openww.00271.com

ww.00271.com  时间:2021-03-23  阅读:()
LETTEROpenAccessStronginductioneffectsduringthesubstormon27August2001V.
V.
Mishin1*,V.
M.
Mishin1,S.
B.
Lunyushkin1,Z.
Pu2andC.
Wang3AbstractWereportonstronginductioneffectsnotablycontributingtothecrosspolarcappotentialdropandtheenergybalanceduringthegrowthandactivephasesofthesubstormon27August2001.
Theinductanceofthemagnetosphereisfoundtobecrucialfortheenergybalanceandelectricalfeaturesofthemagnetosphereinthecourseofthesubstorm.
Theinductiveresponsetotheswitchingonandoffofthesolarwind-magnetospheregeneratorexceedstheeffectoftheinterplanetarymagneticfield(IMF)variation.
Theinductioneffectsaremostapparentduringthesubstormexpansiononsetwhentherapidgrowthoftheionosphericconductivityisaccompaniedbythefastreleaseofthemagneticenergystoredinthemagnetotailduringthegrowthphase.
Usingthemagnetograminversiontechnique,weestimatedthemagnetosphericinductanceandeffectiveionosphericconductivityduringtheloadingandunloadingphases.
Keywords:Substormloadingandunloadingphases;Electromagneticinduction;PolarcapmagneticfluxFindingsIntroductionVariousinductioneffectsinmagnetosphericphysicshavelongbeenknown.
Drivenbytherapidvariationinionosphericcurrents,inductionelectricfieldsonthegroundproducegeomagneticallyinducedcurrents(GICs)inman-madelongconductorsystems.
LargeGICscanleadtosevereelectricblackouts,communi-cationoutages,andcorrosionofoilandgaspipelines,especiallyduringsuperstormslastingforseveraldays.
LargevaluesofdB/dt,associatedcloselywithGICs,occurintheregionsofwestwardionosphericelectrojets(BotelerandPirjola1998;Vodyannikovetal.
2006;VanhamkiandAmm2011;ViljanenandTanskanen2011;Zhangetal.
2012).
Short-periodgeomagneticvariations(geomagneticpulsations)withperiodsτ≤100200schangetheionosphere'simpedance,leadtothepartialpenetrationofinductionelectricfieldscarriedbyMHDwaves,affecttheformationofdoublelayersandbeamsofenergeticparticles,andreducethedawn-duskasymmetryinthedistributionofionosphericcurrents(Lotko2004;Takeda2008;VanhamkiandAmm2011).
Variousaspectsoftheinductioneffectsduringsubstormshavealsobeendiscussed(Akasofu1975;Alfven1977;Lyatsky1978;Liuetal.
1988;Shelomentsevetal.
1988;Sanchesetal.
1991;LockwoodandDavis1999;Heikkilaetal.
2001;Tangetal.
2010;Gordeevetal.
2011;Siscoeetal.
2012).
Thefadingofauroralbrightnessbeforethesubstormexpansiononset(EOorbreakup)wasdescribedin(MendeandEather1976;HughesandRostoker1979;PellinenandHeikkila1984).
Wangetal.
(2006)andLiuetal.
(2007)attributedthiseffecttotheweakeningofenergeticparticleprecipitationsinthenightovalduetotheelongationofthegeomagnetictailandconcomitantdecreaseofthelossconeangleduringthegrowthphase.
Baumjohannetal.
(1981)describedthefadingofiono-sphericconvectionandfield-alignedcurrentsapproxi-mately10minbeforetheonsetofthesubstormon6March1976.
Inthispaper,weinvestigatetheelectro-magneticinductioneffects,includingfadingoftheiono-sphericconvectionduringthegrowthphaseandabruptintensificationattheexpansiononset,duringthesub-stormon27August2001.
Thiseventhasbeenalreadystudied(Bakeretal.
2002;Lietal.
2003;Erikssonetal.
2004;Blakeetal.
2005;Spanswicketal.
2009;Mishinetal.
2012).
Wecomple-mentandexpandonthepreviousresults,thoroughlyana-lyzingtheroleoftheinductionmechanism.
Inparticular,*Correspondence:vladm@iszf.
irk.
ru1InstituteofSolar-TerrestrialPhysicsofSiberianBranchofRussianAcademyofSciences,Irkutsk,RussiaFulllistofauthorinformationisavailableattheendofthearticle2015Mishinetal.
OpenAccessThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.
0InternationalLicense(http://creativecommons.
org/licenses/by/4.
0/),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.
Mishinetal.
Earth,PlanetsandSpace(2015)67:162DOI10.
1186/s40623-015-0333-9weevaluatethecontributionoftheinductionelectricfieldtothecrosspolarcappotentialdrop,themagnetotail'sin-ductionandmagneticenergyloaded/unloadedduringthegrowth/expansionphaseina1-hinterval,aswellasthecontributionoftheinductivemagneticenergytothetotalsubstormenergy.
Theelectromagneticinductioncausedbythechangingmagneticfluxinthegeomagnetictailisfoundtosufficefortheobservedweakeningandsharpin-creaseoftheconvectionduringthegrowthphaseandex-pansiononset,respectively.
