1).
Despitetheplantoinstall15,100domesticdigestersinfourregionalstatesofEthiopiafrom2008to2014,only63%oftheplanwasachieved.
Similarly,intheTigrairegionalone,wherethisstudywasconducted,3873domesticbiogasdigestershavebeenbuiltcomparedtotheplanned5288digesters,whichis73%ofthatwhichwastargetedtobeinstalled.
Therefore,theuptakeofbiogasdiffusionoverthepastyearsseemstohaveexperiencedirregularitiesattheregional(Tigrai)anddistrictlevels.
Thisreportmayalsobeconsideredasanindicatorthatthetechnologyhasbeenhurdledbytheabovestatedbarriers.
Figure1showsthatduringtheearlyperiodsofthebiogasinitia-tive,theuptakeincreasedandreacheditspeakin2013.
Sincethen,however,itfacesstagnationandinfactslo-weddowninsomeofthestudysites.
Thiscouldalsobeconsideredasanindicatorofthetechnicalchallengesthatfacestheinstalleddigesters.
Besides,keyinformantsfrequentlyreportedthatbadhabitssuchasirregularorinsufficientfeedingofthebio-digestersignificantlyhin-derbiogasproductionandeventuallystopworking.
Thepresenceofsuchnon-operatingdigestersinneighbor-hoodsdefinitelyinfluencedthepromotionofthetech-nologyduetospillovereffectsasmanypeoplearemorecuriousaboutbadstoriesthansuccessstoriesofanewtechnology.
AstudybyParawira[8]supportsthefind-ingsofthecurrentstudybydisclosingthatlowperform-anceandpoorqualityofinstalledplantscontributedtothedis-adoptionofbiogasdigestersinsub-SaharanAfrica.
Moreover,thecurrentfindingscomplywithEshetieetal.
[21]whoreportedthatthemajorTable3Meanvalueofbasicsocio-economicanddemographicvariablesofrespondents(standarddeviationinparentheses)VariablesTreatedobservations(n=200)Controlobservations(n=200)Totalsample(n=400)PvalueSexofthehouseholdhead(female=0,male=1)0.
86(0.
34)0.
89(0.
31)0.
87(0.
33)–Ageofthehouseholdheadinyears47(9.
18)45(10.
3)46(9.
8)0.
03Educationlevelofthehouseholdhead(yearsofschooling)2.
5(2.
7)1.
5(2.
4)2(2.
64)0.
000Householdsize6.
3(1.
68)5.
7(1.
77)6(1.
75)0.
001Farmsizeintsimad2.
5(1.
32)2.
07(1.
57)2.
3(1.
47)0.
000Cattleholdinginheads5(2.
73)5(3.
24)5(2.
99)0.
32AnnualincomeinETB18,949.
78(12910)14,175.
5(8287.
5)16,562.
6(11095)0.
000Table4MajorchallengesandfutureprospectstowardsthetransitionofdomesticbiogasenergyVariablesPercent*Challengesfacinginstalleddigesters(n=200)Lowenergyproduction32%Damageofinstalleddigesters31%Inadequateinstitutionalsupport22%Shortageofmanure15%Reasonsfornotadoptingbiogastechnology(n=200)Lackoffeedstock13%Highcostofconstruction24%Nocreditaccess13.
8%Spillovereffectoffaileddigesters52.
3%Nospacefordigesterpitpreparation48.
5%Waterproblem37.
6%Limitedknowhow14.
2%Favorableconditionsforwiderpromotionofbiogastechnology(n=400)Availabilityofcheapfeedstocks39%Existenceofsubsidyforthetechnology25.
5%Multifacetedbenefitsofthetechnology39.
9%Scarcityofsolidfuels44.
5%Increasethepriceofsolidandfossilfuels36.
2%*Multipleresponsesispossible,nstandsfornumberofrespondentsKelebeEnergy,SustainabilityandSociety(2018)8:30Page7of14bottlenecksfacingtheextensionofthebiogastechnol-ogyincludetechnicalproblems,abandonment,andlossofinterest.
Regardingthereasonsfornotadoptingbiogastechnol-ogy,thesurveyednon-biogasadoptersrespondedthatthespillovereffectoffaileddigesters(52.
3%),inadequatespaceforpitpreparation(48.
5%),andwaterproblems(37.
6%)constitutedthecoreissues(Table4).
Itwasalsoobservedduringthefieldsurveythatasubstantialnumberofdigesterswerenotoperatingatallstudysites.
Thismighthavecontributedtothesluggishbehaviorofmanyeligiblehouseholdsfornotparticipatinginthedomesticbiogasprogram.
Lackofapermanentwatersupplyinthenearbyareawasalsoreportedtobeachallengeforpoten-tialadopters.
Anaerobicdigestionnormallyconsumesaconsiderableamountofwater,whichisaproportionequaltotheamountofmanuretobeloadedintothedigester.
Itis,therefore,unlikelyforhouseholdstoadoptbiogasen-ergywithoutensuringapermanentwatersupplywithinareasonabledistance,accordingtotheNationalBiogasProgrammeofEthiopiaatmost30minawayfromtheresidence.
