plateletww.00271.com

ww.00271.com  时间:2021-03-23  阅读:()
REVIEWOpenAccessBlood-brainbarrierpermeabilityandphysicalexerciseMartaA.
Makiewicz1,2,ArkadiuszSzarmach3,AgnieszkaSabisz3,WiesawJ.
Cubaa2,EdytaSzurowska3andPaweJ.
Winklewski1,3,4*AbstractInthisnarrativereview,atheoreticalframeworkonthecrosstalkbetweenphysicalexerciseandblood-brainbarrier(BBB)permeabilityispresented.
WediscusstheinfluenceofphysicalactivityonthefactorsaffectingBBBpermeabilitysuchassystemicinflammation,thebrainrenin-angiotensinandnoradrenergicsystems,centralautonomicfunctionandthekynureninepathway.
ThepositiveroleofexerciseinmultiplesclerosisandAlzheimer'sdiseaseisdescribed.
Finally,thepotentialroleofconditioningaswellastheeffectofexerciseonBBBtightjunctionsisoutlined.
ThereisabodyofevidencethatregularphysicalexercisediminishesBBBpermeabilityasitreinforcesantioxidativecapacity,reducesoxidativestressandhasanti-inflammatoryeffects.
Itimprovesendothelialfunctionandmightincreasethedensityofbraincapillaries.
Thus,physicaltrainingcanbeemphasisedasacomponentofpreventionprogramsdevelopedforpatientstominimisetheriskoftheonsetofneuroinflammatorydiseasesaswellasanaugmentationofexistingtreatment.
Unfortunately,despiteasoundtheoreticalbackground,itremainsunclearastowhetherexercisetrainingiseffectiveinmodulatingBBBpermeabilityinseveralspecificdiseases.
Furtherresearchisneededastheimpactofexerciseisyettobefullyelucidated.
Keywords:Blood-brainbarrierpermeability,Physicalexercise,Inflammation,Brainrenin-angiotensinsystem,Centralautonomicfunction,KynureninepathwayIntroductionTheblood-brainbarrier(BBB)separatesthecentralner-voussystem(CNS)fromtheperipheraltissues.
InordertomaintainhomeostasisintheCNS,theBBBcontrolsmater-ial,nutrientsandcelltransferfromthebloodtothebrainandfromthebraintotheblood.
TheBBBrestrictstheentryofperipheralinflammatorymediators(e.
g.
cytokines,antibodies,etc.
),whichcanimpairneurotransmission[1].
TheBBBalsoparticipatesintheclearanceofcellularme-tabolitesandtoxinsfromthebraintotheblood[2,3]andregulatesthecompositionandvolumeofthecerebrospinalfluid.
TheBBBisacomplexstructureconsistingofendo-thelialcells,pericytes,vascularsmoothmusclecells,astro-cytes,microgliaandneurons[2,4–7]asislocatedbetweenthebrainparenchymaandthevascularsystem.
Interactionsbetweenthesecomponentshaveledtotheconceptoftheneurovascularunit,whereeachcelltypecontributestoBBBfunction[8].
ThemainstructuresresponsibleforthebarrierpropertiesoftheBBBaretightjunctions(TJs)[9–15].
Themaintenanceofadherence,gapandtightjunctionsbetweendifferentcelltypeswithintheneurovascularunitoftheBBBisessentialforCNShomeostasis[2,16].
BBBdistur-bancescommonlyoccurinneuronaldysfunction,neuroin-flammationandneurodegeneration[2].
NumerouspathologicstatescancausedisturbancesintheBBB,includingtrauma,hypoxia,infection,activationoftheclottingsystem,inflammation,dietarycomponents,en-vironmentaltoxinsandgeneticfactors[17].
Theassociationbetweenhigh-gradeinflammatoryresponsessuchasmen-ingitis,encephalitis,sepsis,localandsystemicinfectionsandincreasedpermeabilityoftheBBBformanysubstancesandimmunecellshasbeenwidelyacknowledged[18].
Re-cently,itbecameapparentthatlow-gradesystemicinflam-mationalsosubstantiallyaffectstheBBB[19].
Low-gradeinflammationaffectsabout40%ofthepopulationinWesterncountries,asitoccursduetometabolicsyndrome,insulinresistance,type2diabetes,arterialhypertension,*Correspondence:pawelwinklewski@wp.
pl1DepartmentofHumanPhysiology,FacultyofHealthSciences,MedicalUniversityofGdansk,TuwimaStr.
15,80-210Gdansk,Poland32-ndDepartmentofRadiology,FacultyofHealthSciences,MedicalUniversityofGdansk,Gdansk,PolandFulllistofauthorinformationisavailableattheendofthearticleTheAuthor(s).
2019OpenAccessThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.
0InternationalLicense(http://creativecommons.
org/licenses/by/4.
0/),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.
TheCreativeCommonsPublicDomainDedicationwaiver(http://creativecommons.
org/publicdomain/zero/1.
0/)appliestothedatamadeavailableinthisarticle,unlessotherwisestated.
Makiewiczetal.
JournalofNeuroinflammation(2019)16:15https://doi.
org/10.
1186/s12974-019-1403-xdyslipidaemiaandobesity[20–22].
BBBdisruptionreferstoareductioninbarriertightnessandanincreaseinleakiness.
LossofBBBintegrityallowsfortheentranceofcytokinesandimmunecellsintotheCNS,whichactivatesglialcellsandcausesthealterationsintheextracellularenvironment.
Moreover,thesechangesleadtosecondaryinflammationandfurtherdamagetotheBBB,withtheleakageofplasmaproteinsandneurotoxicsubstances[23,24].
CNSinflammationdeterminestheseverityanddiseasecourseofnumerouspsychiatricandneurologicaldisor-dersandcanbebothcausedbyandresultfromBBBdysfunction;aninflammatoryresponseinthebrainmightleadtoendothelialcelldamageandincreasedBBBpermeability[25].
ThepermeabilityoftheBBBisalteredinmanyCNSpathologies,includingbraininjury,ische-micstroke,multiplesclerosis(MS),epilepsy,Parkinson'sdisease,Alzheimer'sdiseaseandmajordepression.
AconnectionhasalsobeenreportedbetweenBBBimpair-mentandpsychiatricdisorderssuchasmooddisorders,psychosis,autismspectrumdisorderandevenchronicsleepdisorder[1,26–29].
Ithasbeenwelldiscussedintheliteraturethatinflam-matorymechanismsarerelatedtothephysiopathologyofneuropsychiatricdisordersthroughseveralmechanisms.
Amongthemareglialactivation[30],neuronaldamageanddegeneration[31],increasedoxidativestress[32],re-ducedneurotrophicsupport[33],alteredneurotransmittermetabolism[34]andBBBdisruption[35].
Exercisetrainingisanimportantbehaviouralinterven-tionthathasnumerousbeneficialhealtheffects.
Epi-demiologicalstudiesindicatethatphysicalactivityleadstosystemicadaptationsandanelongatedhealth-span,thustimeoflifeingoodhealth,indifferenthumanco-horts[36,37].
Ampleevidencesuggeststhatthepracticeofphysicalexerciseimprovessomecardiovascularriskfactors,suchasthepercentageofbodyfat,insulinresist-anceandhighbloodpressure,whichareassociatedwithincreasedstiffeningofthearteries[38].
Moreover,ithasbeenshownthatphysicalexercisehasanimpactoninflammationandimprovedendothelialfunctionbyincreasingbloodflow,whichleadstoincreasedshearstress,stimulatingthereleaseofnitricoxide.
Inthisnarrativereview,weaimtoprovideastate-of-the-artsummaryoftheinfluenceofexerciseonBBBin-tegrity.
Consequently,wediscusstheinfluenceofphys-icalactivityonsystemicinflammation,thebrainrenin-angiotensinandnoradrenergicsystemsandcentralauto-nomicfunction,aswellasthekynureninepathway.
Therearenumerousmechanismsthroughwhichlong-termphysicalactivityaffectstheBBBandCNS.
Itcaneitherdiminishinflammationontheperipherallevel,therebyreducingtheriskofCNSinfiltrationofimmunecells,orprotecttheBBBthroughtheconstitutionofitstightjunctions.
ExerciseandsystemicinflammationDiabetesmellitusandobesityareexemplardiseasescharacterisedbylow-gradeinflammation[39,40].
Notably,inflammationandmetabolicdysfunctionarefrequentlyassociatedwithoxidativestressinadiposedepots[41–43].
Overweightandobesepatientswithadiagnosisoftype2diabetesmellitusshowincreasedbloodlevelsofpro-inflammatorycytokinesandmarkers(e.
g.
IL-1β,IL-6andTNF-α)[44–46].
Thesemoleculesarealsoincreasedinthebrain,cerebrospinalfluidandinthebloodofpa-tientswithAlzheimer'sdiseaseorothertypesofdementia[47];moreover,anoverlapbetweenthepathogenesisofAlzheimer'sdiseaseanddiabetesmellitusisevident.
Pro-inflammatorycytokinescanpassthroughtheBBBandinducestress-activatedpathways,promotingbrainin-sulinresistance,mitochondrialdysfunction[19]andtheaccumulationofneurotoxicbeta-amyloid(Aβ)oligomers[48]leadingtosynapticloss,neuronaldysfunctionandcelldeath.
Increasedceramideproductioncausedbydysregu-latedlipidmetabolismalsooccurswithinsulinresistance[49];thesemoleculescanpassthroughtheBBB,inducepro-inflammatoryreactionsanddisturbbraininsulinsignalling[50].
Physicaltrainingmaybecrucialinpreventingaswellasdiminishingthisdamage.
Regularphysicalexerciserein-forcesantioxidativecapacity,reducesoxidativestressandhasanti-inflammatoryeffects.
Itimprovesendothelialfunc-tionandmightincreasethedensityofbraincapillaries.
Physicaltrainingcanfurthercounteractdyslipidaemiaandreduceincreasedceramidelevels[51,52],anditmayhaveasuppressiveeffectontheBBBdamagecycle.
AbdEl-Kaderetal.
[53]presenteddatathatbothenduranceandstrengthtrainingcanpotentiallyalleviatetheinflammatorystateduetoareductioninTNF-αlevelsintype2diabetesmellituspatients.
DeSennaetal.
[54]havealsodemonstratedthatexerciseimprovesthestructuralcomponentsoftheBBBindiabeticrats.
Regularexercisetraininginducesareductioninadiposetissue-derivedpro-inflammatorycytokineslikeIL-6,TNF-αandMCP-1[55–58],whichareassociatedwithlow-gradesystemicinflammationandprovidesreductioninwhole-bodyinsulinresistance[59].
Importantly,physicalactivityisabletodecreaseinflam-mationindependentlyfromweightloss,throughareduc-tionininflammatorycytokinesreleasefromskeletalmuscles.
Similartoadiposetissueaswellasimmunecells,skeletalmuscle,whichisthelargestorganinthehumanbody,producesandreleasesinflammatorycytokinessuchasIL-4,IL-6,IL-8,IL-15andTNF-α[60–62].
Thesecyto-kinesarethereforealsocalledmyokines[60,63].
HandschinandSpiegelman[64]hypothesisedthatphysicalactivitycanbroadlysuppressmyokineexpressionthroughtheupregulationofskeletalmuscleperoxisomeproliferatoractivatedreceptor1α.
Theupregulationofthisreceptorisinducedbyphysicalactivity[65].
InastudybyAronsonetMakiewiczetal.
JournalofNeuroinflammation(2019)16:15Page2of16al.
[66],C-reactiveprotein(CRP)concentrationsdecreasedcontinuouslywithincreasinglevelsofphysicalfitness.
In-creasesincirculatingIL-6havebeenobservedafterper-formingexercisewithoutmuscledamage;thisinturnreducespro-inflammatorycytokinesviathestimulationoftheanti-inflammatorycytokinesIL-1raandIL-10[61].
ArecentstudybyChupeletal.
[67]showedthatphysicalexercisecanmaintainBBBintegrity.
Theanti-inflammatoryeffectofcombinedexercisetrainingandtaurinesupplemen-tationonperipheralmarkersofBBBintegrity,inflammationandcognitionin48elderlywomenwasinvestigated.
TheresultsshowedareductioninTNF-αandIL-6,aswellasareductionintheIL-1β/IL-1ra,IL-6/IL-10andTNF-α/IL-10ratiosinthecombinedexercisetraininggroup.
Inter-estingly,theimprovementincognitivefunctionwasreportedonlyinwomensubjectedtobothexerciseandtaurineaugmentation.
ExerciseandkynureninepathwayBrainandperipheralinflammatorystatescanalsopro-moteBBBfailurethroughtryptophan(TRP)catabolismasaconsequenceofkynureninepathwayactivation,whichisalsoconnectedwithglutamatergicexcitotoxicity.