Duringtherecoveryphase,themagneticfluxwasvirtuallyconstantatalowlevel,aboutthesameasthatbeforethesubstorm.
Therefore,theinvestigationoftherecoveryphase,thoughimportant,wasnotthepurposeofthisstudy.
Theresultshavebeenobtainedfromthedataofaglobalnetworkofground-basedmagnetometersusingthemagnetograminversiontechniquemagnetograminversiontechnique(MIT)-ISZF(Mishin1990),whichgivesthespatialdistributionsofequivalentandfield-alignedcurrentsandtheelectricpotentialinthehigh-latitudeionosphere.
FromtheMIToutput,wedeterminethemajorparametersforasimplifiedmagnetosphere-ionosphereelectricalcircuit,i.
e.
,themagneticfluxthroughthepolarcapΨ,thecrosspolarcappotentialdropUPC,andtheregion1FACintensity.
Thecircuitlayoutisbasicallythesameasinthewell-knownschemes(e.
g.
,Alfven1977;Lyatsky1978;Kan1993;Akasofu2013),wherethegeneratorisconnectedtotheplasmasheetandionosphereinparallel.
Thisallowsexplaining,inparticu-lar,whythehigh-resistanceionosphereduringthegrowthphaseisweaklyconnectedwiththelow-resistancegener-atorandthemagnetosphere.
Weuseonlyoneinductanceequivalenttothesumoftheinductancesofthetailandinnermagnetosphere(e.
g.
,Alfvén1977).
ThecontributionofallpossibleinductanceswasconsideredbyCrookerandSiscoe(1983)andLiuetal.
(1988).
Atanyrate,asimpli-fiedschemesufficestodescribethechangeoftheinduc-tionenergyduringthegrowthandexpansionphasesdeterminedfromtheMIToutput.
DatabaseandtimingWeexploremagneticdatafrom101groundstationsatgeomagneticlatitudesФ>40°,includingtheCANOPUS,INTERMAGNET,GIMA,MACCS,andIMAGEinter-nationalprojectsandthenetworksintheArcticandAntarcticoftheShaferInstituteofCosmo-physicalRe-searchandAeronomy,RAS,theArcticandAntarcticResearchInstitute,andtheDanishMeteorologicalInsti-tute.
Thesolarwind(SW)parametersfromACEandClusterspacecraftandtheAEindexfromWDC-C2,Kyotoarealsoused.
ByusingtheMIT(Mishin1990;Mishinetal.
2011),weobtain1-minresolution2Dmapsofequivalentcur-rents(ECs),field-alignedcurrents(FACs),andtheelectricpotentialUintheionosphere.
Thesegive:(1)thevaluesoftheionosphericcrosspolarcap(PC)poten-tialdropalongthedawn-duskmeridianUPC,(2)thePCareaS,and(3)theregion1FACintensityIR1atallMLTsectors.
UsingthePCarea,wecomputethetimeseriesforthevariablepartofthemagneticfluxthroughthenortherntaillobe:Ψ=Ψ0+Ψ1=BS.
HereВ=0.
6G,Ψ0isthemagneticfluxthroughthe"old"PCbeforethegrowthphase,andΨ1isthevariablepartofPCfluxcreatedbythereconnectionprocessonthedaysidemagnetopause.
Aremarkisinorder.
Asinourpastpapers(e.
g.
,Mishinetal.
2011;2014),werelyontheDungeyopenmagnetosphereparadigm(e.
g.
,Dungey1961;CowleyandLockwood1992;Milanetal.
2007).
Thatis,aquasi-stationaryreconnectionatthedaytimemagnetopauseleadstothegrowthoftheopenmagneticfluxinthetail,whichisbalancedbythereconnectioninthedistanttail.
Theabruptdropofthemagneticfluxandtheexpansion-substormonsetisconsideredintermsofthereconnectionprocessintheneartail,whichstartsintheregionofclosedmagneticfieldlinesandrapidlypropagatesintotheopentaillobes(Russell2000;Mishinetal.
2001).
Figure1showsthevariationoftheinterplanetarymag-neticfield(IMF)BZ,AE,UPC,Ψ1,andIR1duringthesubstorm.
AsharpsouthwardturningofIMFtothelevelofBz=(3÷5)nTat~02:15UTinstigatedthesubstormFig.
1ThevariationofIMFBZ,AE,UPC,Ψ1,andIR1duringthe27August2001substorm.
Fromtoptobottom:IMFBZ,theAEindex,thevariablepolarcapmagneticfluxΨ1,thecrosspolarcappotentialdropUPC,andtheregion1FACintensityIR1vs.
UTMishinetal.
Earth,PlanetsandSpace(2015)67:162Page2of10growthphase.
Atthebeginningofthegrowthphase,Ψ1,UPC,andIR1wereincreasingsynchronouslyfrom~02:20to02:45UTowingtotheswitchingonofthegeneratorassociatedwiththemagneticreconnectionatthemag-netopause.
However,at02:45UT,thegrowthofUPCandIR1sloweddown.
At~03:00UT,thevalueofUPCturnedtodecrease,althoughtheIMFBZ≈0.
Thus,themaininputtothemagneticenergyaccumu-lationinthemagnetotail(seebelow)comesfromthelastthirdofthegrowthphase(03:45–04:10UT).