Thekeyinformantsvalidatedtheresultsofthehouseholdsurveybydisclosingthatthesuitabilityofasiteandtheavailabilityofspacelimittheuptakeofbiogastechnologybyhouseholds.
Insomelocations,becauseoftherockynatureofthesurface,itisdifficultormorelabor-demandingandexpensivetodigapitforthedi-gester;consequentlyhouseholdsarereluctanttoadoptthetechnology.
Theparticipantsoffocusgroupdiscussionalsounderlinedthatthespillovereffectoffaileddigesters,inadequatetrainingandpoorfollowupoftechniciansandinadequatemaintenanceserviceshavepreventedwide-spreaddisseminationofthetechnology.
Similarresultshavebeenreportedregardingbarrierstothelarge-scaleadoptionofdigestersindifferentsub-SaharanAfricancountries.
Forinstance,inTanzania,inadequatewateravailability,poorperformanceofdigestersandpoorfollowupwerereportedtobemajorchallengesforthewide-spreaduseofbiogastechnology[24,26].
Similarchal-lengesonasmallerscalearealsoreportedfromothersub-SaharanAfricanandAsiancountries[41–46].
Lookingatthefutureprospectsofbiogastechnology,thesurveyedhouseholdsstatedthatthepresenceofscar-cityofsolidfuels(44.
5%),themultipleuseofbiogas(40%),andtheavailabilityofcheapfeedstocks(39%)arethefavorableconditionsandpressingfactorsforthefuturepromotionofthesector(Table4).
Equallyimportant,theexistenceofgovernmentsubsidyforthetechnologyandtheeverrisingpriceofbothsolidbiomassandmodernen-ergysourceswerealsoconsideredbytherespondentsasanopportunityforthefuturepromotionofthetechnol-ogy.
Fortoomanypeople,thescarcityofsolidfuels,de-pendenceontoofewforestedareas,alongwiththelargenumberofhouseholdswithindoorandoutdoorfedcattlewouldhelptomakebiogasasuitableandaccessibletech-nologyforsmallholderfarmhouseholds.
Theresultofthedescriptivestatisticsalsoshowsthathouseholdsthatadoptedbiogastechnologyarespatiallylocatedfarawayfromthenearestfirewoodcollectionsiteascomparedtothenon-adopters.
Biogasusershavetospendonaverage5h(roundtrip)fromtheirhousetothefuelwoodcollec-tionsiteandthenon-adopters4h.
Thissignalsthattheunavailabilityoffuelwoods(forestsandwoodlots)inanearbyareacompelsfarmerstolookintootheralternativeenergysourcessuchasbiogasenergyinsteadoffullyrely-ingonscarcesolidbiomassenergysources.
Fig.
1UptakeofbiogastechnologyinTigrairegionandstudydistrictsKelebeEnergy,SustainabilityandSociety(2018)8:30Page8of14AsshowninTable4,theavailabilityofcheapfeed-stockwasmentionedasoneofthefavorableconditionsforthefurtherpromotionofbiogastechnologyby39%ofthesurveyedhouseholds.
Thiscouldprobablybeduetothefactthattheaveragecattleholdingofthesurveyedhouseholdsisfoundtobefiveheadsforbothbiogasadoptersandnon-adopterswhichisslightlyhigherthantheminimumheadofcattlerequiredtooperatea6m3biogasdigester,fourheadsofcattleaccordingtonationalbiogasprogramofEthiopia.
Hence,thepresenceofcheapandlocallyavailablefeedstock(cattlemanure)whichisassociatedwithrelativelylargercattleholdingwouldmakethepromotionanddiffusionofbiogastech-nologymorepromising.
AreportbytheCSA[47]inthisregardalsoshowsthatthetotalestimatedcattleintheTigrairegionisnearly4.
6million,andoutofthisabout3.
8millionareaged2yearsandolder.
Theregionhas,therefore,anuntappedpotentialforbiogastechnologysincecattledunghasbeenusedasthemajorsourceoffeedstockforanaerobicdigestion.
Thebiogasdigestersinthestudyareasaremainlyloadedwithcattlemanure,humanexcreta,andwater.
Besides,stricttreecuttingmonitoringandzerograzingpoliciesinthecountrycouldindirectlyassistbiogaspromotion.
Paralleltothefindingsofthecurrentstudy,KampandForn[20]assertthatascarcityoffirewood,deforestation,depletionofsoilnutri-ents,anderosionarethedriversformorebiogastechnol-ogyinthefuture.
Moreover,suitableagro-ecologyandwidespreadrearingoflivestockarereportedtobeamongthefavorableconditionsforbiogastechnologydissemin-ationineasternAfrica[27,45].
Thepressingfactors,suchastheincreaseinthepricesoffossilfuels,woodfuels,andfertilizersinsub-SaharanAfricawouldalsomakeforabrighterfutureforbiogastechnologypromotioninthere-gion[27,48],whichisinagreementwiththefindingsofthecurrentstudy.