Trypto-phanismetabolisedviaseveralpathways,themainonebeingthroughkynurenine(KYN)[68],whichisinvolvedinseveralconditionsincludingcancer,inflammatorydis-orders,diabetesmellitus,neurologicalandneurodegenera-tivediseases.
Tryptophanisdegradedintokynureninebytheenzymeindoleamine2,3-dioxygenase(IDO)[69,70].
Kynurenineisthenmetabolisedintoneuroprotectivekynurenicacid(KYNA)bykynurenineaminotransferases(KATs)orintoneurotoxicproductssuchasquinolinicacid(QUIN)oranthranilicacid.
QUINisaselectiveagon-istofN-methyl-D-aspartate(NMDA)receptors,andapo-tentneurotoxinduetoitsabilitytoinducetheproductionofreactiveoxygenspecies.
KYNreducestheactivityofnaturalkillercells,dendriticcellsorproliferatingTcells,whereasKYNApromotesmonocyteextravasationandcontrolscytokinerelease.
HighlevelsofQUINhavebeenassociatedwithneuronalexcitotoxicity,whereasKYNAhasbeenreportedasaneuroprotectivefactor[71]throughitsinhibitoryactionatglutamatergicexcitatorysynapses[72].
Amongthekynureninepathwaymetabolites,QUINislikelytobeoneofthemostimportantintermsofbio-logicalactivityandtoxicity[73].
BothKYNAandQUINhavebeenfoundtobedysregulatedinmajordepressivedisordersandschizophrenia[74].
Pro-inflammatorymedi-atorssuchasTNF-αcanpromoteQUINproduction[75],whileIL-1βpotentiatesquinolinate-mediatedexcitotoxi-city[68].
Thisisparticularlyimportantinsituationsin-volvingmacrophageinfiltrationacrosstheBBB.
InCNSinflammatorystates,IDOismainlyactivatedinmicroglialcells,whichpreferentiallymetabolisetryptophanintotheNMDAreceptoragonistQUIN.
ThemostpotentactivatorofIDOisinterferongamma(IFN-γ)[70,76].
Thereforeanimbalanceintype1/type2immuneresponses,associatedwithanastrocyte/microgliaimbalance,leadstoserotonergicdeficiencyandglutamatergicoverproduction.
Astrocytesarefurtherstronglyinvolvedinthere-uptakeandmetabolicconversionofglutamate.
Areducednumberofastrocytescouldcontributetobothdiminishedcounter-regulationofIDOactivityinmicrogliaandalteredglutamatergicneuro-transmission.
BindingofexcessglutamatetodysregulatedBBBendothelialcellionicNMDAreceptorsandmetab-otropicglutamatereceptorscanincreaseintracellularCa2+-dependentoxidativestressandBBBpermeabilitybyincreasingCa2+influxandreleasefromendoplasmicreticulumstores,respectively.
Skeletalmusclehasrecentlybeenadded[77]tothelistoftissuesthatcontributetokynureninepathwaymetab-olism.
Thishappensinthesettingofexercisetraining,whichenhancesKATgeneexpressionandtheconver-sionoftoxicKYNtoneuroprotectiveKYNA.
Theneuro-protectiveeffectofKYNAisgenerallyattributedtoitsantagonisticactiononNMDAreceptors.
IthasbeenfoundbyAndrásandcolleagues[78]thatahighglutamateleveldiminishesthefunctionoftheBBBviaendothelium-expressedNMDAreceptor-dependentoccludinphosphorylation.
KYNAisnotonlyanendogen-ousNMDAreceptorblockerbutalsoanon-competitiveinhibitoroftheα7-nicotinicacetylcholinereceptor[68,79,80];throughthismechanism,KYNAcandecreaseglu-tamaterelease[81].
Inthismanner,KYNAcanreducepathologicalglutamatelevelsandprotectthestructureoftheBBB[78].
TheeffectofexercisetrainingontheBBBhighlightsanimportantmechanismofinter-organcross-talkaskynurenineaccumulationcanbesuppressedbyactivatingitsclearanceinexercisedskeletalmuscles.
Exerciseandtherenin-angiotensin-aldosteronepathwayThereisalinkagebetweenangiotensinII(AngII),oneoftherenin-angiotensin-aldosteronefactors,andthedisrup-tionoftheBBB,especiallyinhypertensionstates[82–84].
AlthoughAngIIisknownasacardiovascularmediator,withaprimaryroleintheregulationofbloodpressureandfluidhomeostasis[85],itperformsasanimmunesys-temmodulatoraswell.
AngIIcaninitiateinflammationbyindirectpromotionofvascularpermeabilityandtherecruitmentofinflammatorycells[86].
AngIImayalsoactivatebothinnateandadaptiveimmunity[86,87].
AngIIdirectlymodulatestranscytoticandparacellularpermeabilityinBBBendothelialcellsandcouldcontrib-utetothepathophysiologyofhypertensiveencephalop-athy.
BothcirculatingAngIIviaAngIItype1receptors(AT1)ontheendotheliumandlocallysynthesisedAngIIcanresultinvasculardysfunctionandmicroglialactiva-tion,increasetheproductionofreactiveoxygenspecies,Makiewiczetal.
JournalofNeuroinflammation(2019)16:15Page3of16disruptendothelialnitricoxidesynthaseactivityandin-tensifypro-inflammatorycytokinesynthesis,whichareim-portantfactorsforsympathoexcitationcentressuchastheparaventricularnucleus(PVN)ofthehypothalamusandtherostralventrolateralmedulla(RVLM)inneurogenichypertension[88–90].
However,onestudyhasindicatedthatinhibitionofAT1blockshypertension-relatedincreasesincellpermeabilityandcerebraloedema,evenintheab-senceofloweredbloodpressure[91].
Thissuggestsarolefortherenin-angiotensin-aldosteronesystemandAngIIinmodulatingBBBfunction.
BBBdisruptionnotonlyfacili-tatesAngIIaccessbutalsoallowscirculatinginflammatorycellstoenterintothebrainparenchyma,contributingtofurthermicroglialactivationandinflammationinauto-nomicareassuchasthePVNofthehypothalamusandtheRVLM[89,90].
Theseresponsesalterneurovascularcoup-ling,dysregulatecerebralperfusionandmarkedlyaugmentneuronaldischarge,thusexacerbatingsympathoexcitationinhypertensiveanimals[83,92,93].
PhysicalexercisehasbeenshowntobehighlyefficientinreducingtheharmfuleffectofhypertensiononBBBleakageinautonomicbrainareas,whichstronglycorrelateswiththeimprovementofbothparasympatheticandsympatheticcontrolofcardiovascularparameters,eveninthepersist-enceofhypertension.
Recentstudieshaveestablishedtheefficacyofaerobictrainingtodownregulatethebrainrenin-angiotensinsystemandcorrectautonomicdysfunc-tioninspontaneouslyhypertensiverats[94,95].
Theserats,after2weeksofphysicalexercise,havebeenreportedtomaintainnormalangiotensinogenexpressionwithinauto-nomicareas,whichiscorrelatedwithreducedsympatheticoutflowtotheheartandvesselsandprecedesapartialfallinarterialpressure[96].
Exercisetrainingrestoresthebal-ancebetweentheexcitatoryandinhibitoryneurotransmit-tersaswellasbetweenpro-andanti-inflammatorycytokines,andattenuatesoxidativestressinthePVN[97].
Trainedspontaneouslyhypertensiveratsdemonstrateaninstantnormalisationofthebaroreceptorreflexcontrolofheartratethatcoincideswithamarkedreductioninoxida-tivestressandinflammationinthehypothalamicPVN[98].
Similartraining-inducedeffectshavealsobeenobservedinotherautonomicareas[94,95].
Itisalreadyknownthatacutephysicalactivityinducessympatheticmodulation[99].
Conversely,regularexercisemaybeassociatedwithprogressivesympatheticwithdrawalandincreasingpara-sympatheticdominanceasaresultofadaptationsoftheperipheralandcentralregulatorysystems[99].
Ithasbeenshownthathypertensionischaracterisedbyautonomicim-pairment,BBBleakageandAngII-inducedneuronalactiva-tionandthatexercisetrainingishighlyeffectiveatpreventingAngII-inducedeffectsandimprovingauto-nomicfunction[100].
PhysicaltrainingchangesthetissueAngIIcontentaswellandsuppressesmicroglialactivation,crucialfactorsforboththemaintenanceofBBBintegrityandthenormalisationofautonomiccontrolofthecircula-tioninhypertensiveindividuals.
Accordingtosomeau-thors,theremaybeasystemofglobalcontroloverthepermeabilityofthecerebralmicrovasculatureviathecho-linergicnervoussystem[101].
Duetothefactthatexerciseinducesashifttowardparasympatheticdominance,thismechanismmayalsobefavoured.
Thereisaninteractionbetweenneurotransmitters,pro-inflammatorycytokinesandenhancedoxidativestressinthePVNwhichplayakeyroleinsympatheticregulationofbloodpressure[95].
Inspontaneouslyhypertensiverats,reactiveoxygenspeciesintheRVLMareknowntoenhanceglutamatergicexcitatoryinputsandimpairGABAergicin-hibitoryinputstotheRVLM,resultinginincreasedsym-pathoexcitatoryinputtotheRVLMfromthePVN[102].
Amongtheknownpressoragents,AngIIandglutamateplaypivotalrolesinthebraincentresinvolvedinbloodpressurecontrolinbothnormotensiveandspontaneouslyhypertensiverats[103].
Thelinkbetweenbrainangiotensi-nergicandglutamatergicsignallinghasbeendemonstratedbyVieiraetal.
[104].
Themajorsympatheticoutputpath-wayforthetonicandreflexcontrolofbloodpressure,whichusesglutamateasatransmitter,arisesintheRVLM[105].
InjectionofAngIIintotheRVLMofunanaesthe-tisedratsexaggeratesthepressorresponsetoglutamate.
Additionally,ithasbeenspeculatedthatAngIItakespartinglutamatepressorresponsesviaapresynapticincreaseinglutamatergicinputintotheRVLM[106].
Referringtothis,KYNA(aglutamateantagonist)isthoughttobeahypotensiveagent.
Millsetal.
[107]havereportedthatintrathecalKYNAadministrationdecreasesbloodpressure,especiallyinanesthetisedspontaneouslyhypertensiveratsandstroke-pronespontaneouslyhypertensiverats,withalessnoticeableeffectinnormotensiverats.
Itcanbeassumedthatinhypertensionstates,thereisanabilityofphysicalexercisetocorrectsympathetichyperactivity,reduceAngIIavailability,decreaseoxida-tivestressandinflammationinthePVNandRVLMandrestoreBBBintegrity.
ExerciseandbrainnoradrenergicsystemDuringphysicalexercise,itiswellknownthatperipher-allycirculatingepinephrineandnorepinephrine(NE)ac-tivateβ-adrenoceptorsofthevagusnerveafferentsprojectingtothelocuscoeruleus,whichplaysapivotalroleintheregulationofautonomicactivityandcognitivefunctions[108–112].
Theoptimalstimulationoflocuscoeruleusmightbeacrucialelementofmodulatingcog-nitivefunctionwithexercise[113].
BrainNEisalsore-portedtosuppresstheinflammatorygenetranscription.
ItisclearfromthefindingsofHetieretal.
[114]andFrohmanetal.
[115]thatanti-inflammatoryactionofNEisexertedviamicrogliaandastrocytesβ2-receptors.
Immunecellsexpressbothtypesofreceptors,andTandMakiewiczetal.
JournalofNeuroinflammation(2019)16:15Page4of16Blymphocytesexpressβ2-receptorsalmostexclusively[116].
Engagementofβ2-receptorsactivatesacascadeofsignalingintermediates,includingcyclicadenosinemonophosphate(cAMP)andproteinkinaseA,whichleadstothephosphorylationofcellularproteins[116].
NEalsopro-motesashiftofTh1/Th2balancetowardTh2responsebyactivatingβ2-receptor[117].
Otheranti-inflammatoryef-fectsofNEhavealsobeenreported,includingthesuppres-sionofinduciblenitricoxidesynthase,interleukin-1b,tumornecrosisfactorαandintercellularadhesionmolecule-1.
AttentionisalsodevotedtothefactthatNEenhancesbrain-derivedneurotrophicfactorproduction,whichplaysanimportantroleinneuronalsurvival,neuro-plasticityandneurogenesis[37,118].
Thisinteractionofbrain-derivedneurotrophicfactorismediatedbyβ1/β2,andα2-adrenergicreceptorsandsharessimilarcellularpathwayswithanti-inflammatoryNEaction[118–120].
Neuronsmetabolizeglucoseprimarilyinthepentosephosphatepathwayinordertoproduceadenosinetriphos-phate(ATP)tosupportbrainfunctions,includingglutathi-oneregeneration,whichprotectstheneuronfromreactiveoxygenspecies(Bélangeretal.