Incontrast,theexpansionphaseisdominatedbythetemporalvariationresultinginUi≈+150kV.
ThisismorethantwicethevalueΔUPC=+70kV.
Thisdiffer-encecanbeexplainedbythegeometricfactorkrelatedwiththelooparoundthetaillobesoftheradiusRT,wheretheEMFUiisinduced.
Figure3schematicallyFig.
3Aschematicofthecrosssectionofthenorthernlobeduringtheloadingphase.
Eindistheinductionelectricfield,andITisthedawn-duskcurrentflowingthroughtheplasmasheetandbeingclosedthroughthemagnetotailboundary.
EindpointstoduskduringtheunloadingphaseMishinetal.
Earth,PlanetsandSpace(2015)67:162Page5of10showsthecrosssectionofthenorthernlobe.
Theinduc-tionEMFisinducedintheoutercontourbytheincreas-ing(theloadingphase)ordecreasing(unloading)magneticflux.
HereEindandITaretheinductionelectricfieldandthedawn-duskcurrentflowingthroughtheplasmasheetandclosedthroughthemagnetotailbound-ary,respectively.
Thevalueofkcanbeestimatedastheratioofthehalfcircumference(πRT)ofacircletotheper-imeterofthesemicircle(πRT+2RT),i.
e.
,k=π/(π+2)≈0.
6.
Physically,itmeansthatapartoftheinducedEMFisaddedtotheEMFofthesolarwind-magnetospheregen-eratoractinginthesegmentπRTsothattheresultingpo-tentialdifferencekdΨ1/dtgivesΔUPC≈90kVintheionosphere.
NotethatwedonotconsiderEindattheionospherelevel.
TheinductionemfUL=∫Einddtisgeneratedbythemagneticfluxvariation(Ψ/t)inthetail(circuitABC,Fig.
3)andisnottransferredintotheionosphere.
WeobservedthepotentialdifferenceUPCwhichistheresultofthesummationinthemagnetotail(betweenpointsAandC)ofthepotentialandvortexelectricfieldsproducedbytheemfofthegenerator(εg)andtheinduc-tionemfUL(Fig.
4),respectively.
Theresultingpotentialdifference(UPC)istransmittedontotheionosphere'sload(Reff).
Figure3andthecalculationofthecoefficientkserveforillustrativepurposes,designedtoevaluatethelimitsofintegrationin∫Einddl.
Ifthedevelopmentofthecurrentdisruptionbeginsatthecenteroftheplasmasheet,thiscoefficientwillbelessthanthatatthebeginningoftheEOandequaltotheestimatedvalueonlyattheendofthecurrentdisruption.
Itsaveragevalueishalved.
EstimationoftheinductancecoefficientTheMITdatadescribingthedynamicsofthemagneticfluxandFACallowustoalsoestimatethemagneto-sphereinductancecoefficientLfordifferentsubstormphases.
AssumingLisaconstant,weobtainfromtheinductionlawUindjjdΨdtdLIdtLdIdt11Ingeneral,thecontributionofIdLdtcouldbecompar-ablewithLdIdt.
Asaccountingfortheformerisquiteaformidableproblem,weestimatethemeanvalueatdifferentmomentsinthecourseofthesubstorm.
WemakeuseofanelectriccircuitshowninFig.
4.
Itincludesageneratorattheboundaryofthemagneto-sphere,theinductanceLofthemagnetosphere,andtwoparallellyconnectedresistors,indicatedasRM(magneto-sphere)andReff(ionosphere).
Theinternalresistancerofthegeneratorissmall(r,weobtainfrom(11)theaveragevaluedΨ=dIind240HnAnindependentestimatecanbeobtainedbybalancingthestoredinductiveenergyΔWΔu=9.
51014J(3)withtheloadingenergyofthetwotaillobesΔWL2I2indtEOI2indt0=212withIind(tEO)=2.
05MAandIind(t0)=0from(2),weob-tainfrom(12)=220Hn.
Yetanotherestimatecanbeobtainedusingthetimedependenceoftheiono-sphericeffectiveresistanceReff=UPC/IR1(Fig.
5)calcu-latedbyMIT.
ItisknownthattheinductanceofacircuitwiththeactiveresistanceRandthecurrentrelaxationtimeΔtisL=RΔt.
Duringtheintervalt0–tsofthedurationΔt=3860stheaverageresistanceis=0.
052Ω,whichgives=200Hn.
Therefore,theaverageinductanceofthetaillobesduringtheload-ingphasewas=200–240Hn.
Atthebeginningoftheexpansionphase,Fig.
5showsasharpdropoftheresistanceduringtheinterval04:07–04:14UTfrom0.
04to0.
02Ωfollowedbythefullrecov-eryat04:35UT(Δt≈1200s).
NotethattheminimumvalueofReffat04:14UTwascoincidentwiththemax-imumauroralbrightness(Bakeretal.
2002)andFAC(Mishinetal.
2013).
Theaverageresistanceforthisintervalwas≈0.
03Ω(Ohm),whichcorrespondstotheaverageinductance=Δt≈45Hn.
Anotherestimateofcanbeobtainedusingtheinductionlaw(11)withthevariationofthemagneticflux(6)andcurrent(7)during04:10–04:14UT.