EconomicbenefitsofthedomesticbiogastechnologyTables6and7presentasummaryoftheoutcomesofthepropensityscorematchingusingthefourmatchingalgorithms.
Itincludesthenearestneighbor,radius,ker-nel,andstratification.
Thispaperadoptsthefourmatch-ingmethodsforthereasonthatanycomparisonstudyisfreetouseanyofthematchingalgorithms,andnoneofthemissuperiortotheothers,buttheirjointconsider-ationprovidesawaytoassesstherobustnessoftheesti-matesoftheoutcomevariables[39].
Table5showstheestimatedcoefficientsofthepro-pensityscore,whichareusedasapre-requisitefortheestimationoftheoutcomevariables.
Thediagnos-tictestconfirmstheoverallfitnessofthemodelasProb>chi2=0.
000.
Theageofthehouseholdhead,thesexofthehouseholdhead,theeducationlevelofthehouseholdhead,theincome,thehouseholdsize,theavailabilityofsolidfuels,andelectricityarefoundtobethekeyfactorsaffectingtheprobabilityofadoptingbiogastechnology(Table5).
Householdheadsthatareolderandwithrelativelyhigherincomewerefoundtobemoreinterestedininstallingthebiogastechnology.
Thisisprobablyduetothepossibilityofabetterwealthaccumulationaspeoplegetolder,andtherebycanaffordtoinstallabiogasdigester.
Femalesweremorelikelytoadoptbiogascomparedtotheirmalecounterparts.
Thereasonwhywomenaremoreinter-estedintheadoptionofbiogastechnologycouldbeduetothefactthatwomenaremoreresponsibleforcol-lectingfirewoodandarealsotheprimevictimsofindoorairpollutioninthekitchen.
Householdswhodonothavesolidfuelsourcesinnearbyareaswerefoundtobemoremotivatedtoadoptabiogasdigester.
Besides,householdswhouseelectricitywerealsofoundtobemoreinterestedinadoptingbiogastechnologycomparedtothosewhodonot.
Thereasonforthecomplementaritybetweenelectri-cityandbiogasenergymayariseduetoalowdisposablein-comeofruralhouseholdsingeneral.
Asaresult,theymaychoosetouseelectricityforonlylightingpurposesandtherelativelycheaperbiogasenergyforcookingandboiling.
Table6presentstheeffectofbiogasenergyutilizationonenergyexpenditureusingfourmatchingmethods.
Theresultsvaryasthematchingalgorithmchanges,al-thoughallmethodsreachedthesameconclusionregard-ingtheimpactofbiogasenergytechnologyonreducingenergyexpenditureofruralhouseholds.
Thisisbecausedifferentmatchingmethodsemploydifferentprinciplesandwaysofcomputingtheaveragetreatmenteffects.
Forinstance,usingthenearestneighbormethod,200treatedobservationswerematchedto93comparisonob-servations.
Whereas,inbothradiusandkernelmethods,200comparisonobservationswerematchedto200treatedobservationswhichisonetoone.
Similarly,199controlobservationswerematchedto200treatedobser-vationsusingastratificationmatchingmethod(Table6).
Despitethevariationinnumericalvalues,allmatch-ingmethodsconfirmthatthebiogastechnologyhassignificantlyinfluencedtheenergyexpenditureofsmallholderfarmers.
AsshowninTable6,theaveragemonthlyenergyexpenditureofbiogasadopterswaslessbyETB3108.
36,59,98,and82.
4thanthatofnon-adopters(Pchi2=0.
000likelihood=241.
58Table6EffectofbiogasenergyutilizationonenergyexpenditureofhouseholdsMatchingmethodTreatedobservationControlobservationEnergyexpenditure(ATT)tvalueNearestneighbor20093108.
35***4.
12Radius20020059***3.
42Kernel20020098.
2***4.
17Stratification20019982.
4***3.
6and*denotevaluesignificantat1%,5%,and10%respectivelyKelebeEnergy,SustainabilityandSociety(2018)8:30Page10of14energy[49],whichisroughlysimilartothefindingsofthecurrentstudy.
Likewise,thedomesticbiogasprogramhasresultedinareductionofhouseholds'energyexpenditureonaverageby45%inIndonesia[50]whichisslightlyhigherthanthefindingofthecurrentstudy.
Apartfromanalyzingtheimpactofthebiogasinitia-tiveonenergy-relatedexpenditures,thestudyfocusesonthesynergybetweenbiogastechnologyandagriculture.
Asthepotentialofthetargethouseholdsforfuturebio-gaspromotionisinruralareasinwhichagriculturalsec-torsremainsthesolesourceoflivelihood,thisstudytookacloserlookatthepossiblelinkagesbetweenagri-cultureandbiogasdigestersbycomputingtheeffectsofbio-slurryutilizationoncropyieldanddemandforchemicalfertilizer.
Thedominantcropsgrowninthestudysitesarecereals;mainlywheat,barely,teff,andmaize.