2011),andconsequentlystandsforproperBBBfunctioning.
Apartfromusingglu-coseasthefirstchoice,lactateisalsousedbythebrainasafuelforneurons[121,122].
Thisprocessoccursintheas-trocytes,wheretherecruitmentofenergyfromtheirglyco-genstores[123]isfacilitatedbynoradrenergicstimulationoftheastrocytes'β-adrenoceptorssignalingthemtoconvertglycogentolactate[124,125],whichisthentransportedtotheneurons[126].
Inresponsetophysicalexercise,thelactateproductionbyskeletalmusclesincreases[127,128],asdoestheexpressionofthelactatetransportermonocar-boxylatetransporter1attheBBB[129–131].
Lactatepro-ducedduringexerciseisalsoreportedtoincreaselevelsofgrowthfactorsimportanttoangiogenesis,neurogenesis,calciumsignaling,axonalmyelination,synapticplasticityandmemoryformation[132–134].
Energeticinsufficiencyinneuronsduetoinadequatelactatesupplyisimplicatedinseveralneuropathologies,includingattention-deficit/hyper-activitydisorder[135–137].
ExerciseinmultiplesclerosisMShasrecentlyattractedtheinterestofnumerousre-searchers[138]regardingtheapplicationofphysicalactiv-ity.
InMS,thereisanextrinsicBBBdisruptionpatternwiththeinitialinjuryinthebloodvessels,allowingTandBcellstocrosstheBBB[139]withtheexudationoffibrin,whichcausesaninflammatoryreactionleadingtodemyelination[140],immunecellinfiltrationandaxonaldamage.
Inac-cordancewithastudybyMokhtarzadeetal.
[141],ithasbeenshownthat8weeksofexercisetrainingnormalisestheconcentrationofparticularBBBpermeabilitymarkersinMSpatients,includingS100calcium-bindingproteinB(S100B).
Additionally,accordingtoWhiteetal.
[142],exerciseispotentiallyabletocounteracttheimbalancebe-tweenthepro-inflammatoryTh1cytokinesandtheanti-inflammatorycytokines(forexampleIL-10)byenhan-cinganti-inflammatorymechanismsinMSpatients.
AccordingtoRossietal.
[143],exercisecanprotectfrominflammation-inducedneurodegenerativesynapticanddendriticalterationsintheexperimentalauto-immuneencephalomyelitismousemodelofMS.
Inthisstudy,exercisehasbeenshowntoincreasesynapticdensityandgrowthinthehippocampus[143].
InanimalmodelofMS,positiveeffectsofexerciseuponcognitionarealsoreported[144,145].
Moreover,anincreaseinneurotrophins[145]andbrain-derivedneurotrophicfac-tor[146]inresponsetoexercisehasbeenfound.
However,thereisstillanurgeforhumanresearches.
TheanalysesofstudiesindicatethatideallybothaerobicandresistanceexercisesmaybenefitpersonswithMS.
Asubstantialincreaseinhippocampalvolumehasbeenre-portedinMSsubjectsrandomizedtoanaerobicexerciseprogramcomparedwithanonaerobic-trainedcontrol[147].
PhysicalfitnessexercisecorrelateswithimprovedcognitivefunctioninpersonswithMS[148,149].
AnotherfindingindicatesthatcardiorespiratoryfitnessinpatientswithMSpredictsneuronalplasticity[150]andincreasedgraymattervolume,betterwhitematterintegrityandim-provedperformanceontestofinformationprocessingspeed[151].
ThereissomeevidenceforneuroprotectiveeffectsofexerciseinhumanswithMS,comparingaerobictoaerobicplusresistanceexercisetrainingresultingindecreasesinanti-inflammatorycytokines[148].
Basedonthesefindings,itcanbepostulatedthatphys-icalexercisereducesinflammationand,asaconsequence,BBBimpairment,andthushasaprotectiveeffectonCNSinMSpatients.
IfphysicalactivityisabletoenhanceBBBstabilityintheseparticularpatients,wecanpredictthatitwillimproveBBBfunctioningeneral.
Nevertheless,studieswithlargergroupofpatientsandclearlydevelopedexerciseprotocolsareneededtoincludephysicalactivitysessionsasastandardofcaretherapeuticprocedures.
ExerciseinAlzheimer'sdiseaseInAlzheimer'sdisease,theintegrityofBBBmaybedisor-deredaccordingtoaccumulationofreactiveoxygenspeciesactivatingmetalloproteinaseswhichleadstobreakdownofBBBthroughdestructionofbasementmembraneandtightjunctions[152],aswellasduetotheaccumulationofchol-esterolmetabolism[152],andimpairedinsulinsignaling[153].
IntheprevalenceofBBBmaintenancecomplications,theamplifiedAβmicrovesselsdepositsprocessbegins.
AsAβfibrilsaccumulate,itresultsinacascadeofsignificantbraindegenerationandatrophyofhippocampalandcor-ticalstructures.
BBBdysfunctionduringAlzheimer'sdiseaseinfluencesAβclearanceandendothelialtransport,impairsMakiewiczetal.
JournalofNeuroinflammation(2019)16:15Page5of16endothelialcellandpericytefunctions,affectsTJintegrity,activatesglialcellsandfacilitatestherecruitmentofleuko-cytesinthebrain[154–158].
PhysicalactivitycanimproveAβclearancebyupregu-latingAβtransportersandreducetheaccumulationofAβpeptidesinthebrainparenchymabyacceleratinginterstitialfluiddrainage,whichdiminishesneuroinflam-mation[159].
AlthoughadirecteffectonspecificAlzhei-mer'sdiseasepathologyisstillunproven[160],oneresearchdocumentedareductionintauincerebrospinalfluidasaresultofexerciseinolderadultswithmildcog-nitiveimpairment[161].
Exercise,primarilyaerobic,im-provescognitivefunctioninseveralpatientpopulations,includingAlzheimer'sdisease,elderlypeopleatriskforcognitiveimpairmentandhealthyolderadults[162,163].
Inaddition,bothanimalandhumansstudiessug-gestthatphysicalactivitymayhavearoleinmodifyingthediseaseprocessandmaintainingcognitivefunctioninAlzheimer'sdisease[11].
Physicalactivityinterven-tionshasapositiveoveralleffectoncognitivefunction,andtheeffectisdrivenbyinterventionsthatincludedaerobicexercisesindependentofthetypeofdementia[164],whichhasbeenrecentlyprovedinmeta-analysisconductedbyhmanetal.
[165].
Furtherstudiesshallunveilif/howneuroinflammationandBBBdysfunctionarerelatedtocognitivefunctionimpairmentandoverallAlzheimer'sdiseaseprogression.
Then,specificphysicalactivityprotocolsmaybedevel-opedtosupportpatientscare.
Exercise-inducedconditioningPhysicalactivityacutelyelevatesthereleaseofadrenaline,cortisol,growthhormone,prolactinandotherfactorswithimmunomodulatoryeffects[166].
Consequently,veryhighintensityexercisecantriggersystemicinflammation,asub-sequentimmunodepressionandthusahigherriskofinfec-tions[167].
AccordingtoRohetal.
[168],moderate-and/orhigh-intensityexercisemayinducehigheroxidative-nitrosativestressthanlow-intensityexercise.
Whileacuteintenseexerciseprovokesaspikeintheactivityofinflammatorycells(likeleukocytes)andplasmaCRPconcentrations,repeatedboutsofsubmaxi-malintensityexerciseinduceadaptivemechanismsthatcancounteractinflammationinthelongterm[169].
Thesechangesaremeasurableasreductioninthecon-centrationofinflammatorymediatorssuchasCRP,IL-6andTNF-α,whileenhancingtheproductionsoftheanti-inflammatoryIL-10[170].
Therearesomecontrastingstudiesregardingthein-fluenceofphysicalexerciseonBBBintegrity.
S100BisconsideredtobethebestindicatorofBBBpermeability[168,171,172]andcanevenpredicttheseverityofbraininjury[168,173].
ElevatedS100Blevelshavebeenre-cordedfollowingexerciseandaremostlyattributedtoeitheranelevationinBBBpermeabilityorheadtrauma[174–176].
IncreasedserumconcentrationsofS100BhavethereforebeenusedtoassociateCNSpathologywithBBBdysfunction.
However,evenintheabsenceofheadtrauma,itappearsthattheBBBmaybecompro-misedfollowingexercise,withtheseveritydependentonexerciseintensity.
AccordingtoSharmaetal.
[177],short-termforcedswimmingexerciseincreasestheper-meabilityoftheBBBinspecificbrainregionsinrats,likelymediatedthroughserotoninvia5-HT2receptors.
IntenseexercisehasthepotentialtoincreaseS100BandinduceBBBfunctionaldeteriorationwithoutcausingstructuralbraindamagesubsequenttoafreeradical-me-diatedimpairmentindynamiccerebralautoregulation[178].
Afteracuteexercise,highlevelsofmyokinesaresecretedbytheskeletalmuscle,exertingavarietyofendocrineeffects.
Theinductionofmyokineslikemyostatin,IL-7,decorinandleukaemiainhibitoryfactorisinvolvedintheregulationofmusclehypertrophyandmayplayaroleintherestructuringofskeletalmuscleasaresponsetoexer-cise[179].
ExercisereducestheexpressionofToll-likereceptorsatthesurfaceofmonocytes;thesereceptorshavebeenimpli-catedasmediatorsofsystemicinflammation[180].
Musclefunction,inflammationandexercisearehenceintrinsicallylinkedinacomplexmanner[64,181].
Theinductionofthebeneficialversusdetrimentaleffectsofphysicalactivitythereforeseemstobehighlycontext-specific.
Forexample,IL-6wasoriginallyclassifiedasaprototypicalpro-inflam-matorycytokine,althoughanti-inflammatorypropertieshavealsobeendescribed[182].
SomestudieshaveprovideddatashowinganincreaseinIL-6concentrationsdirectlyafterphysicalactivity,suggestingthatIL-6wasreleasedfromthemusclemassandactsasamyokine,ratherthanatypicalpro-inflammatorycytokine[183].
BesidestheproductionofIL-6inactivatedimmunecells,thesystemicelevationofIL-6inpatientswithmetabolicdiseaseshasstrengthenedthelinkbetweenIL-6andinflammation.
Instarkcontrast,however,exercise-inducedelevationsinIL-6plasmalevelsleadtoincreasedcirculatinglevelsofseveralpotentanti-inflammatorycytokinessuchasIL-1raandIL-10,andalsoinhibitTNF-αproduction,suggestingthatIL-6mayalsohaveanti-inflammatoryproperties[184,185].
SkeletalmusclefibresalsoexpressandreleaseIL-6duringandafterexercise[186–189].
IL-6productionislikewiseboostedinconnectivetissue,thebrainandadiposetissuepost-exercise[60].
Thus,inthecaseofexercise,IL-6exertsanti-inflamma-toryeffects[63].
Thismechanismmayexplainwhylowerbaselinelevelsofpro-inflammatorycytokinesarepresentinthosepeoplewhoaremostphysicallyactive[190].
Cellsre-spondtothestressfulstimulusofexercisebyactivatingpathwaystoabolishit;inthiscase,byincreasingtheMakiewiczetal.
JournalofNeuroinflammation(2019)16:15Page6of16expressionofenzymessuchassuperoxidedismutaseandglutathioneperoxidaseorbyincreasinglevelsofanti-oxidativeperoxiredoxins.
Alikelymediatorofthisre-sponseareproteinsrelatedtotheNFκBpathway,whichcanactivatethegeneexpressionofanti-oxidativeproteinsandshowenhancedDNAbindingaround2hafteracuteexercise[191,192].
Consequently,physicalactivityreducestheproductionofreactiveoxygenspeciesandenhancestheanti-oxidativedefence[193,194].
Inskeletalmuscleinparticular,repeatedmoderateintensityexerciseimprovestheanti-oxidativecapacitybyupregulatingendogenousanti-oxidativemolecules[195,196].
Thus,wecanassumethatbrief,intensephysicalactivityincreasesthepermeabilityoftheBBB[177]andinducesinflammation,butlong-termregularexercisemayhaveaprotectiveroleonBBBintegrityandactivateanti-inflam-matorypathways.
PhysicalExerciseandBBBtightjunctionsTheBBBiscomposedofendothelialcellsformingase-lectivevascularnetworkthroughtheexpressionoftightjunction(TJs)complexes,whicharedefinedasmole-culesthatinteractintheextracellularjunctionalspaceorasmoleculesthatactasanchorswithintheendothe-lialcelltocreatetheBBB[174].
Tightjunctionsbetweenbrainendothelialcellsareconstitutedbythreemajortransmembraneproteins:occludin,claudinsandjunctionassociatedmolecules,aswellasseveralcytoplasmicpro-teinsincludingzonulaoccludens[197].