Thisgives=dΨ/dIind≈30Hn.
Theseexperimentalvaluesfortheloadingandunloadingperiodsareofthesameorderofmagnitudeasearliertheoreticalestimates(Lyatsky1978;Alfvén1977;Liuetal.
1988;Sanchezetal.
1991;HortonandDoxas1998).
Asfollowsfromtheseestimates,theaccumulationofthemagneticfluxduringtheloadingphaseisassociatedwiththeaverageinductance~200240Hn,mostlikelyduetothetailstretching.
Duringtheunloadingphase,theinductancedroppeddownto30–45Hnbecauseofthetaildipolarizationandshortening.
Thesharpin-creaseofIR1wassimultaneouswiththedecreaseoftheionosphericresistance(seeFigs.
2and5).
Notethatintheinitial8–10minoftheactivephase,theresistanceisclosetothatobtainedbyAlfvén(1977).
DiscussionТheelectromagneticenergybalanceinsomevolumeVenclosedbythesurfaceSisdefinedbyWBt∮SE→→B→hidS→ZVj→→E→dV13Usually,inordertoanalyzetheenergeticsofasubstorm,ther.
h.
s.
ofthebalanceEq.
(13)isintegratedovertheloadingandunloadingperiods.
Thisgivestheloaded,ΔWload=W*>0,andunloaded,ΔWunload=W0.
Atthebeginningoftheactivephase,thetimederivativebecamenegative,WB/t<0,i.
e.
,theenergywasbeingreleasedowingtotheFaradayeffect(theemergenceoftheinductionEMF).
TherapidreleaseaftertheIMFFig.
5Theeffectiveresistanceoftheionosphere.
Theeffectiveresistanceoftheionosphere,Reff=UPC/IR1,obtainedfromthe1-minMIToutputdata.
ThethickredlineshowsasmootheddependenceMishinetal.
Earth,PlanetsandSpace(2015)67:162Page7of10turnedtothenorthandtheterminationofthePoynt-ingfluxtransferexplainstheobservedsharpincreaseinUPCandIR1.
Pulkkinenetal.
(1998)merelysuggestedthatanimpaireddecreaseofthegeomagneticactivityaftertheexternalsourcewasswitchedoff(IMFnorthwardturning)couldbeexplainedbythecontinuingenergyinputduetoinductiveelectricfields~B/t.
Inthesubstormunderstudyinthispaper,themagneticactivityafterthenorthwardturningwasstillincreas-ing(Fig.
1).
Thiswaslikelycausedbythepositivefeedbackinthemagnetosphere-ionosphereelectriccircuit,whichenhancedtheinductioneffect.
Thus,itappearsthattheinductioneffectnotonlyextendstheexpansionphasebutalsoenhancesitsdevelopmentbyprovidingenergyfortheshortcircuitregimeattheexpansiononset(Mishinetal.
2013).
AslowchangeofthemagneticenergyduringtheloadingphasecanbeunderstoodusingthefactthattherateofmagneticfluxtransferfromthedaysidetothetailislimitedbytheflowvelocityVinthemag-netosheath.
Thereby,thecharacteristictimeτofthefluxaccumulationinthetailofthelengthlisoftheorderofτ=L/V≈12h.
ThemagneticfluxtransferduringtheloadingphasedidnotincreaseFACsandtheionosphericcurrents,sincethegeneratorinthetailwasvirtuallydisconnectedfromthelow-conductiveiono-sphere(Akasofu2013;Mishinetal.
2013).
Duringtheexpansiononset,theionosphericconductivityinthepre-midnightionospheresignificantlyincreasedduetoelectronprecipitation.
Thereby,theinductioncurrentcouldbeclosedthroughtheionosphereviatheregion1current(Mishinetal.
2013).
OurinitialassumptionthattheUPCdropduringtheloadingphasewasduetotheaccumulationofthemagneticenergyinthetailisjustifiedbythefactthatdifferentmethodsgiveclosevaluesoftheloadedenergy.
Finally,wenotethattheelectricfieldpenetrationintothepartsofthetaillobesandpolarcap,whichbeforesubstormswerepassiveanddidnotcausethegeomag-neticactivity,wasenhancedatthebeginningoftheac-tivephase(Mishinetal.
2014).
Indeed,theinductionEMFUind=70kVismuchlargerthantheobservedde-creaseinvoltageΔUPC=13kVinthesecondhalfoftheloadingphase.
Thisisconsistentwiththeearlierresults(PellinenandHeikkila1984;Gordeevetal.
2011;Sandholtetal.
2014).
Onthecontrary,theirvaluesaresufficientlycloseduringtheactivephase(seethe"UPCvariationandtheinductioneffect"section).
ItisalsoworthofnotethatthenumericalestimatesobtainedinthisstudyarebasedonthreemainoutputparametersoftheMIT-ISZF:thetotalintensityoftheR1FAC(IR1),magneticfluxΨthrough,andpotentialdropUPCacrossthepolarcap.
TheseparametersarefoundbytheMITattheionosphere'slevelandspecifytheintegralcharacteristicsofthemagnetotail.
Inthisapproach,thetwogeneratorsofdifferentnature,i.
e.