ThetypesofchemicalfertilizersthathavebeenutilizedbythefarmersareDAPandUREA.
Usingthefourmatchingmethodsstatedabove,thean-nualcropyieldofbiogasuserhouseholdswasfoundtobeonaveragehigherby1.
7,1.
4,1.
5,and1quintals/year/householdascomparedtonon-users,respectively,duetotheapplicationofabio-slurrytreatmentoncropfields.
Itisimportanttonotethatfieldtrialsarereportedtobeanap-propriatemethodologytocomparetheyielddifferencesofcropsasaresultofabio-slurryapplicationinsteadofapply-ingsuchanobservationalstudy.
However,fieldtrialscouldnotshowtheoverallimpactofabio-slurryapplicationonthecropyieldofparticipantsoftheinitiative(onacommu-nityandevenahouseholdlevel).
Insuchcases,animpactassessmentmethodologyismoreimportantthanfieldtrials,i.
e.
,thisanalysismethodis,therefore,theappropriatemethodforthecurrentstudy.
Nevertheless,thepapermaysufferfromsomelevelofbiassinceallfactorsthataffectcropproductioncouldnotbefullycontrolledinsuchanob-servationalstudyandmaythereforeinfluencetheaccuracyoftheabovestatedfindings.
Ontheotherhand,theannualuptakeofchemicalfertilizersofbiogasuserswasfoundtobeonaveragelessby0.
34,0.
22,0.
28,and0.
25quintal/householdcomparedtonon-userhouseholdsusingtheabovestatedmatchingmethodsinthatorder.
Unlikeenergyexpenditure,theeffectsofabio-slurryfertilizerapplicationonthecropyieldandsubstitutionofchemicalfertilizerarenotfullymaterialized.
Theproductivityeffectofthebio-slurryfertilizerwasfoundtobesignificant(P=0.
1)usingtheradiusandkernelmatchingmethods,whereastheresultsofnearestneigh-borandstratificationshownosignificantdifference.
Be-sides,therewasnosignificantdifferencetothechemicalfertilizeruptakeofbio-slurryuserandnon-userhouse-holdsusingallmatchingmethods,whichsignalsnosig-nificantsubstitutioneffectasshowninTable7.
Aconsiderablenumberofhouseholdswereobservedtohavealowlevelofunderstandingoftheimportanceandutilizationofbio-slurryasafertilizer.
Only20%ofthebiogasadopterswerefoundtobeusersofbio-slurryontheirplots.
Lackofadequateknowledgeandsocialtaboowereamongthefrequentlystatedreasonsfornotyetusingabio-slurrybytheremaining80%ofbiogasadopters.
Itwasobservedduringthesurveythatfarmersusuallydisposethebio-slurryintoanopenpitwithoutadequatecaretoprotectnutrientevaporation.
Thekeyin-formantsalsorevealedthattheapplicationofabio-slurryisoftendoneinaccuratelyandatthewrongtime.
Further-more,themasonsandthebiogasenergypromotionexpertsusuallytrainthebiogasusersonbio-slurryutilizationalthoughthefocusandexpertiseofthesepersonnelisnotrelatedtoagriculture.
Thisgivestheinsightthatbio-slurryutilizationispoorlytaughttobiogasusersbymasons,energypromotersandtechnicianswhichareinfactoutsidersintermsofthefieldofagriculture.
Thekeyinformantsfurtherstressedthatpoortech-nicalknowledge,lowawareness,andacceptanceofthistypeoffertilizerandpoorextensionsupportcoupledwithsometraditionaltaboosaretobeclaimedfortheinsignificantcontributionofbio-slurrytocropproduct-ivityandsubstitutionofchemicalfertilizer.
Besides,thefocusgroupdiscussantsunderlinedthatthenegativeconnotationattachedtothebio-slurry,asitisproducedfromcattledungandfaecalsludge,hindersitsrateofapplication.
Thesemaycontributetonotfullymaterial-izedbenefits.
Furthermore,thefactthattheBureauofAgricultureandRuralDevelopmentoftheregiondidnotplayanactiveroleintheimplementationofthedo-mesticbiogasprogramofthecountrymighthavealsocontributedtothetechnicalfaultsonthebio-slurryap-plicationandtheknowledgegaps.
Thismayhavealsoledtotheinsignificantcontributionofthebio-slurrytotheexistingcroppingsystem.
Previousstudiesreportedparallelfindingsinthisre-gard.
Inlinewiththecurrentfinding,inRwanda,forin-stance,thebenefitsofthenationaldomesticbiogasprogramincludemeetingalltheenergyneedsforcook-ingandreducingtheenergyexpenditureofhouseholds[49,51].
Inadditiontothis,Mwakaje[24]revealsthattheadoptionofbiogasenergyinTanzaniaandRwandahashelpedinempoweringthesocio-economicstatusparticularlybyenhancingtheincomeofhouseholdsandcreatingjobopportunities.