BrainendothelialTJsexpressclaudin-3and-5andpossiblyclaudin-12[198,199].
Claudin-5hasbeenshowntoactivelycon-tributetoBBBintegrity[200].
Manystudieshaveindi-catedthatoccludin,claudin-3andclaudin-5areinvolvedinBBBgenesis[199,201]andthecontrolofparacellularpermeability[202–205].
TJscanberegulatedbytheactivationofvariousrecep-torsofvasoactivecompounds(bradykininandAngII)aswellasadhesionmoleculesorreactiveoxygenspecies.
Intercellularadhesionmolecule1(ICAM-1),vascularcelladhesionmolecule1(VCAM-1)andplateletandendothe-lialcelladhesionmolecule1(PECAM-1),membersoftheimmunoglobulinsuperfamily,activelycontributetothefirmadhesionand/ormigrationofleukocytesintotheCNSthroughthecytokine-activatedbrainendothelium[206,207].
Agentsreleasedfrommostofthecellsoftheneurovascularunitduringpathologycanmodulatebrainendothelialtightjunctions,withseveralinflammatoryme-diatorsexacerbatingBBBpermeability;onlyafewagentsareabletocounterorreversethiscourse[1].
Thepro-longedpresenceofoxidative/inflammatoryfactorscanre-sultinchangestoorthelossoftightjunctionsandintegrins(e.
g.
β1,αvandα6integrins),leadingtosenes-cenceanddetachment-mediatedcelldeath[23,208].
ItisknownthatbothIFN-γandTNF-αcanalterBBBpermeabilitybyaffectingthecellulardistributionofjunc-tionaladhesionmoleculesandbycrucialupregulatingtheexpressionofICAM-1andVCAM-1[209–211].
ChangesinBBBpermeabilityareconnectedwithalter-ationsinoccludinexpression[212]andendothelialbarrierfunction[202].
Theselectivityofclaudin-5expressioninbrainendothelialcellssuggeststhatitisessentialforBBBfunction[213],asithasbeendemonstratedthatclaudin-5participatesinmodulatingpermeabilitytoionsaswellasmacromolecules[214].
SeveralstudieshaveindicatedthatalteredpermeabilityoftheBBBisaccompaniedbydecreasedclaudin-5expression[213].
AttentionshouldbealsodevotedtorecentresearchbySouzaetal.
[215]regardingtheimpactofphysicalexer-cise,whichre-establishestheexpressionofTJproteinssuchasoccludinandclaudin-4intheCNStobasallevelsandinhibitstheexpressionofPECAM-1.
Thisstudywasbasedonexperimentalautoimmuneenceph-alomyelitis,amousemodelofMS.
ThestudysuggeststhatphysicalexercisemaintainstheintegrityoftheBBBbypreservingtightjunctions.
Additionally,Schreibeltetal.
[216]demonstratedthatphysicalexerciseinMSpre-servesthelevelsofclaudin-4andoccludininthespinalcordofmice,byinhibitingtheproductionofreactiveoxygenspeciesandtheinductionofoxidativestress.
Moreover,somestudieshaveprovideddatathatinhibit-ingglycogensynthasekinase-3βpromotesTJstabilityinbrainendothelialcellsbyextendingthehalf-lifeofocclu-dinandclaudin-5andincreasingtheirlevels,whichdoesnotinvolvetheirgeneregulation[217].
AstudybyIslaetal.
[218]showedafavourableeffectofvoluntaryexer-ciseinvolvingareductioninglycogensynthasekinase-3βrecruitment,resultinginprotectionoftheBBBthroughTJs.
Theinhibitionofglycogensynthasekinase-3βhasalsoanti-inflammatoryeffectonbrainendothelialcells[219].
Inadditiontothebarrier-enhancingroleofglycogensynthasekinase-3βinhibitors,itgivesapromisetotheirutilityinrepairandprotectionoftheBBB.
ClinicalsignificanceofexerciseHumanorganism'sresponsetorepeatedhighlevelsofphysicalexerciseprovidesanintegrationofcells,organsandorgansystemsinordertominimizehomeostaticdisruptionsduringandafterexercise,whichisastressstimuli.
Regularmoderate–highlevelsofexercisemaybeperceivedasphysiologicalasduetothesedentarylife-style,thereductionofthemaximalcapacityoforgansystemsisobserved,leadingtoseveralpathologicalpro-cesses.
Therefore,individualswithhighlevelsofexercisecapacitypresentdecreasedprevalenceofpathologicalchronicdiseasesandofmortality[36].
Physicalinactivityisaprimarycauseofseveralchronicdiseases[220].
Physicalexerciseimprovescerebrovascular,Makiewiczetal.
JournalofNeuroinflammation(2019)16:15Page7of16metabolicandendothelialfunction,whichreducesoxida-tivestressandneuroinflammation,contributingtoim-provedneuronalfunction[221–223].
Moreover,exerciseisassociatedwithincreasesinlevelsofbrain-derivedneu-rothropicfactorandinsulin-likegrowthfactor1[160,223,224].
Theaccumulatingevidencereinforcesthepositionthatregularaerobic[225,226]and,withlessevidenceofeffectiveness,resistancetraining[227]offerapowerfultooltocopewithbiologicagingofselectedcentralner-voussystemfunctions.
Figure1depictstheconvergenceofmultiplepathways,activatedbyexercise,onafinal,anti-inflammatorycommonpathway.
Inthegeneralpopulation,exerciseimprovesattention,processingspeed,memoryandexecutivefunctioning.
Exercisealsoincreaseshippocampalvolumeandwhitematterintegrityinhealthyolderadults[228,229].
Itisabehavioralinterventionthatshowsgreatpromiseinalle-viatingsymptomsofsomementaldisorderssuchasde-pression[230]andcansignificantlyimprovepositivesymptoms,negativesymptomsandsocialfunctioninginpatientswithschizophrenia[231–233].
ApartfromplayingaroleindiminishingthediseasesassociatedwithleakyBBB,physicalexerciseisknowntoinducebeneficialeffectsindifferentsystems,e.
g.
thecardiovascular,muscular,metabolic,neural,respiratoryandthermoregulatory[234–238].
Physicaltrainingresultsinanincreaseintheconcentrationoftheanti-inflammatorycytokineIL-10andadecreaseinthepro-inflammatorycy-tokinesIL-1βandTNF-α[239].
Exercisetraininghasalsobeenreportedtoamelioratetheinflammatoryprofileinpatientsafteramyocardialinfarctionbyenhancingtheexpressionoftheanti-inflammatorycytokineIL-10[240].
AccordingtoLinetal.
[241],IL-10improvespropertiesoftheBBBinaratmodelofsevereacutepancreatitisbyattenuatingthedownregulationofclaudin-5expressionandtheimpairmentoftightjunctionsandbyanti-apop-toticeffectsonbrainmicrovascularendothelialcells.
Harrisetal.
[242]haveshownthatexercisemodulatesimmunologicalandexertsanti-inflammatoryeffectsintheCNS,suchthatdepression-likesymptomsarereduced.
Moreover,exercisereducestheexpressionofToll-likere-ceptorsonthesurfaceofmonocytes[180,243–245],whichmayrepresentabeneficialeffectasToll-likereceptorsareresponsibleformediatingthecapacityofmonocytesandmacrophagestoproduceinflammation[246–248].
Theaccumulatingevidencereinforcesthepositionthatregularaerobic,andpossiblyalsoresistancetraining,playsanimportantroleinmaintenanceofhealthyFig.
1Alow-gradesystemicinflammationobservedinmetabolicsyndrome,insulinresistance,type2diabetes,arterialhypertension,dyslipidaemiaandobesitycontributestoBBBdamageviapro-inflammatorycytokinesinducingkynureninepathwayleadingtoneurotoxicprocessonBBBanditspermeability.
Ininflammatorystates,ROSarealsoproducedandmayimpairTJsstructureandfunctioncausingthedirectdamageofBBB.
RAAsystemactivationduetothesystemicinflammationincreasesthedestructionofTJsandproductionofROSleadingtofurtherdamageofTJsandBBB.
Physicalexercisecounteractsobesityanddiminishesthelow-gradesystemicinflammation,productionofROSandchangeskynureninepathwaymetabolismcourseintoneuroprotectiveagentsaswellasdownregulatesbrainRAAsystem,whichallleadstoBBBprotection.
BBBblood-brainbarrier,ROSreactiveoxygenspecies,TJstightjunctions,RAArenin-angiotensin-aldosteroneMakiewiczetal.
JournalofNeuroinflammation(2019)16:15Page8of16structuresandfunctionsofthehumanbody[37].
Beingavaluablecomponentintheclinicalmanagementofavarietyofdiseases,itisrecommendedforthesepurposesinnumerousevidence-basedclinicalguidelines[249,250].
Thereisacurrentneedofnovelnonpharmacologi-calstrategiessuchasphysicalexercisethatcanprovidevaluableadjunctivetreatmentbutfurtherstudiesarewarrantedtodeciphertheexactrolephysicalexerciseplayinsomeneuroinflammatorydiseases.
ConclusionsandfuturedirectionsInthisreview,atheoreticalframeworkonthecrosstalkbetweenphysicalexerciseandBBBpermeabilityispre-sented.
Inourmodel,physicalexerciseinfluencestheBBBthroughanumberofanti-inflammatoryeffectsandleadstoareductioninlesionsandvascularpermeability(Fig.
1).
BBBbreakdowngenerallyculminatesinneuronaldysfunction,neuroinflammationandneurodegeneration.
Thepathogenesisofnumerousdiseaseshasbeenrecentlyshowntobeinflammatoryinnature,andthereisincreas-inginterestinnon-pharmacological,alternativemethodsoftreatment.
RegularphysicalexercisediminishesBBBpermeabilityasitreinforcesanti-oxidativecapacity,reducesoxidativestressandhasanti-inflammatoryeffects.
Itimprovesendothelialfunctionandmightincreasethedensityofbraincapillaries(Fig.
2).
Althoughphysicalexercisehaspositiveeffectsonbrainfunction,therehavebeenonlyafewstudiesasses-singthelong-termconsequencesofphysicalactivityonBBBpermeability.
Toourknowledge,thereareonlytwostudiesthathavedirectlyexploredthenexusbetweenregularexerciseandBBBparameters.
Mokhtarzadeandcolleagues[141]indicatedanimprovementinBBBleak-agemarkers,includingS100B,after8weeksofexerciseFig.
2Insystemiclow-gradeinflammatorystates,cytokinescanstimulateROSproductiondestroyingtightjunctionsandincreasingBBBpermeability.
CytokinescanalsoactivateIDOcatalyzingdegradationoftryptophanintoKYN.
KYNcanbetransformedintoneuroprotectiveKYNAbyKATsenzymeorintoneurotoxicproducts,mainlyQUIN,whichstimulatesNMDAreceptorsandleadstoglutamatergicoverproductionincreasingCa2+influxandBBBbreakage.
Low-gradeinflammationininsulinresistancecauseslipiddysregulationandincreasedceramideproductionanditspassthroughtheBBB,intensifyingbraininflammationandpromotingAβproduction.
InleakystatesofBBB,TJslosetheirfunctionandpro-inflammatoryfactorscaneasilypassthroughBBBleadingtoitsfurtherdamage.
Thepresenceofinflammationandincreasedoxidativestressinbrainimpairsignificantlymitochondrialandneuronalfunctionscausingcelldeath.
DuringBBBdisruption,facilitatedAngIIaccesscaninitiateinflammationbypromotionofvascularpermeabilityviaAT1receptors,risingtherecruitmentofinflammatorycells,ROSproduction,microglialactivationandinflammationinautonomicareassuchasthePVNandtheRVLM,whichpotentiateglutamatergictoxicity.
PhysicalactivityenhancesKATgeneexpressionandtheconversionoftoxicKYNtoneuroprotectiveKYNA,whichprotectsBBB.
Duringphysicalactivity,themusclesreleaseofanti-inflammatorycytokinesIL-1raandIL-10,whichcanitselfreducetheconcentrationofpro-inflammatorycytokines(TNF-α,IL-1,IL-6,IL-17)aswellasbyupregulationofskeletalmuscleperoxisomeproliferatoractivatedreceptor1α.
NEreleasedduringphysicalactivityactsviamicrogliaandastrocytesβ2-receptorsandlymphocytesβ2-receptorsreducingtheneuroinflammation.
PhysicaltrainingalsodiminishesthetissueAngIIcontentandcansuppressmicroglialactivationinthePVNandtheRVLM.
Physicalexercisereinforcesantioxidativecapacitybyupregulatingendogenousanti-oxidativemolecules,reducesoxidativestressandceramidelevelswithasuppressiveeffectontheTJsandBBBdamagecycle.