,thesolarwind-magnetospheredynamo(theDDdynamo)andthesubstormdynamo(theULdynamo),arelocatedatthesamedistanceXinthetailandinthesameY-Zplane.
Inreality,theDDgeneratoristheMHDgener-atordistributedoverthemidnightmagnetotail,whereastheULgeneratorislocatedatX≥10REandcondi-tionedbynon-MHDprocesses(e.
g.
,Kan1993;Lui1996;Akasofu2003;LuiandKamide2003).
Thediffer-entpatternsinthedevelopmentoftheplasmaconvec-tionandionosphericandfield-alignedcurrentsfortheDDandULcomponentsduringthesubstormphaseswereestablishedbynumericalmodeling(KanandSun1996).
Sunetal.
(1998)haveperformedthemathemat-icalseparationofdirectlydrivenandunloadingcompo-nentsintheionosphericequivalentcurrentsduringsubstormsusingthemethodofnaturalorthogonalcomponents.
ConclusionUsingMIT,wedeterminedthemagneticfluxΨ1throughthepolarcapduringthesubstormon27August2001.
Fromitsvariation,weestimatedthemagneticenergystoredinthetailduringtheloadingphaseandreleasedduringtheexpansionphase.
TheexpansiononsetstartedafterthegeneratoratthemagnetopausewasswitchedoffduetoanorthwardturningoftheIMFBZ.
Theenergyexchangewasmostintenseduringthefinal35minoftheloadingphaseandinitial25minoftheunloadingphase.
Theenergyreleasedduringtheinitialperiodoftheactivephaseamountedtoabout70%ofthetotalunloadedenergy.
Therefore,inordertoanalyzethepowerofasubstorm,itseemsnecessarytotakeintoaccountintheenergybalancenotonlyJouledissipationandPoyntingfluxbutalsothetimederivativeofthemagneticenergy,i.
e.
,theeffectoftheelectromagneticinduction.
ThedropofUPCduringtheloadingphasecanbequalitativelydescribedastheeffectoftheaccumulationofthemagneticenergytransferredfromthenoseofthemagnetosphereinthetail,whichdoesnotleadtothegrowthofFACsandclosingcurrentsbecauseofthelowionosphericconductivity.
TheelectromagneticinductioneffectiscapableofexplaininganunusuallystrongenhancementoftheIR1FACandvoltageUPC,aswellastheshort-circuitregime,attheexpansionphaseonset.
Thestretchingofthegeomagnetictailduringtheload-ingphaseleadstotheincreaseofitsinductanceL,whilethedipolarizationandrapidshorteningofthetailduringtheunloadingphaseresultsinthesharpdecreaseofLandtheeffectiveionosphericresistanceReff.
Mishinetal.
Earth,PlanetsandSpace(2015)67:162Page8of10CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsVMMinitiatedanddirectedthestudy.
VVMandSLperformeddatacollectionandcalculation,aswellaspreparationofdrawingsandthemanuscript.
ZPandCW,asallcoauthors,havemadeasignificantcontributiontotheanalysisandinterpretationofdataandreadingandapprovingthefinalmanuscript.
AcknowledgementsWethanktheISTPSBRASMITgroupmembersandDr.
E.
V.
Mishinforstimulatingdiscussionsandassistanceintranslatingthemanuscript.
TheClusterandACEdatasetswereobtainedthroughtheNASACDAWebdataservice.
TheAEindexwasobtainedthroughthewebsiteoftheWorldDataCenterforGeomagnetism,Kyoto.
WearegratefultoPIsoftheCANOPUS,INTERMAGNET,GIMA,MACCS,IMAGEinternationalprojectsandofmagneticnetworksinArcticandtheAntarctic(theShaferInstituteofCosmo-PhysicalResearchandAeronomySBRAS,ArcticandAntarcticResearchInstitute,andDMI),andindividualmagneticobservatoriesforprovidingmagneticdatausedinthisstudy.
VVM,VMM,andSBLaresupportedbytheRussianFoundationforBasicResearchundergrantsnos.
13-05-92219,14-05-91165,and15-05-05561.
Z.
PuissupportedbytheNSFCgrants41211120176and41274167,andC.
WangissupportedbytheNSFCgrant413111039.
Authordetails1InstituteofSolar-TerrestrialPhysicsofSiberianBranchofRussianAcademyofSciences,Irkutsk,Russia.
2PekingUniversity,Beijing,China.
3StateKeyLaboratoryofSpaceWeather,CenterforSpaceScienceandAppliedResearch,ChineseAcademyofSciences,Beijing,China.
Received:19February2015Accepted:23September2015ReferencesAkasofuSI(1975)Thesolarwind-magnetospheredynamoandthemagnetosphericsubstorm.
PlanetSpaceSci23(5):817–23.
doi:10.
1016/0032-0633(75)90018-5AkasofuS-I(2003)Asourceofauroralelectronsandthemagnetosphericsubstormcurrentsystems.
JGeophysRes108(A4):8006.
doi:10.
1029/2002ja009547AkasofuSI(2013)Therelationshipbetweenthemagnetosphereandmagnetospheric/auroralsubstorms.
AnnGeophys31(3):387–94.
doi:10.