AnotherstudybyWarnarsandOppenoorth[52]indicatedthatusingbio-slurryleadstoahighercropyieldincrementdespiteitsprod-uctivityeffectvaryingfromcroptocrop.
Itis,however,importanttonotethattheresultsofthecurrentstudyshouldbecalibratedusingexperimentalstudies,suchasfieldtrials,astheestimatesfromsuchobservationalstudiesmaynotbeabletocontrolallun-observedbiaseswhichcouldaffecttherobustnessoftheestimatedresults.
KelebeEnergy,SustainabilityandSociety(2018)8:30Page11of14ConclusionsThecomparisonofenergyexpenditurebetweenbiogasuserandnon-userhouseholdsshowsasubstantialdiffer-ence.
Theaveragemonthlyenergyexpenditureofbiogasuserhouseholdshasbeenreducedby20–36%asaresultofpartiallyswitchingtobiogasenergyparticularlyforlightingandcookingpurposes.
Furthermore,thestudyfindstheexistenceofapositivecropyieldpremiumofroughlyabout1.
5quintal/year/householdasaresultofusingbio-slurryasafertilizerSuchareductioninenergyexpenditureandanincrementincropyieldhaveaposi-tivecontributiontoenhancetherealincomeofhouse-holds.
Thesefindingshaveimportantimplicationsonthefurtherpromotionoffamily-sizedbiogasdigesters.
Thismeansthatbiogastechnologyshouldnotonlybepromotedforthepurposeofsupplyingcleanenergybutalsoforfosteringtheincomeofruralhouseholdsbyre-ducingtheenergyexpenditureandenhancingcropproductivity.
Despitethis,theoveralleffectofabio--slurryapplicationoncropproductivityandsubstitutionofchemicalfertilizerwasnotasmuchasexpectedduetothepoormanagementandknowledgeinbio-slurryutilization.
Theinstalledbiogasunitsareconfrontedbyaninadequateenergyproduction,frequentdamage,andaninadequateinstitutionalsupportformaintenanceandrepairthathin-dersthetransitionfromsolidwoodfuelstobetterenergyfacilitiessuchasbiogas.
Thekeyfactorsthatlimittheex-tensionofthebiogastechnologytopotentialbiogasadoptersarethepresenceoffailedanddamageddigesters,aninadequateplotoflandfordigesterconstructionandthewateravailabilityproblem.
Inthefaceofsuchbarriers,therearestillenablingenvironmentsforthewidespreaduseofthetechnologysuchasascarcityofsolidfuels,ariseinpriceofmodernenergysources,theavailabilityofacheapinputforbiogasproduction,andmulti-faceteduseofthetechnology.
Theleadingagency,NationalBiogasProgrammeofEthiopia,whichisinchargeofbiogaspromotion,shouldensuretheactiveengagementofrelevantagenciessuchasenvironmentalprotection,naturalresourcesmanagement,agriculture,andhealthcareatadistrictandcommunitylevelsinordertoovercomethechallengesfacingthetech-nologyandtorealizeitsmultifacetedbenefits.
Theactorsinvolvedinthisbiogasprogramarealsoadvisedtoquicklyfocusonaddressingthetechnicalandattitudinalbarriershamperingbiogasenergyandbio-slurryutilizations.
Fur-therplotlevelandcrop-specificresearchworkisrecom-mendedtoexplorethecontributionofdomesticbiogastocropproductivityandclimatesmartagriculture.
Endnotes1A"tabia"inthispaperreferstothesmallestadminis-trationunitinTigrainexttoadistrict2Tsimadisalocalunstandardizedmeasurementofsizeoffarmplots(onetsimadisroughlyequivalentto0.
25ha)3EthiopianBirr(ETB),currencyofEthiopia(US$1=27.
2ETBasofDecember,2017exchangerate)AdditionalfileAdditionalfile1:Rawdatacollectedfromsurveyedhouseholdheads.
(XLSX91kb)AbbreviationsEq.
:Equation;ETB:Ethiopianbirr;hh:Household;UNDP:UnitedNationsDevelopmentProgramme;WHO:WordHealthOrganizationAcknowledgementsTheauthorisverygratefultotheMekelleUniversityandPanAfricanUniversityforfundingpartofthedatacollectioncosts.
Theauthorextendshisgratitudetotheenumeratorsandhouseholdswhoparticipatedinthisstudy.
Theauthoristhankfultotheanonymousreviewersandeditorofthejournalfortheirhelpfulandcriticalrecommendationstotheearlierversionofthispaper.
TheauthoralsoextendsappreciationtoMr.
HaftuKahsayforhisinvaluablecontributiontocorrectgrammaticalerrors.
FundingThefundfordatacollectionwasobtainedfromMekelleUniversityandPanAfricanUniversity.
AvailabilityofdataandmaterialsTherawdatahasbeensubmittedonlineasAdditionalfile1.
Authors'contributionsHEdevelopedtheconcept,designedthedatacollectioninstruments,andsuperviseddatacollection.
Inaddition,dataanalysisandtheinterpretationoftheresultsandwritingthismanuscriptwerecarriedoutbythesameauthor.