AngIIangiotensinII,AT1angiotensinIItype1,BBBblood-brainbarrier,IDOindoleamine2,3-dioxygenase,KYNkynurenine,KYNAkynurenicacid,KATskynurenineaminotransferases,NEnorepinephrine,NMDAN-methyl-D-aspartate,PVNparaventricularnucleus,QUINquinolinicacid,RVLMrostralventrolateralmedulla,ROSreactiveoxygenspecies,TJstightjunctions,TRPtryptophanMakiewiczetal.
JournalofNeuroinflammation(2019)16:15Page9of16traininginMSpatients.
Souzaandcolleagues[215]demonstratedintheexperimentalautoimmuneenceph-alomyelitismousemodelthata4-week-longexerciseprogramresultedinimmunomodulatoryandantioxidanteffectsaswellasinthemaintenanceofBBBintegritybypreservingitstightjunctions.
Consequently,despitesoundtheoreticalbackground,itremainssofarunclearastowhetherexercisetrainingiseffectiveinmodulatingBBBpermeabilityinspecificdiseases.
Inparticular,thepotentialmagnitudeofBBBfunctionimprovementorrestrainofdisease-relatedBBBdeteriorationhastobeinvestigated.
Moreover,theinfluenceofdifferentkindsexerciseandthequantityofphysicalactivityrequiredtoinducemeaningfulresponsesremaintobeclarified.
Novelimagingmodalitiesareavailabletostudydisrup-tionoftheBBBinhumansstartingfromlargeperme-abilityleaksobservedinMStomoresubtlechangesinchronicvasculardiseaseanddementia[251].
Conse-quently,futurestudiesshouldlinkBBBpermeabilitywithclinicalpresentationofthepatients.
Moreover,fur-therresearchisrequiredtodeterminethesignificanceofBBBprotectionwithphysicalexerciseinrelationtofunctionalbenefitsforpatientssuchasimprovedcogni-tionanddailyfunctioning.
Finally,theeffectsofexerciseoninteractionsbetweenneuroinflammatorystatusandBBBpermeabilityshallbedefinedinexperimentalstudies.
TherapeuticinterventionstargetingdisturbancesinBBBfunctionmightthereforehaveapromisingeffectinabroadspectrumofdisorders.
Physicaltrainingcanbeemphasisedasacomponentofpreventionprogramsdevelopedforpatientstominimisetheriskoftheonsetofinflammatorydiseasesaswelltocomplementtreat-ment.
MoreresearchisneededastheimpactofexerciseonBBBfunctionisyettobefullyelucidated.
AbbreviationsAngII:AngiotensinII;AT1:AngiotensinIItype1;ATP:Adenosinetriphosphate;Aβ:Beta-amyloid;BBB:Blood-brainbarrier;cAMP:Cyclicadenosinemonophosphate;CNS:Centralnervoussystem;CRP:C-reactiveprotein;ICAM-1:Intercellularadhesionmolecule1;IDO:Indoleamine2,3-dioxygenase;IFN-γ:Interferongamma;KATs:Kynurenineaminotransferases;KYN:Kynurenine;KYNA:Kynurenicacid;MS:Multiplesclerosis;NE:Norepinephrine;NMDA:N-methyl-D-aspartate;PECAM-1:Plateletandendothelialcelladhesionmolecule1;PVN:Paraventricularnucleus;QUIN:Quinolinicacid;RVLM:Rostralventrolateralmedulla;S100B:S100calcium-bindingproteinB;TJs:Tightjunctions;TRP:Tryptophan;VCAM-1:Vascularcelladhesionmolecule1AcknowledgmentWewouldliketothankAgataMajewskafortheexcellenttechnicalsupport,includingpreparationofFigures1and2.
WewouldliketothankSzymonM.
Zdanowskiforsupportintextediting.
FundingDoctorsArkadiuszSzarmachandPawelJ.
WinklewskiaresupportedbythePolishNationalScienceCentre(NCN)grantsnumbers2017/01/X/NZ4/00779and2017/01/X/NZ5/00909,respectively.
AvailabilityofdataandmaterialsNotapplicableAuthors'contributionPJWhadtheideaforthearticle,andcriticallyrevisedthemanuscript.
MAMdevelopedtheideaanddraftedthemanuscript.
ASz,AS,WJCandEScriticallyreviewedthemanuscriptforimportantcontent.
Allauthorsapprovedthefinalversionofthemanuscript.
EthicsapprovalandconsenttoparticipateNotapplicableConsentforpublicationNotapplicableCompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Publisher'sNoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
Authordetails1DepartmentofHumanPhysiology,FacultyofHealthSciences,MedicalUniversityofGdansk,TuwimaStr.
15,80-210Gdansk,Poland.
2DepartmentofPsychiatry,FacultyofMedicine,MedicalUniversityofGdansk,Gdansk,Poland.
32-ndDepartmentofRadiology,FacultyofHealthSciences,MedicalUniversityofGdansk,Gdansk,Poland.
4DepartmentofClinicalAnatomyandPhysiology,FacultyofHealthSciences,PomeranianUniversityofSlupsk,Slupsk,Poland.
Received:4October2018Accepted:9January2019References1.
AbbottNJ,RnnbckL,HanssonE.
Astrocyte-endothelialinteractionsattheblood-brainbarrier.
NatRevNeurosci.
2006;7:41–53.
https://doi.
org/10.
1038/nrn1824.
2.
ZlokovicBV.
Theblood-brainbarrierinhealthandchronicneurodegenerativedisorders.
Neuron.
2008;57:178–201.
https://doi.
org/10.
1016/j.
neuron.
2008.
01.
003.
3.
WinklerEA,BellRD,ZlokovicBV.
Centralnervoussystempericytesinhealthanddisease.
NatNeurosci.
2011;14:1398–405.
https://doi.
org/10.
1038/nn.
2946.
4.
LoEH,RosenbergGA.
Theneurovascularunitinhealthanddiseaseintroduction.
Stroke.
2009;40(3SUPPL.
1):S2–3.
https://doi.
org/10.
1161/STROKEAHA.
108.
534404.
5.
SeguraI,DeSmetF,HohensinnerPJ,deAlmodovarCR,CarmelietP.
Theneurovascularlinkinhealthanddisease:anupdate.
TrendsMolMed.
2009;15:439–51.
https://doi.
org/10.
1016/j.
molmed.
2009.
08.
005.
6.
IadecolaC.
Theoverlapbetweenneurodegenerativeandvascularfactorsinthepathogenesisofdementia.
ActaNeuropathol.
2010;120:287–96.
https://doi.
org/10.
1007/s00401-010-0718-6.
7.
DanemanR.
Theblood-brainbarrierinhealthanddisease.
AnnNeurol.
2012;72:648–72.
https://doi.
org/10.
1002/ana.
23648.
8.
HawkinsBT.
Theblood-brainbarrier/neurovascularunitinhealthanddisease.
PharmacolRev.
2005;57:173–85.
https://doi.
org/10.
1124/pr.
57.
2.
4.
9.
ReeseTS,KarnovskyMJ.
Finestructurallocalizationofablood-brainbarriertoexogenousperoxidase.
JCellBiol.
1967;34:207–17.
https://doi.
org/10.
1083/jcb.
34.
1.
207.
10.
NabeshimaS,ReeseTS,LandisDMD,BrightmanMW.
Junctionsinthemeningesandmarginalglia.
JCompNeurol.
1975;164:127–69.
11.
NaghaviM,AbajobirAA,AbbafatiC,AbbasKM,Abd-AllahF,AberaSF,etal.
Global,regional,andnationalage-sexspecificmortalityfor264causesofdeath,1980–2016:asystematicanalysisfortheGlobalBurdenofDiseaseStudy2016.
Lancet.
2017;390:1151–210.
https://doi.
org/10.
1016/S0140-6736(17)32152-9.
12.
MllgrdK,SaundersNR.
Thedevelopmentofthehumanblood-brainandblood-CSFbarriers.
NeuropatholApplNeurobiol.
1986;12:337–58.
https://doi.
org/10.
1111/j.
1365-2990.
1986.
tb00146.
x.
Makiewiczetal.
JournalofNeuroinflammation(2019)16:15Page10of1613.
RascherG,WolburgH.
Thetightjunctionsoftheleptomeningealblood-cerebrospinalfluidbarrierduringdevelopment.
JbrainRes.
1997;38:525–40.
http://www.
ncbi.
nlm.
nih.
gov/pubmed/947621714.
MedwellJ,WrayD.
Handwriting:whatdoweknowandwhatdoweneedtoknowLiteracy.
2007;41:10–7.
15.
KnieselU,WolburgH.
Tightjunctionsoftheblood-brainbarrier.
CellMolNeurobiol.
2000;20:57–76.
16.
BellRD,WinklerEA,SagareAP,SinghI,LaRueB,DeaneR,etal.
pericytescontrolkeyneurovascularfunctionsandneuronalphenotypeintheadultbrainandduringbrainaging.
Neuron.
2010;68:409–27.
17.
ShlosbergD,BeniflaM,KauferD,FriedmanA.
Blood-brainbarrierbreakdownasatherapeutictargetintraumaticbraininjury.
NatRevNeurol.
2010;6:393–403.
https://doi.
org/10.
1038/nrneurol.
2010.
74.
18.
RapoportB,AdamsRJ.
Inductionofrefractorinesstothyrotropinstimulationinculturedthyroidcells.
Dependenceonnewproteinsynthesis.
JBiolChem.
1976;251:6653–61.
19.
GrimmA,FriedlandK,EckertA.
Mitochondrialdysfunction:themissinglinkbetweenagingandsporadicAlzheimer'sdisease.
Biogerontology.
2016;17:281–96.
https://doi.
org/10.
1007/s10522-015-9618-4.
20.
CaniPD,BibiloniR,KnaufC,NeyrinckAM,DelzenneNM.
Changesingutmicrobiotacontrolmetabolicdiet–inducedobesityanddiabetesinmice.
Diabetes.
2008;57:1470–81.
https://doi.
org/10.
2337/db07-1403.
Additional.
21.
León-PedrozaJI,González-TapiaLA,delOlmo-GilE,Castellanos-RodríguezD,EscobedoG,González-ChávezA.
Low-gradesystemicinflammationandthedevelopmentofmetabolicdiseases:Fromthemolecularevidencetotheclinicalpractice.
CirugíayCir.
2015;83:543–51.
https://doi.
org/10.
1016/j.
circen.
2015.
11.
008.
22.
FlegalKM,Kruszon-MoranD,CarrollMD,FryarCD,OgdenCL.
TrendsinobesityamongadultsintheUnitedStates,2005to2014.
JAMA.
2016;315:2284–91.
https://doi.
org/10.
1001/jama.
2016.
6458.
23.
BaetenKM,AkassoglouK.
Extracellularmatrixandmatrixreceptorsinblood-brainbarrierformationandstroke.
DevNeurobiol.
2011;71:1018–39.
24.
KelleherRJ,SoizaRL.
EvidenceofendothelialdysfunctioninthedevelopmentofAlzheimer'sdisease:IsAlzheimer'savasculardisorderAmJCardiovascDis.
2013;3:197–226.
https://www.
ncbi.
nlm.
nih.
gov/pmc/articles/PMC3819581/.
25.
KimSY,BuckwalterM,SoreqH,VezzaniA,KauferD.
Blood-brainbarrierdysfunction-inducedinflammatorysignalinginbrainpathologyandepileptogenesis.
Epilepsia.
2012;53:37–44.
https://doi.
org/10.
1111/j.
1528-1167.
2012.
03701.
x.
26.
VanVlietEA,AraújoSDC,RedekerS,VanSchaikR,AronicaE,GorterJA.
Blood-brainbarrierleakagemayleadtoprogressionoftemporallobeepilepsy.
Brain.
2007;130:521–34.
27.
AbbottNJ,PatabendigeAAK,DolmanDEM,YusofSR,BegleyDJ.
Structureandfunctionoftheblood-brainbarrier.
NeurobiolDis.
2010;37:13–25.
https://doi.
org/10.
1016/j.
nbd.
2009.
07.
030.
28.
MarchiN,GranataT,AlexopoulosA,JanigroD.
Theblood-brainbarrierhypothesisindrugresistantepilepsy.
Brain.
2012;135(Pt4):e211.
29.
RaabeA,SchmitzAK,PernhorstK,GroteA,VonDerBrelieC,UrbachH,etal.
Cliniconeuropathologiccorrelationsshowastroglialalbuminstorageasacommonfactorinepileptogenicvascularlesions.
Epilepsia.
2012;53:539–48.
30.
RéusGZ,FriesGR,StertzL,BadawyM,PassosIC,BarichelloT,etal.
Theroleofinflammationandmicroglialactivationinthepathophysiologyofpsychiatricdisorders.
Neuroscience.