5194/angeo-31-387-2013AlfvénH(1977)Electriccurrentsincosmicplasmas.
RevGeophys15(3):271–84.
doi:10.
1029/RG015i003p00271BakerDN,PetersonWK,ErikssonS,LiX,BlakeJB,BurchJL,DalyPW,DunlopMW,KorthA,DonovanE,FriedelR,FritzTA,FreyHU,MendeSB,RoederJ,SingerHJ(2002)Timingofmagneticreconnectioninitiationduringaglobalmagnetosphericsubstormonset.
GeophysResLett29(24):2190.
doi:10.
1029/2002gl015539BaumjohannW,MishinVM,SaifudinovaTI,ShpynevGB,BazarshapovAD(1981)Substorms,microsubstormsanddisruptionofcurrentsinthemagnetosphericplasmasheet.
IssledGeomagnAeronFizSolntsa53:182–91BlakeJB,Mueller-MellinR,DaviesJA,LiX,BakerDN(2005)Globalobservationsofenergeticelectronsaroundthetimeofasubstormon27August2001.
JGeophysRes110:A06214.
doi:10.
1029/2004ja010971BotelerDH,Pirjola*RJ(1998)Thecomplex-imagemethodforcalculatingthemagneticandelectricfieldsproducedatthesurfaceoftheEarthbytheauroralelectrojet.
GeophysJInt132(1):31–40.
doi:10.
1046/j.
1365-246x.
1998.
00388.
xCowleySWH,LockwoodM(1992)Excitationanddecayofsolar-winddrivenflowsinthemagnetosphere-ionospheresystem.
AnnGeophys10:103–15CrookerNU,SiscoeGL(1983)Ringcouplingmodel:Implicationsforsubstormonsets.
GeophysResLett10(8):761-764.
doi:10.
1029/GL010i008p00761.
DungeyJW(1961)Interplanetarymagneticfieldandtheauroralzones.
PhysRevLett6(2):47–8.
doi:10.
1103/PhysRevLett.
6.
47ErikssonS,ierosetM,BakerDN,MouikisC,VaivadsA,DunlopMW,RèmeH,ErgunRE,BaloghA(2004)Walénandslow-modeshockanalysesinthenear-Earthmagnetotailinconnectionwithasubstormonseton27August2001.
JGeophysRes109(A10):A10212.
doi:10.
1029/2004ja010534GordeevEI,SergeevVA,PulkkinenTI,PalmrothM(2011)Contributionofmagnetotailreconnectiontothecross-polarcapelectricpotentialdrop.
JGeophysRes116(A8):A08219.
doi:10.
1029/2011JA016609HeikkilaWJ,ChenT,LiuZX,PuZY,PellinenRJ,PulkkinenTI(2001)NearEarthcurrentmeander(Necm)modelofsubstorms.
SpaceSciRev95(1):399–414.
doi:10.
1023/A:1005223222128HortonW,DoxasI(1998)Alow-dimensionaldynamicalmodelforthesolarwinddrivengeotail-ionospheresystem.
JGeophysRes103(A3):4561–72.
doi:10.
1029/97ja02417HughesTJ,RostokerG(1979)Acomprehensivemodelcurrentsystemforhigh-latitudemagneticactivity—I.
Thesteadystatesystem.
GeophysJRAstronSoc58(3):525–69.
doi:10.
1111/j.
1365-246X.
1979.
tb04793.
xKanJR(1993)Aglobalmagnetosphere-ionospherecouplingmodelofsubstorms.
JGeophysRes98(A10):17263–75.
doi:10.
1029/93ja01168KanJR,SunW(1996)Substormexpansionphasecausedbyanintenselocalizedconvectionimposedontheionosphere.
JGeophysRes101(A12):27271–81.
doi:10.
1029/96ja02426LiX,SarrisTE,BakerDN,PetersonWK,SingerHJ(2003)SimulationofenergeticparticleinjectionsassociatedwithasubstormonAugust27,2001.
GeophysResLett30(1):1004.
doi:10.
1029/2002gl015967LiuZX,LeeLC,WeiCQ,AkasofuSI(1988)Magnetosphericsubstorms:anequivalentcircuitapproach.
JGeophysRes93(A7):7366–75.
doi:10.
1029/JA093iA07p07366LiuWW,DonovanEF,LiangJ,VoronkovI,SpanswickE,JayachandranPT,JackelB,MeurantM(2007)Ontheequatorwardmotionandfadingofprotonauroraduringsubstormgrowthphase.
JGeophysRes112(A10):A10217.
doi:10.
1029/2007ja012495LockwoodM,DavisCJ(1999)ThecorrectapplicationofPoynting'stheoremtothetime-dependentmagnetosphere:replytoHeikkila.
AnnGeophys17(2):178–81.
doi:10.
1007/s00585-999-0178-2LotkoW(2004)Inductivemagnetosphere-ionospherecoupling.
JAtmosSolTerrPhys66(15–16):1443–56.
doi:10.
1016/j.
jastp.
2004.
03.
027LuiATY(1996)CurrentdisruptionintheEarth'smagnetosphere:observationsandmodels.
JGeophysRes101(A6):13067–88.
doi:10.
1029/96ja00079LuiATY,KamideY(2003)Afreshperspectiveofthesubstormcurrentsystemanditsdynamo.