Theauthoralsoreadandapprovedthefinalmanuscript.
CompetinginterestsTheauthordeclaresthathehasnocompetinginterests.
Publisher'sNoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
Table7Effectofbio-slurryapplicationoncropyieldanduptakeofchemicalfertilizer(t-valueinparentheses)MatchingmethodTreatedobservationControlobservationCropyield(ATT)Chemicalfertilizeruptake(ATT)Nearestneighbor50251.
7(1.
5)0.
34(0.
6)Radius47711.
46(1.
87)*0.
22(1.
256)Kernel50711.
56(1.
9)*0.
28(1.
6)Stratification50711.
06(1.
24)0.
255(1.
96)*Denotesvaluessignificantat10%KelebeEnergy,SustainabilityandSociety(2018)8:30Page12of14Received:8February2018Accepted:12September2018References1.
WHO&UNDP(2009)Theenergyaccesssituationindevelopingcountries.
"WorldHealthOrganizationandtheUnitedNationsDevelopmentProgramme,NewYork.
Accessed15December20172.
ArnoldMJE,KhlinG,PerssonR(2006)Woodfuels,livelihoods,andpolicyinterventions:changingperspectives.
WorldDev34:596–6113.
FritscheUR,SimsREH,MontiA(2010)Directandindirectlandusecompetitionissuesforenergycropsandtheirsustainableproduction–anoverview.
BiofuelsBioprodBiorefin4:692–7044.
IiyamaM(2013)Charcoal:adriverofdrylandforestdegradationinAfrica.
WorldAgroforestryCentre,ICRAFFactSheetNairobi,Kenya5.
FAO(2010)Globalforestresourcesassessment:countryreportEthiopia.
Rome,Italy.
Availableatwww.
fao.
org/docrep/013/i1757e/i1757e.
pdf.
Accessed10June20176.
InternationalEnergyAgency(2014)AfricaEnergyOutlook:specialreportfocusonenergyprospectsinsub-SaharanAfrica.
Paris,France.
Availableathttps://www.
iea.
org/publications/freepublications/publication/WEO2014_AfricaEnergyOutlook.
pdf.
Accessed18Sept20177.
LegrosGI,HavetN,BruceS,BonjourK,RijalM,TakadaDC(2009)Theenergyaccesssituationindevelopingcountries,NewYork,UnitedNationsDevelopmentProgramme8.
ParawiraW(2009)Biogastechnologyinsub-SaharanAfrica:status,prospectsandconstraints.
RevEnvironSciBiotechnol8:187–2009.
MohammedYS,MustafaMW,BashirN(2013)Statusofrenewableenergyconsumptionanddevelopmentalchallengesinsub-SaharaAfrica.
RenewSustEnergRev27:453–46310.
EthiopianRuralEnergyDevelopmentandPromotionCentre(EREDPC)(2008)AworkingdocumentonNationalBiogasProgrammeEthiopiaProgrammeimplementation.
AddisAbaba,Ethiopia.
Availableathttp://www.
bibalex.
org/Search4Dev/files/284294/116537.
pdf.
Accessed10June201711.
AfricaBiogasPartnershipProgramme.
Availableathttp://www.
snv.
org/project/africa-biogas-partnership-programme-AfricanBiogasPartnershipProgramme.
Accessed28Sept201712.
InternationalEnergyAgency(2011)Worldenergyoutlook:energyforall,financingaccesstothepoor.
Paris:Availableathttps://www.
InternationalEnergyOrganization.
org/publications/freepublications/publication/WEO2011_WEB.
pdf.
Accessed18Sept201713.
InternationalEnergyAgency(2010)Worldenergyoutlooks:aworkingdocumentonenergyforcookingindevelopingcountries.
Availableatwww.
worldenergyoutlook.
org/media/weo2010.
pdf.
Accessed18Sept201714.
MengistuMG,SimaneB,EsheteG,WorknehTS(2016)AreviewonbiogastechnologyanditscontributionstosustainablerurallivelihoodinEthiopia.
RenewSustEnergRev48:306–31615.
LuostarinenS,NormakA,EdstrmM(2011)Overviewofbiogastechnology.
OverviewofBiogasTechnologyBalticmanureWP6Energypotentials:4716.
ChristiaensenL,HeltbergR(2014)GreeningChina'sruralenergy:newinsightsonthepotentialofsmallholderbiogas.
EnvironDevEcon19:8–2917.
CuéllarAD,WebberME(2008)Cowpower:theenergyandemissionsbenefitsofconvertingmanuretobiogas.
EnvironResLett3:03400218.
AxaopoulosP,PanagakisP(2003)Energyandeconomicanalysisofbiogasheatedlivestockbuildings.
BiomassBioenergy24:239–24819.
Khlin,Gunnar,SillsEO,PattanayakSK,WilfongC(2011)"Energy,genderanddevelopment:whatarethelinkagesWhereistheEvidenceAvailableathttps://openknowledge.
worldbank.
org/handle/10986/3564.