2015;300:141–54.
https://doi.
org/10.
1016/j.
neuroscience.
2015.
05.
018.
31.
AllanSM,RothwellNJ.
Cytokinesandacuteneurodegeneration.
NatRevNeurosci.
2001;2:734–44.
https://doi.
org/10.
1038/35094583.
32.
HassanW,NoreenH,Castro-GomesV,MohammadzaiI,BatistaTeixeiradaRochaJ,Landeira-FernandezJ.
Associationofoxidativestresswithpsychiatricdisorders.
CurrPharmDes.
2016;22:2960–2974.
doi:https://doi.
org/10.
2174/1381612822666160307145931.
33.
SenS,DumanR,SanacoraG.
Serumbrain-derivedneurotrophicfactor,depression,andAntidepressantMedications:Meta-AnalysesAndImplications.
BiolPsychiatry.
2008;64:527–32.
https://doi.
org/10.
1016/j.
biopsych.
2008.
05.
005.
34.
KronfolZ,RemickDG.
Cytokinesandthebrain:implicationsforclinicalpsychiatry.
AmJPsychiatry.
2000;157:683–94.
https://doi.
org/10.
1176/appi.
ajp.
157.
5.
683.
35.
PollakTA,DrndarskiS,StoneJM,DavidAS,McGuireP,AbbottNJ.
Theblood–brainbarrierinpsychosis.
LancetPsychiatry.
2018;5:79–92.
https://doi.
org/10.
1016/S2215-0366(17)30293-6.
36.
BoothFW,LayeMJ.
Lackofadequateappreciationofphysicalexercise'scomplexitiescanpre-emptappropriatedesignandinterpretationinscientificdiscovery.
JPhysiol.
2009;587:5527–39.
37.
SzalewskaD,RadkowskiM,DemkowU,WinklewskiPJ.
Exercisestrategiestocounteractbrainagingeffects.
AdvExpMedBiol.
2017;1020:69–79.
38.
StehouwerCD,FerreiraI.
Diabetes,lipidsandothercardiovascularriskfactors.
In:SafarME,O'RourkeMF,editors.
ArterialstiffnessinHypertension.
Amsterdam:Elsevier;2006.
p.
427.
39.
HotamisligilGS.
Inflammationandmetabolicdisorders.
Nature.
2006;444:860–7.
https://doi.
org/10.
1038/nature05485.
40.
WellenKE,HotamisligilGS.
Inflammation,stress,anddiabetes.
JClinInvest.
2005;115:1111–9.
https://doi.
org/10.
1172/JCI200525102.
41.
HermannA,ButzS,StappertJ,WeissigH,KemlerR,HoschuetzkyH.
Assemblyofthecadherin-catenincomplexinvitrowithrecombinantproteins.
JCellSci.
1994;107:3655–63.
42.
WellenKE,FuchoR,GregorMF,FuruhashiM,MorganC,LindstadT,etal.
CoordinatedregulationofnutrientandinflammatoryresponsesbySTAMP2isessentialformetabolichomeostasis.
Cell.
2007;129:537–48.
43.
HoustisN,RosenED,LanderES.
Reactiveoxygenspecieshaveacausalroleinmultipleformsofinsulinresistance.
Nature.
2006;440:944–8.
https://doi.
org/10.
1038/nature04634.
44.
RajkovicN,ZamaklarM,LalicK,JoticA,LukicL,MilicicT,etal.
Relationshipbetweenobesity,adipocytokinesandinflammatorymarkersintype2diabetes:relevanceforcardiovascularriskprevention.
IntJEnvironResPublicHealth.
2014;11:4049–65.
45.
ReinehrT,KargesB,MeissnerT,WiegandS,Stoffel-WagnerB,HollRW,etal.
Inflammatorymarkersinobeseadolescentswithtype2diabetesandtheirrelationshiptohepatokinesandadipokines.
JPediatr.
2016;173:131–5.
https://doi.
org/10.
1016/j.
jpeds.
2016.
02.
055.
46.
SprangerJ,KrokeA,MhligM,HoffmannK,BergmannMM,RistowM,etal.
Inflammatorycytokinesandtherisktodeveloptype2diabetes:resultsoftheprospectivepopulation-basedEuropeanProspectiveInvestigationintoCancerandNutrition(EPIC)-Potsdamstudy.
Diabetes.
2003;52:812–7.
47.
GironèsX,Cruz-SánchezCZ,OrtegaA,SasakiN,MakitaZ,LafuenteJV,KalariaR,Cruz-SánchezFF.
N-Carboxymethyllysineinbrainaging,diabetesmellitus,andAlzheimer'sdisease.
FreeRadicBiolMed.
2004;15:10.
48.
TakedaS,SatoN,IkimuraK,NishinoH,RakugiH,MorishitaR.
Increasedblood-brainbarriervulnerabilitytosystemicinflammationinanAlzheimerdiseasemousemodel.
NeurobiolAging.
2013;34:2064–70.
https://doi.
org/10.
1016/j.
neurobiolaging.
2013.
02.
010.
49.
HollandWL,KnottsTA,ChavezJA,WangL-P,HoehnKL,SummersSA.
Lipidmediatorsofinsulinresistance.
NutrRev.
2007;65(6Pt2):S39–46.
http://www.
ncbi.
nlm.
nih.
gov/pubmed/17605313.
Accessed22Dec201850.
DeLaMonteSM.
Triangulatedmal-signalinginAlzheimer'sdisease:Rolesofneurotoxicceramides,ERstress,andinsulinresistancereviewed.
JAlzheimer'sDis.
2012;30(SUPPL.
2):S231–49.
51.
DubéJJ,AmatiF,ToledoFGS,Stefanovic-RacicM,RossiA,CoenP,etal.
Effectsofweightlossandexerciseoninsulinresistance,andintramyocellulartriacylglycerol,diacylglycerolandceramide.
Diabetologia.
2011;54:1147–56.
52.
KasumovT,SolomonTPJ,HwangC,HuangH,HausJM,ZhangR,etal.
ImprovedinsulinsensitivityafterexercisetrainingislinkedtoreducedplasmaC14:0ceramideinobesityandtype2diabetes.
Obesity.
2015;23:1414–21.
https://doi.
org/10.
1002/oby.
21117.
53.
AbdEl-KaderSM.
Aerobicversusresistanceexercisetraininginmodulationofinsulinresistance,adipocytokinesandinflammatorycytokinelevelsinobesetype2diabeticpatients.
JAdvRes.
2011;2:179–83.
https://doi.
org/10.
1016/j.
jare.
2010.
09.
003.
54.
DeSennaPN,XavierLL,BagatiniPB,SaurL,GallandF,ZanottoC,etal.
Physicaltrainingimprovesnon-spatialmemory,locomotorskillsandthebloodbrainbarrierindiabeticrats.
BrainRes.
2015;1618:75–82.
55.
EspositoK,PontilloA,DiPaloC,GiuglianoG,MasellaM,MarfellaR,etal.
Effectofweightlossandlifestylechangesonvascularinflammatorymarkersinobesewomen:arandomizedtrial.
JAmMedAssoc.
2003;289:1799–804.
https://doi.
org/10.
1001/jama.
289.
14.
1799.
56.
GoldhammerE,TanchilevitchA,MaorI,BeniaminiY,RosenscheinU,SagivM.
Exercisetrainingmodulatescytokinesactivityincoronaryheartdiseasepatients.
IntJCardiol.
2005;100:93–9.
57.
TaaffeDR,HarrisTB,FerrucciL,RoweJ,SeemanTE.
Cross-sectionalandprospectiverelationshipsofinterleukin-6andc-reactiveproteinwithphysicalperformanceinelderlypersons:MacArthurstudiesofsuccessfulaging.
JGerontolABiolSciMedSci.
2000;55:M709–15.
Makiewiczetal.
JournalofNeuroinflammation(2019)16:15Page11of1658.
TrseidM,LappegrdKT,ClaudiT,DamsJK,MrkridL,BrendbergR,etal.
ExercisereducesplasmalevelsofthechemokinesMCP-1andIL-8insubjectswiththemetabolicsyndrome.
EurHeartJ.
2004;25:349–55.
59.
MarcellTJ,McAuleyKA,TraustadóttirT,ReavenPD.
ExercisetrainingisnotassociatedwithimprovedlevelsofC-reactiveproteinoradiponectin.
Metabolism.
2005;54:533–41.
https://doi.
org/10.
1016/j.
metabol.
2004.
11.
008.
60.
PedersenBK.
Musclesandtheirmyokines.
JExpBiol.
2011;214:337–46.
https://doi.
org/10.
1242/jeb.
048074.
61.
PetersenAMW.
Theanti-inflammatoryeffectofexercise.
JApplPhysiol.
2005;98:1154–62.
https://doi.
org/10.
1152/japplphysiol.
00164.
2004.
62.
ProkopchukO,LiuY,WangL,WirthK,SchmidtbleicherD,SteinackerJM.
SkeletalmuscleIL-4,IL-4Rα,IL-13andIL-13Rα1expressionandresponsetostrengthtraining.
ExercImmunolRev.
2007;13:67–75.
http://www.
ncbi.
nlm.
nih.
gov/pubmed/1819866163.
PedersenBK,FischerCP.
Physiologicalrolesofmuscle-derivedinterleukin-6inresponsetoexercise.
CurrOpinClinNutrMetabCare.
2007;10:265–71.
https://doi.
org/10.
1097/MCO.
0b013e3280ebb5b3.
64.
HandschinC,SpiegelmanBM.
TheroleofexerciseandPGC1αininflammationandchronicdisease.
Nature.
2008;454:463–9.
65.
NishidaY,IyadomiM,HigakiY,TanakaH,KondoY,OtsuboH,etal.
AssociationbetweenthePPARGC1ApolymorphismandaerobiccapacityinJapanesemiddle-agedmen.
InternMed.
2015;54:359–66.
https://doi.
org/10.
2169/internalmedicine.
54.
3170.
66.
AronsonD,Sheikh-AhmadM,AvizoharO,KernerA,SellaR,BarthaP,etal.
C-Reactiveproteinisinverselyrelatedtophysicalfitnessinmiddle-agedsubjects.
Atherosclerosis.
2004;176:173–9.
67.
ChupelMU,MinuzziLG,FurtadoGE,SantosML,HogervorstE,FilaireE,etal.
Exerciseandtaurineininflammation,cognition,andperipheralmarkersofblood-brainbarrierintegrityinolderwomen.
ApplPhysiolNutrMetab.
2018;43:apnm-2017–0775.
https://doi.
org/10.
1139/apnm-2017-0775.
68.
StoneTW,ForrestCM,MackayGM,StoyN,DarlingtonLG.
Tryptophan,adenosine,neurodegenerationandneuroprotection.
MetabBrainDis.
2007;22:337–52.
69.
BallHJ,Sanchez-PerezA,WeiserS,AustinCJD,AstelbauerF,MiuJ,etal.
Characterizationofanindoleamine2,3-dioxygenase-likeproteinfoundinhumansandmice.
Gene.
2007;396:203–13.
70.
TakaoS,SumisuguN,HirataF,HayaishiO.
Indoleamine2,3-dioxygenase.
Purificationandsomeproperties.
JBiolChem.
1978;253:4700–6.
71.
StoneTW.
Kynurenicacidblocksnicotinicsynaptictransmissiontohippocampalinterneuronsinyoungrats.
EurJNeurosci.
2007;25:2656–65.
72.
SasK,RobotkaH,ToldiJ,VécseiL.
Mitochondria,metabolicdisturbances,oxidativestressandthekynureninesystem,withfocusonneurodegenerativedisorders.
JNeurolSci.
2007;257:221–39.
https://doi.
org/10.
1016/j.
jns.
2007.
01.
033.
73.
GuilleminGJ.
Quinolinicacid,theinescapableneurotoxin.
FEBSJ.
2012;279:1356–65.
74.
CervenkaI,AgudeloLZ,RuasJL.
Kynurenines:Tryptophan'smetabolitesinexercise,inflammation,andmentalhealth.
Science.
2017;357:eaaf9794.
https://doi.
org/10.
1126/science.
aaf9794.
75.
GuilleminGJ,KerrSJ,SmytheGA,SmithDG,KapoorV,ArmatiPJ,etal.
Kynureninepathwaymetabolisminhumanastrocytes:aparadoxforneuronalprotection.
JNeurochem.
2001;78:842–53.
https://doi.
org/10.
1046/j.
1471-4159.
2001.
00498.
x.
76.
Werner-FelmayerG,WernerER,FuchsD,HausenA,ReibneggerG,WachterH.
Characteristicsofinterferoninducedtryptophanmetabolisminhumancellsinvitro.
BBA-MolCellRes.
1989;1012:140–7.
https://doi.
org/10.
1016/0167-4889(89)90087-6.
77.