GeophysResLett30(18):1958.
doi:10.
1029/2003gl017835LyatskyWB(1978)Currentsystemsofthemagnetosphere-ionospheredisturbances.
Nauka,Leningrad,RussiaMendeSB,EatherRH(1976)Monochromaticall-skyobservationsandauroralprecipitationpatterns.
JGeophysRes81(22):3771–80.
doi:10.
1029/JA081i022p03771MilanSE,ProvanG,HubertB(2007)MagneticfluxtransportintheDungeycycle:asurveyofdaysideandnightsidereconnectionrates.
JGeophysRes112(A1):A01209.
doi:10.
1029/2006ja011642MishinVM(1990)Themagnetograminversiontechniqueandsomeapplications.
SpaceSciRev53(1):83–163.
doi:10.
1007/bf00217429MishinVM,SaifudinovaT,BazarzhapovA,RussellCT,BaumjohannW,NakamuraR,KubyshkinaM(2001)Twodistinctsubstormonsets.
JGeophysRes106(A7):13105–18.
doi:10.
1029/2000ja900152MishinVM,FrsterM,KurikalovaMA,MishinVV(2011)Thegeneratorsystemoffield-alignedcurrentsduringtheApril06,2000,superstorm.
AdvSpaceRes48(7):1172–83.
doi:10.
1016/j.
asr.
2011.
05.
029MishinVV,MishinVM,LunyushkinSB,SapronovaLA(2012)Voltagefadingduringthe27.
08.
2001substorm.
In:TroyanVN,SemenovVS,KubyshkinaMV(eds)Proceedingsofthe9thInternationalConference"ProblemsofGeocosmos".
Saint-PetersburgStateUniversity,SPb,Russia,St.
Petersburg,Petrodvorets,Russia,pp327–9MishinVM,PuZ,MishinVV,LunyushkinSB(2013)Short-circuitinthemagnetosphere-ionosphereelectriccircuit.
GeomagnAeron53(6):809–11.
doi:10.
1134/s001679321306008xMishinVV,MishinVM,PuZ,LunyushkinSB,SapronovaLA,SukhbaatarU,BaishevDG(2014)Oldtaillobeseffectonthesolar-wind—magnetosphereenergytransportforthe27August2001substorm.
AdvSpaceRes54(12):2540–8.
doi:10.
1016/j.
asr.
2014.
09.
013OhtaniS,UozumiT(2014)Nightsidemagnetosphericcurrentcircuit:timeconstantsofthesolarwind-magnetospherecoupling.
JGeophysResSpacePhysics119(5):3558–72.
doi:10.
1002/2013ja019680PellinenRJ,HeikkilaWJ(1984)Inductiveelectricfieldsinthemagnetotailandtheirrelationtoauroralandsubstormphenomena.
SpaceSciRev37(1–2):1–61.
doi:10.
1007/bf00213957PulkkinenTI,BakerDN,FrankLA,SigwarthJB,OpgenoorthHJ,GreenwaldR,Friis-ChristensenE,MukaiT,NakamuraR,SingerH,ReevesGD,LesterMMishinetal.
Earth,PlanetsandSpace(2015)67:162Page9of10(1998)Twosubstormintensificationscompared:onset,expansion,andglobalconsequences.
JGeophysRes103(A1):15–27.
doi:10.
1029/97ja01985RussellCT(2000)HownorthwardturningsoftheIMFcanleadtosubstormexpansiononsets.
GeophysResLett27(20):3257–9.
doi:10.
1029/2000gl011910SanchezER,SiscoeGL,MengCI(1991)Inductiveattenuationofthetranspolarvoltage.
GeophysResLett18((7):1173–6.
doi:10.
1029/91gl01155SandholtPE,FarrugiaCJ,DenigWF(2014)M-Icouplingacrosstheauroralovalatduskandmidnight:repetitivesubstormactivitydrivenbyinterplanetarycoronalmassejections(CMEs).
AnnGeophys32(4):333–51.
doi:10.
5194/angeo-32-333-2014ShelomentsevVV,MishinVM,LunyushkinSB,SaifudinovaTI,ShirapovDS(1988)Substormelectricfielddynamicsasdeducedfromgrounddiagnosticdata.
IssledGeomagnAeronFizSolntsa82:170–90SiscoeGL,LoveJJ,GannonJL(2012)ProblemoftheLove-GannonrelationbetweentheasymmetricdisturbancefieldandDst.
JGeophysRes117(A9):A09216.
doi:10.
1029/2012ja017879SpanswickE,DonovanE,LiuW,LiangJ,BlakeJB,ReevesG,FriedelR,JackelB,CullyC,WeatherwaxA(2009)Globalobservationsofsubstorminjectionregionevolution:27August2001.
AnnGeophys27(5):2019–25.
doi:10.
5194/angeo-27-2019-2009SunW,XuWY,AkasofuSI(1998)Mathematicalseparationofdirectlydrivenandunloadingcomponentsintheionosphericequivalentcurrentsduringsubstorms.
JGeophysRes103(A6):11695–700.
doi:10.
1029/97ja03458TakedaM(2008)Effectsoftheinductionelectricfieldonionosphericcurrentsystemsdrivenbyfield-alignedcurrentsofmagnetosphericorigin.