Accessed15Dec201720.
KampLM,FornEB(2016)Ethiopia'semergingdomesticbiogassector:currentstatus,bottlenecksanddrivers.
RenewSustEnergRev60:475–48821.
EsheteG,SonderK,terHeegdeF(2006)ReportonthefeasibilitystudyofanationalprogrammefordomesticbiogasinEthiopia.
SNVNetherlandsDevelopmentOrganization,AddisAbaba.
Availableathttp://www.
bibalex.
org/Search4Dev/files/338849/172350.
pdf.
Accessed10June201722.
KelebeHE,AyimutKM,BerheGH,HintsaK(2017)DeterminantsforadoptiondecisionofsmallscalebiogastechnologybyruralhouseholdsinTigrai,Ethiopia.
EnergyEcon66:272–27823.
MengistuMG,SimaneB,EsheteG,WorknehTS(2016)InstitutionalfactorsinfluencingthedisseminationofbiogastechnologyinEthiopia.
JHumEcol55:117–13424.
MwakajeAG(2008)DairyfarmingandbiogasuseinRungwedistrict,South-westTanzania:astudyofopportunitiesandconstraints.
RenewSustEnergRev12:2240–225225.
MurphyJT(2001)MakingtheenergytransitioninruralEastAfrica:isleapfrogginganalternativeTechnolForecastSocChang68:173–19326.
MwirigiJ,BalanaBB,MugishaJ,WalekhwaP,MelamuR,NakamiS,MakenziP(2014)Socio-economichurdlestowidespreadadoptionofsmall-scalebiogasdigestersinSub-SaharanAfrica.
BiomassandBioenergy70:17–2527.
WalekhwaPN,MugishaJ,DrakeL(2009)Biogasenergyfromfamily-sizeddigestersinUganda:criticalfactorsandpolicyimplications.
EnergyPolicy37:2754–276228.
KabirH,YegbemeyRN,BauerS(2013)FactorsdeterminantofbiogasadoptioninBangladesh.
RenewSustEnergRev28:881–88929.
AmigunB,ParawiraW,MusangoJK,AboyadeAO,BadmosAS(2012)AnaerobicbiogasgenerationforruralareaenergyprovisioninAfrica.
InBiogas.
InTech30.
OuedraogoB(2006)HouseholdenergypreferencesforcookinginurbanOuagadougou,BurkinaFaso.
EnergyPolicy34(18):3787–379531.
HeltbergR(2005)FactorsdetermininghouseholdfuelchoiceinGuatemala.
EnvironDevEcon10:337–36132.
OdihiJ(2003)DeforestationinafforestationpriorityzoneinSudano-SahelianNigeria.
ApplGeogr23:227–25933.
HorstGH,HovorkaAJ(2008)Reassessingthe"energyladder":householdenergyuseinMaun,Botswana.
EnergyPolicy36:3333–334434.
MekonnenA,ZenebeG,MinaleK,KolinG(2009)Incomealonedoesnotdetermineadoptionandchoiceoffueltypes.
Policybrief:EnvironmentforDevelopment(EfD).
Availableatwww.
efdinitiative.
org/sites/default/files/urban20feul20choice20brief.
pdf.
Accessed12May201835.
OgwumikeFO,UzughaluUM,AbionaGA(2014)InternationalJournalofEconomicsandPolicy436.
MaseraOR,SaatkampBD,KammenDM(2000)Fromlinearfuelswitchingtomultiplecookingstrategies:acritiqueandalternativetotheenergyladdermodel.
WorldDev28:2083–210337.
BerheM,DanaH,TesfayG,CatherineK(2017)FactorsinfluencingtheadoptionofbiogasdigestersinruralEthiopia.
EnergySustainSoc7:10.
https://doi.
org/10.
1186/s13705-017-0112-538.
Watson,J.
(2001).
Howtodetermineasamplesize:Tipsheet#60,UniversityPark,PA:PennStatecooperativeextension.
Availableat:http://www.
extension.
psu.
edu/evaluation/pdf/TS60.
pdf.
Accessed10June201739.
BecherSO,IchinoA(2002)Estimationofaveragetreatmenteffectsbasedonpropensityscores.
StataJ2(4):358–37740.
NationalBiogasProgrammeofEthiopia(2016)Unpublishedreportonperformanceofdomesticbiogasdiffusion41.
ChenL,ZhaoL,RenC,WangF(2012)TheprogressandprospectsofruralbiogasproductioninChina.
EnergyPolicy51:58–6342.
BhatPR,ChanakyaHN,RavindranathNH(2001)Biogasplantdissemination:successstoryofSirsi,India.
EnergySustainDev5:39–4643.
RahaD,MahantaP,MichèleLC(2014)TheimplementationofdecentralisedbiogasplantsinAssam,NEIndia:theimpactandeffectivenessoftheNationalBiogasandmanuremanagementProgramme.
EnergyPolicy68:80–9144.
KranertM,KuschS,HuangJ,FischerK(2012)Anaerobicdigestionofwaste.