SchlittlerM,GoinyM,AgudeloLZ,VenckunasT,BrazaitisM,SkurvydasA,etal.
Enduranceexerciseincreasesskeletalmusclekynurenineaminotransferasesandplasmakynurenicacidinhumans.
AmJPhysiolCellPhysiol.
2016;310:C836–40.
https://doi.
org/10.
1152/ajpcell.
00053.
2016.
78.
AndrásIE,DeliMA,VeszelkaS,HayashiK,HennigB,ToborekM.
TheNMDAandAMPA/KAreceptorsareinvolvedinglutamate-inducedalterationsofoccludinexpressionandphosphorylationinbrainendothelialcells.
JCerebBloodFlowMetab.
2007;27:1431–43.
79.
BeggiatoS,AntonelliT,TomasiniMC,TanganelliS,FuxeK,SchwarczR,etal.
Kynurenicacid,bytargetingα7nicotinicacetylcholinereceptors,modulatesextracellularGABAlevelsintheratstriatuminvivo.
EurJNeurosci.
2013;37:1470–7.
https://doi.
org/10.
1111/ejn.
12160.
80.
HilmasC,PereiraEFR,AlkondonM,RassoulpourA,SchwarczR,AlbuquerqueEX.
Thebrainmetabolitekynurenicacidinhibitsalpha7nicotinicreceptoractivityandincreasesnon-alpha7nicotinicreceptorexpression:physiopathologicalimplications.
JNeurosci.
2001;21:7463–73.
81.
Konradsson-Geuken,WuHQ,GashCR,AlexanderKS,CampbellA,SozeriY,etal.
Corticalkynurenicacidbi-directionallymodulatesprefrontalglutamatelevelsasassessedbymicrodialysisandrapidelectrochemistry.
Neuroscience.
2010;169:1848–59.
82.
WinklewskiPJ,RadkowskiM,Wszedybyl-WinklewskaM,DemkowU.
Braininflammationandhypertension:thechickenortheeggNeuroinflammation.
2015;3:12.
83.
WinklewskiPJ,RadkowskiM,DemkowU.
Neuroinflammatorymechanismsofhypertension:potentialtherapeuticimplications.
CurrOpinNephrolHypertens.
2016;25:410–6.
84.
BiancardiVC,SternJE.
Compromisedblood-brainbarrierpermeability:novelmechanismbywhichcirculatingangiotensinIIsignalstosympathoexcitatorycentresduringhypertension.
JPhysiol.
2016;594:1591–600.
85.
CareyRM,WangZQ,SiragyHM.
Roleoftheangiotensintype2receptorintheregulationofbloodpressureandrenalfunction.
Hypertension.
2000;35(1Pt2):155–63.
86.
SuzukiY,Ruiz-OrtegaM,LorenzoO,RuperezM,EstebanV,EgidoJ.
InflammationandangiotensinII.
IntJBiochemCellBiol.
2003;35:881–900.
https://doi.
org/10.
1016/S1357-2725(02)00271-6.
87.
MullerDN,ShagdarsurenE,ParkJK,DechendR,MervaalaE,HampichF,etal.
ImmunosuppressivetreatmentprotectsagainstangiotensinII-inducedrenaldamage.
AmJPathol.
2002;161:1679–93.
88.
ShiP,Diez-FreireC,JunJY,QiY,KatovichMJ,LiQ,etal.
Brainmicroglialcytokinesinneurogenichypertension.
Hypertension.
2010;56:297–303.
89.
WakiH,GouraudSS,MaedaM,RaizadaMK,PatonJFR.
Contributionsofvascularinflammationinthebrainstemforneurogenichypertension.
RespirPhysiolNeurobiol.
2011;178:422–8.
90.
ZubcevicJ,WakiH,RaizadaM,PatonJ.
Autonomic-immune-vasculardysfunction:anemergingconceptforneurogenichypertension.
Hypertension.
2011;57:1026–33.
91.
ItoH,TakemoriK,KawaiJ,SuzukiT.
AT1receptorantagonistpreventsbrainedemawithoutloweringbloodpressure.
BrainEdemaXI.
2000;76:141–5.
https://doi.
org/10.
1007/978-3-7091-6346-7_29.
92.
deVriesHE,KuiperJ,deBoerAG,VanBerkelTJC,BreimerDD.
Theblood-brainbarrierinneuroinflammatorydiseases.
PharmacolRev.
1997;49:143–56.
http://pharmrev.
aspetjournals.
org/content/49/2/143.
93.
ZhangM,MaoY,RamirezSH,TumaRF,ChabrashviliT.
AngiotensinIIinducedcerebralmicrovascularinflammationandincreasedblood-brainbarrierpermeabilityviaoxidativestress.
Neuroscience.
2010;171:852–8.
https://doi.
org/10.
1016/j.
neuroscience.
2010.
09.
029.
94.
PanYX,GaoL,WangWZ,ZhengH,LiuD,PatelKP,etal.
ExercisetrainingpreventsarterialbaroreflexdysfunctioninratstreatedwithcentralangiotensinII.
Hypertension.
2007;49:519–27.
95.
AgarwalD,WelschMA,KellerJN,FrancisJ.
ChronicexercisemodulatesRAScomponentsandimprovesbalancebetweenpro-andanti-inflammatorycytokinesinthebrainofSHR.
BasicResCardiol.
2011;106:1069–85.
96.
ChaarLJ,AlvesTP,JuniorAMB,MicheliniLC.
Earlytraining-inducedreductionofangiotensinogeninautonomicareas-themaineffectofexerciseonbrainrenin-angiotensinsysteminhypertensiverats.
PLoSOne.
2015;10(9):e0137395.
97.
JiaLL,KangYM,WangFX,LiHB,ZhangY,YuXJ,etal.
Exercisetrainingattenuateshypertensionandcardiachypertrophybymodulatingneurotransmittersandcytokinesinhypothalamicparaventricularnucleus.
PLoSOne.
2014;9https://doi.
org/10.
1371/journal.
pone.
0085481.
98.
NegroCE,MoreiraED,BrumPC,DenadaiML,KriegerEM.
Vagalandsympatheticcontrolofheartrateduringexercisebysedentaryandexercise-trainedrats.
BrazJMedBiolRes.
1992;25:1045–52.
https://doi.
org/10.
1371/journal.
pone.
0094927.
99.
SugawaraJ,MurakamiH,MaedaS,KunoS,MatsudaM.
Changeinpost-exercisevagalreactivationwithexercisetraininganddetraininginyoungmen.
EurJApplPhysiol.
2001;85:259–63.
100.
ButtlerL,JordoMT,FragasMG,RuggeriA,CeroniA,MicheliniLC.
Maintenanceofblood-brainbarrierintegrityinhypertension:anovelbenefitofexercisetrainingforautonomiccontrol.
FrontPhysiol.
2017;8:1048.
101.
MeshorerE.
Chroniccholinergicimbalancespromotebraindiffusionandtransportabnormalities.
FASEBJ.
2005;19:910–22.
https://doi.
org/10.
1096/fj.
04-2957com.
Makiewiczetal.
JournalofNeuroinflammation(2019)16:15Page12of16102.
NishiharaM,HirookaY,MatsukawaR,KishiT,SunagawaK.
Oxidativestressintherostralventrolateralmedullamodulatesexcitatoryandinhibitoryinputsinspontaneouslyhypertensiverats.
JHypertens.
2012;30:97–106.
103.
MurataniH,AverillDB,FerrarioCM.
EffectofangiotensinIIinventrolateralmedullaofspontaneouslyhypertensiverats.
AmJPhysiol.
1991;260(5Pt2):R977–84.
104.
VieiraAA,ColombariE,DeLucaLA,ColombariDSA,DePaulaPM,MenaniJV.
Importanceofangiotensinergicmechanismsforthepressorresponsetol-glutamateintotherostralventrolateralmedulla.
BrainRes.
2010;1322:72–80.
105.
ColombariE,SatoMA,CravoSL,BergamaschiCT,CamposRR,LopesOU.
Roleofthemedullaoblongatainhypertension.
Hypertension.
2001;38:549–54.
https://doi.
org/10.
1161/01.
HYP.
38.
3.
549.
106.
KishiT,HirookaY,SunagawaK.
Sympathoinhibitioncausedbyorallyadministeredtelmisartanthroughinhibitionoftheat1receptorintherostralventrolateralmedullaofhypertensiverats.
HypertensRes.
2012;35:940–6.
https://doi.
org/10.
1038/hr.
2012.
63.
107.
MillsE,MinsonJ,DroletG,ChalmersJ.
Effectofintrathecalaminoacidreceptorantagonistsonbasalbloodpressureandpressorresponsestobrainstemstimulationinnormotensiveandhypertensiverats.
JCardiovascPharmacol.
1990;15:877–83.
108.
SchreursJ,SeeligT,SchulmanH.
β2-adrenergicreceptorsonperipheralnerves.
JNeurochem.
1986;46:294–6.
https://doi.
org/10.
1111/j.
1471-4159.
1986.
tb12961.
x.
109.
BraunV,ClarkeV.
Whatcan"thematicanalysis"offerhealthandwellbeingresearchersIntJQualStudHealthWell-being.
2014;https://doi.
org/10.
3402/qhw.
v9.
26152.
110.
AtzoriM,Cuevas-OlguinR,Esquivel-RendonE,Garcia-OscosF,Salgado-DelgadoRC,SaderiN,etal.
Locusceruleusnorepinephrinerelease:acentralregulatorofcnsspatio-temporalactivationFrontSynapticNeurosci.
2016;8:25.
https://doi.
org/10.
3389/fnsyn.
2016.
00025.
111.
ChandlerDJ.
Evidenceforaspecializedroleofthelocuscoeruleusnoradrenergicsystemincorticalcircuitriesandbehavioraloperations.
BrainRes.
2016;1641PtB:197–206.
doi:https://doi.
org/10.
1016/j.
brainres.
2015.
11.
022.
112.
FeinsteinDL,KalininS,BraunD.
Causes,consequences,andcuresforneuroinflammationmediatedviathelocuscoeruleus:noradrenergicsignalingsystem.
JNeurochem.
2016;139:154–78.
https://doi.
org/10.
1111/jnc.
13447.
113.
O'DonnellJ,ZeppenfeldD,McConnellE,PenaS,NedergaardM.
Norepinephrine:aneuromodulatorthatbooststhefunctionofmultiplecelltypestooptimizeCNSperformance.
NeurochemRes.
2012;37:2496–512.
https://doi.
org/10.
1007/s11064-012-0818-x.
114.
HetierE,AyalaJ,BousseauA,ProchiantzA.
Modulationofinterleukin-1andtumornecrosisfactorexpressionbyβ-adrenergicagonistsinmouseameboidmicroglialcells.
ExpBrainRes.
1991;86:407–13.
https://doi.
org/10.
1007/BF00228965.
115.
FrohmanEM,VayuvegulaB,vandenNoortS,GuptaS.
Norepinephrineinhibitsgamma-interferon-inducedMHCclassII(Ia)antigenexpressiononculturedbrainastrocytes.
JNeuroimmunol.
1988;17:89–101.
https://doi.
org/10.
1016/0165-5728(88)90017-3.
116.
SandersVM.
Thebeta2-adrenergicreceptoronTandBlymphocytes:doweunderstandityetBrainBehavImmun.
2012;26:195–200.
https://doi.
org/10.
1016/j.
bbi.
2011.
08.
001.
117.
HuangHW,FangXX,WangXQ,PengYP,QiuYH.
RegulationofdifferentiationandfunctionofhelperTcellsbylymphocyte-derivedcatecholaminesviaα1-andβ2-adrenoceptors.
Neuroimmunomodulation.
2014;22:138–51.
https://doi.
org/10.
1159/000360579.
118.
JuriDM,LonarD,arman-KranM.
NoradrenergicstimulationofBDNFsynthesisinastrocytes:mediationviaα1-andβ1/β2-adrenergicreceptors.
NeurochemInt.
2008;52:297–306.
https://doi.
org/10.
1016/j.
neuint.
2007.
06.
035.
119.
MiddlemasD.
Brainderivedneurotrophicfactor.
xPharmComprPharmacolRef.
2011;22:1–4.
https://doi.
org/10.
1016/B978-008055232-3.
61338-8.
120.
ZafraF,LindholmD,CastrénE,HartikkaJ,ThoenenH.
Regulationofbrain-derivedneurotrophicfactorandnervegrowthfactormRNAinprimaryculturesofhippocampalneuronsandastrocytes.
JNeurosci.
1992;12:4793–9.
https://doi.
org/10.
1038/319600A0.
121.
SchurrA,WestCA,RigorBM.
Lactate-supportedsynapticfunctionintherathippocampalslicepreparation.
SciSci.
1988;240:1326–8.
https://doi.
org/10.
1126/science.