JGeophysRes113(A1):A01306.
doi:10.
1029/2007ja012662TangCL,AngelopoulosV,RunovA,RussellCT,FreyH,GlassmeierKH,FornaconKH,LiZY(2010)PrecursoractivationandsubstormexpansionassociatedwithobservationsofadipolarizationfrontbyThermalEmissionImagingSystem(THEMIS).
JGeophysRes115(A7):A07215.
doi:10.
1029/2009ja014879VanhamkiH,AmmO(2011)Analysisofionosphericelectrodynamicparametersonmesoscales—areviewofselectedtechniquesusingdatafromground-basedobservationnetworksandsatellites.
AnnGeophys29(3):467–91.
doi:10.
5194/angeo-29-467-2011ViljanenA,TanskanenE(2011)Climatologyofrapidgeomagneticvariationsathighlatitudesovertwosolarcycles.
AnnGeophys29(10):1783–92.
doi:10.
5194/angeo-29-1783-2011VodyannikovVV,GordienkoGI,NechaevSA,SokolovaOI,KhomutovSY,YakovetsAF(2006)Geomagneticallyinducedcurrentsinpowerlinesaccordingtodataongeomagneticvariations.
GeomagnAeron46(6):809–13.
doi:10.
1134/s0016793206060168WangH,MaSY,LührH,LiuZX,PuZY,EscoubetCP,FreyHU,RémeH,RitterP(2006)Globalmanifestationsofasubstormonsetobservedbyamulti-satelliteandgroundstationnetwork.
AnnGeophys24(12):3491–6.
doi:10.
5194/angeo-24-3491-2006ZhangJJ,WangC,TangBB(2012)ModelinggeomagneticallyinducedelectricfieldandcurrentsbycombiningaglobalMHDmodelwithalocalone-dimensionalmethod.
SpaceWeather10(5):S05005.
doi:10.
1029/2012sw000772Submityourmanuscripttoajournalandbenetfrom:7Convenientonlinesubmission7Rigorouspeerreview7Immediatepublicationonacceptance7Openaccess:articlesfreelyavailableonline7Highvisibilitywithintheeld7RetainingthecopyrighttoyourarticleSubmityournextmanuscriptat7springeropen.
comMishinetal.
Earth,PlanetsandSpace(2015)67:162Page10of10

热网互联33元/月,香港/日本/洛杉矶/韩国CN2高速线路云主机

热网互联怎么样?热网互联(hotiis)是随客云计算(Suike.Cloud)成立于2009年,增值电信业务经营许可证:B1-20203716)旗下平台。热网互联云主机是CN2高速回国线路,香港/日本/洛杉矶/韩国CN2高速线路云主机,最低33元/月;热网互联国内BGP高防服务器,香港服务器,日本服务器全线活动中,大量七五折来袭!点击进入:热网互联官方网站地址热网互联香港/日本/洛杉矶/韩国cn2...

硅云香港CN2+BGP云主机仅188元/年起(香港云服务器专区)

硅云怎么样?硅云是一家专业的云服务商,硅云的主营产品包括域名和服务器,其中香港云服务器、香港云虚拟主机是非常受欢迎的产品。硅云香港可用区接入了中国电信CN2 GIA、中国联通直连、中国移动直连、HGC、NTT、COGENT、PCCW在内的数十家优质的全球顶级运营商,是为数不多的多线香港云服务商之一。目前,硅云香港云服务器,CN2+BGP线路,1核1G香港云主机仅188元/年起,域名无需备案,支持个...

CloudCone(12.95美元/月CN2 GT线路,KVM架构1 Gbps带宽

整理一下CloudCone商家之前推送的闪购VPS云服务器产品,数量有限,活动推出可能很快机器就售罄了,有需要美国便宜VPS云服务器的朋友可以关注一下。CloudCone怎么样?CloudCone服务器好不好?CloudCone值不值得购买?CloudCone是一家成立于2017年的美国服务器提供商,国外实力大厂,自己开发的主机系统面板,CloudCone主要销售美国洛杉矶云服务器产品,优势特点是...

ww.00271.com为你推荐
2020双十一成绩单如何查找2020年小考六年级的成绩?梦之队官网NBA梦之队是什么游戏?蓝色骨头手机谁有崔健执导的电影《蓝色的骨头》。阿丽克丝·布莱肯瑞吉唐吉诃德·多弗朗明哥知道什么秘密www.hao360.cn每次打开电脑桌面都出现以下图标,打开后链接指向www.hao.360.cn。怎么彻底删除?seo优化工具SEO优化要用到什么软件?网站检测如何进行网站全面诊断www.7788dy.com回家的诱惑 哪个网站更新的最快啊javmoo.com找下载JAV软件格式的网站www.baitu.com韩国片爱人.欲望的观看地址
虚拟空间哪个好 naning9韩国官网 香港vps99idc rackspace gomezpeer 新世界电讯 回程路由 2017年黑色星期五 美国php空间 2017年万圣节 毫秒英文 me空间社区 刀片式服务器 泉州电信 万网主机管理 国内域名 全能空间 贵阳电信测速 免费稳定空间 博客域名 更多