In:WastetoEnergy.
Springer,London,pp107–13545.
Njoroge(2002)KuriaD(2002)evolutionofbiogastechnologyinSouthSudan;currentandfuturechallenges.
In:Proceedingsofthebiodigesterworkshopmarch46.
HubaEM,FallPA,SanogoO,KaboreG,BrackenP(2007)FeasibilitystudyforanationaldomesticbiogasprogrammeinBurkinaFaso.
DeutscheGesellschaftfurTechnischeZusammenarbeit.
Availableathttps://energypedia.
info/images/3/3e/Domestic_Biogas_Program_in_Burkina_Faso.
pdf.
Accessed28Apr201847.
CSA(CentralStatisticalAgencyofEthiopia)(2016)ReportonagriculturalsamplesurveyofEthiopia,AddisAbaba.
Availableatwww.
csa.
gov.
et/ehioinfo-internaldownload=816:livestock-report-2009-ec-2016.
Accessed17Sept201748.
AveryL,JoanneS,TumwesigeV(2011)Small-scalebiogasdigesterforsustainableEnergyproductioninSub-SaharanAfrica.
InThe1stWorldSustainabilityForum.
Basel,MultidisciplinaryDigitalPublishingInstitute49.
BediAS,PellegriniL,LucaTasciottiL(2015)TheeffectsofRwanda'sbiogasprogramonenergyexpenditureandfueluse.
WorldDev67:461–47450.
BediAS,SparrowR,TasciottiL(2017)TheimpactofahouseholdbiogasprogrammeonenergyuseandexpenditureinEastJava.
EnergyEcon68:66–76KelebeEnergy,SustainabilityandSociety(2018)8:30Page13of1451.
Munyehirwe,Anicet,andP.
Kabanda.
(2008).
PerformanceassessmentofinstitutionalbiogassystemsinRwanda.
InclusiveBusinessandConsultanceLtd.
GIZ,Rwanda.
Availableathttps://cpia.
afdb.
org/page=results&subpage=profile&indicator.
.
.
2008.
Accessed10June201752.
WarnarsandOppenoorth(2014)aworkingpaperonbio-slurryasasupremefertilizer.
Availableathttps://www.
hivos.
org/sites/default/files/publications/bioslurry_a_supreme_fertiliser_a_study_on_bioslurry_results_and_uses.
pdf.
Accessedon18Sept2017KelebeEnergy,SustainabilityandSociety(2018)8:30Page14of14
现在宝塔面板真的是越来越过分了,删除文件、删除数据库、删除站点等操作都需要做计算题!我今天升级到7.7版本,发现删除数据库竟然还加了几秒的延时等待,也无法跳过!宝塔的老板该不会是小学数学老师吧,那么喜欢让我们做计算题!因此我写了个js用于去除各种计算题以及延时等待,同时还去除了软件列表页面的bt企业版广告。只需要执行以下命令即可一键完成!复制以下命令在SSH界面执行:Layout_file="/w...
公司成立于2007年,是国内领先的互联网业务平台服务提供商。公司专注为用户提供低价高性能云计算产品,致力于云计算应用的易用性开发,并引导云计算在国内普及。目前,旅途云公司研发以及运营云服务基础设施服务平台(IaaS),面向全球客户提供基于云计算的IT解决方案与客户服务,拥有丰富的国内BGP、双线高防、香港等优质的IDC资源。点击进入:旅途云官方网商家LOGO优惠方案:CPU内存硬盘带宽/流量/防御...
韩国云服务器哪个好?韩国云服务器好用吗?韩国是距离我国很近的一个国家,很多站长用户在考虑国外云服务器时,也会将韩国云服务器列入其中。绝大部分用户都是接触的免备案香港和美国居多,在加上服务器确实不错,所以形成了习惯性依赖。但也有不少用户开始寻找其它的海外免备案云服务器,比如韩国云服务器。下面云服务器网(yuntue.com)就推荐最好用的韩国cn2云服务器,韩国CN2云服务器租用推荐。为什么推荐租用...
ts60.com为你推荐
8080端口路由器如何开8080端口rawtoolsRAW是什么衣服牌子月神谭求男变女类的变身小说seo优化工具seo优化软件有哪些?789se.com莫非现在的789mmm珍的com不管了125xx.com高手指教下,www.fshxbxg.com这个域名值多少钱?www.niuav.com在那能找到免费高清电影网站呢 ?www.vtigu.com初三了,为什么考试的数学题都那么难,我最多也就135,最后一道选择,填空啊根本没法做,最后几道大题倒www.5any.com重庆哪里有不是全日制的大学?www.zhiboba.com看NBA直播的网站哪个知道
北京服务器租用 二级域名查询 greengeeks plesk edis 163网 godaddy续费优惠码 12306抢票助手 java虚拟主机 大容量存储器 ftp教程 百兆独享 四核服务器 流媒体加速 便宜空间 东莞服务器托管 新加坡空间 全能空间 华为云建站 apnic 更多