3375817.
122.
VanHallG,StrmstadM,RasmussenP,Jans,ZaarM,GamC,etal.
Bloodlactateisanimportantenergysourceforthehumanbrain.
JCerebBloodFlowMetab.
2009;29:1121–9.
https://doi.
org/10.
1038/jcbfm.
2009.
35.
123.
BenarrochEE.
Glycogenmetabolism:Metaboliccouplingbetweenastrocytesandneurons.
Neurology.
2010;74:919–23.
https://doi.
org/10.
1212/WNL.
0b013e3181d3e44b.
124.
FillenzM,LowryJP,BoutelleMG,FrayAE.
Theroleofastrocytesandnoradrenalineinneuronalglucosemetabolism.
ActaPhysiolScand.
1999;167:275–84.
https://doi.
org/10.
1046/j.
1365-201X.
1999.
00578.
x.
125.
HertzL,LovattD,GoldmanSA,NedergaardM.
Adrenoceptorsinbrain:cellulargeneexpressionandeffectsonastrocyticmetabolismand[Ca2+]i.
NeurochemInt.
2010;57:411–20.
https://doi.
org/10.
1016/j.
neuint.
2010.
03.
019.
126.
PellerinL,Bouzier-SoreAK,AubertA,SerresS,MerleM,CostalatR,etal.
Activity-dependentregulationofenergymetabolismbyastrocytes:anupdate.
Glia.
2007;55:1251–62.
https://doi.
org/10.
1002/glia.
20528.
127.
LewisGD,FarrellL,WoodMJ,MartinovicM,AranyZ,RoweGC,etal.
Metabolicsignaturesofexerciseinhumanplasma.
SciTranslMed.
2010;2:33ra37.
https://doi.
org/10.
1126/scitranslmed.
3001006.
128.
DelezieJ,HandschinC.
Endocrinecrosstalkbetweenskeletalmuscleandthebrain.
FrontNeurol.
2018;9:698.
https://doi.
org/10.
3389/fneur.
2018.
00698.
129.
PellerinL,PellegriG,BittarPG,CharnayY,BourasC,MartinJL,etal.
Evidencesupportingtheexistenceofanactivity-dependentastrocyte-neuronlactateshuttle.
DevNeurosci.
1998;20:291–9.
https://doi.
org/10.
1159/000017324.
130.
BergersenL,RafikiA,OttersenOP.
Immunogoldcytochemistryidentifiesspecializedmembranedomainsformonocarboxylatetransportinthecentralnervoussystem.
NeurochemRes.
2002;27:89–96.
https://doi.
org/10.
1023/A:1014806723147.
131.
BergersenLH.
Lactatetransportandsignalinginthebrain:potentialtherapeutictargetsandrolesinbody-braininteraction.
JCerebBloodFlowMetab.
2015;35:176–85.
https://doi.
org/10.
1038/jcbfm.
2014.
206.
132.
BarrosLF.
Metabolicsignalingbylactateinthebrain.
TrendsNeurosci.
2013;36:396–404.
https://doi.
org/10.
1016/j.
tins.
2013.
04.
002.
133.
RuanGX,KazlauskasA.
LactateengagesreceptortyrosinekinasesAxl,Tie2,andvascularendothelialgrowthfactorreceptor2toactivatephosphoinositide3-kinase/AKTandpromoteangiogenesis.
JBiolChem.
2013;288:21161–72.
https://doi.
org/10.
1074/jbc.
M113.
474619.
134.
MorlandC,AnderssonKA,HaugenP,HadzicA,KleppaL,GilleA,etal.
ExerciseinducescerebralVEGFandangiogenesisviathelactatereceptorHCAR1.
NatCommun.
2017;8:15557.
https://doi.
org/10.
1038/ncomms15557.
135.
ToddRD,BotteronKN.
Isattention-deficit/hyperactivitydisorderanenergydeficiencysyndromeBiolPsychiatry.
2001;50:151–8.
https://doi.
org/10.
1016/S0006-3223(01)01173-8.
136.
RussellVA,OadesRD,TannockR,KilleenPR,AuerbachJG,JohansenEB,etal.
Responsevariabilityinattention-deficit/hyperactivitydisorder:aneuronalandglialenergeticshypothesis.
BehavBrainFunct.
2006;2:30.
https://doi.
org/10.
1186/1744-9081-2-30.
137.
MedinT,MedinH,BrandsarHefteM,Storm-MathisenJ,BergersenLH.
Upregulationofthelactatetransportermonocarboxylatetransporter1attheblood-brainbarrierinaratmodelofattention-deficit/hyperactivitydisordersuggestshyperactivitycouldbeaformofself-treatment.
BehavBrainRes.
2018;360:279–85.
https://doi.
org/10.
1016/j.
bbr.
2018.
12.
023.
138.
DalgasU,StenagerE.
Exerciseanddiseaseprogressioninmultiplesclerosis:canexerciseslowdowntheprogressionofmultiplesclerosisTherAdvNeurolDisord.
2012;5:81–95.
139.
MillerDH,KhanOA,SheremataWA,BlumhardtLD,RiceGPA,LibonatiMA,etal.
Acontrolledtrialofnatalizumabforrelapsingmultiplesclerosis.
NEnglJMed.
2003;348:15–23.
https://doi.
org/10.
1056/NEJMoa020696.
140.
PatersonP.
Experimentalallergicencephalomyelitis:roleoffibrindepositioninimmunopathogenesisofinflammationinrats.
FedProc.
1976;35:2428–34.
141.
MokhtarzadeM,MotlR,NegareshR,ZimmerP,KhodadoostM,BakerJS,etal.
Exercise-inducedchangesinneurotrophicfactorsandmarkersofblood-brainbarrierpermeabilityaremoderatedbyweightstatusinmultiplesclerosis.
Neuropeptides.
2018;70:93–100.
https://doi.
org/10.
1016/j.
npep.
2018.
05.
010.
142.
WhiteLJ,CastellanoV.
Exerciseandbrainhealth:Implicationsformultiplesclerosis:PartIIimmunefactorsandstresshormones.
SportMed.
2008;38:179–86.
https://doi.
org/10.
2165/00007256-200838030-00001.
143.
RossiS,FurlanR,DeChiaraV,MusellaA,LoGiudiceT,MataluniG,etal.
Exerciseattenuatestheclinical,synapticanddendriticabnormalitiesofexperimentalautoimmuneencephalomyelitis.
NeurobiolDis.
2009;36:51–9.
Makiewiczetal.
JournalofNeuroinflammation(2019)16:15Page13of16144.
vanPraagH.
Exerciseenhanceslearningandhippocampalneurogenesisinagedmice.
JNeurosci.
2005;25:8680–5.
https://doi.
org/10.
1523/JNEUROSCI.
1731-05.
2005.
145.
CotmanCW,BerchtoldNC,ChristieLA.
Exercisebuildsbrainhealth:keyrolesofgrowthfactorcascadesandinflammation.
TrendsNeurosci.
2007;30:464–72.
https://doi.
org/10.
1016/j.
tins.
2007.
06.
011.
146.
CastellanoV,WhiteLJ.
Serumbrain-derivedneurotrophicfactorresponsetoaerobicexerciseinmultiplesclerosis.
JNeurolSci.
2008;269:85–91.
https://doi.
org/10.
1016/j.
jns.
2007.
12.
030.
147.
LeavittVM,CirnigliaroC,CohenA,FaragA,BrooksM,WechtJM,etal.
Aerobicexerciseincreaseshippocampalvolumeandimprovesmemoryinmultiplesclerosis:preliminaryfindings.
Neurocase.
2014;20:695–7.
https://doi.
org/10.
1080/13554794.
2013.
841951.
148.
MotlRW,PiluttiLA,LearmonthYC,GoldmanMD,BrownT.
Clinicalimportanceofstepstakenperdayamongpersonswithmultiplesclerosis.
PLoSOne.
2013;8:e73247.
https://doi.
org/10.
1371/journal.
pone.
0073247.
149.
BeierM,BombardierCH,HartoonianN,MotlRW,KraftGH.
Improvedphysicalfitnesscorrelateswithimprovedcognitioninmultiplesclerosis.
ArchPhysMedRehabil.
2014;95:1328–34.
https://doi.
org/10.
1016/j.
apmr.
2014.
02.
017.
150.
PrakashRS,SnookEM,EricksonKI,ColcombeSJ,VossMW,MotlRW,etal.
Cardiorespiratoryfitness:apredictorofcorticalplasticityinmultiplesclerosis.
Neuroimage.
2007;34:1238–44.
https://doi.
org/10.
1016/j.
neuroimage.
2006.
10.
003.
151.
PrakashRS,SnookEM,MotlRW,KramerAF.
Aerobicfitnessisassociatedwithgraymattervolumeandwhitematterintegrityinmultiplesclerosis.
BrainRes.
2010;1341:41–51.
https://doi.
org/10.
1016/j.
brainres.
2009.
06.
063.
152.
GambaP,TestaG,GargiuloS,StaurenghiE,PoliG,LeonarduzziG.
OxidizedcholesterolasthedrivingforcebehindthedevelopmentofAlzheimer'sdisease.
FrontAgingNeurosci.
2015;7:119.
https://doi.
org/10.
3389/fnagi.
2015.
00119.
153.
MullinsRJ,DiehlTC,ChiaCW,KapogiannisD.
Insulinresistanceasalinkbetweenamyloid-betaandtaupathologiesinAlzheimer'sdisease.
FrontAgingNeurosci.
2017;9:118.
https://doi.
org/10.
3389/fnagi.
2017.
00118.
154.
BednarczykJ,LukasiukK.
Tightjunctionsinneurologicaldiseases.
ActaNeurobiolExp.
2011;71:393–408.
155.
GonalvesA,AmbrósioAF,FernandesR.
Regulationofclaudinsinblood-tissuebarriersunderphysiologicalandpathologicalstates.
TissueBarriers.
2013;1:e24782.
https://doi.
org/10.
4161/tisb.
24782.
156.
KrabbeG,HalleA,MatyashV,RinnenthalJL,EomGD,BernhardtU,etal.
Functionalimpairmentofmicrogliacoincideswithbeta-amyloiddepositioninmicewithAlzheimer-likepathology.
PLoSOne.
2013;8:e60921.
https://doi.
org/10.
1371/journal.
pone.
0060921.
157.
LepelletierFX,MannDMA,RobinsonAC,PinteauxE,BoutinH.
EarlychangesinextracellularmatrixinAlzheimer'sdisease.
NeuropatholApplNeurobiol.
2017;43:167–82.
https://doi.
org/10.
1111/nan.
12295.
158.
HolmesC.
InflammationinAlzheimer'sdisease.
Dementia,FifthEd.
2017;14:508–18.
https://doi.
org/10.
1201/9781315381572.
159.
HeX,LiuD,ZhangQ,LiangF,DaiG,ZengJ,etal.
Voluntaryexercisepromotesglymphaticclearanceofamyloidbetaandreducestheactivationofastrocytesandmicrogliainagedmice.
FrontMolNeurosci.
2017;10:144.
https://doi.
org/10.
3389/fnmol.
2017.
00144.
160.
JensenCS,HasselbalchSG,WaldemarG,SimonsenAH.
Biochemicalmarkersofphysicalexerciseonmildcognitiveimpairmentanddementia:Systematicreviewandperspectives.
FrontNeurol.
2015;6:187.
https://doi.
org/10.
3389/fneur.
2015.
00187.
161.
BakerLD,FrankLL,Foster-SchubertK,GreenPS,WilkinsonCW,McTiernanA,etal.
Effectsofaerobicexerciseonmildcognitiveimpairment:acontrolledtrial.
ArchNeurol.
2010;67:71–9.
https://doi.
org/10.
1001/archneurol.
2009.
307.
162.
VossMW,VivarC,KramerAF,vanPraagH.
Bridginganimalandhumanmodelsofexercise-inducedbrainplasticity.
TrendsCognSci.
2013;17:525–44.
https://doi.
org/10.
1016/j.
tics.
2013.
08.
001.
163.
SmithPJ,BlumenthalJA,HoffmanBM,CooperH,StraumanTA,Welsh-BohmerK,etal.
Aerobicexerciseandneurocognitiveperformance:ameta-analyticreviewofrandomizedcontrolledtrials.
PsychosomMed.
2010;72:239–52.
https://doi.
org/10.
1097/PSY.
0b013e3181d14633.
164.
GrootC,HooghiemstraAM,RaijmakersPGHM,vanBerckelBNM,ScheltensP,ScherderEJA,etal.
Theeffectofphysicalactivityoncognitivefunctioninpatientswithdementia:ameta-analysisofrandomizedcontroltrials.
AgeingResRev.
2016;25:13–23.
https://doi.
org/10.
1016/j.
arr.
2015.
11.
005.
165.
hmanH,SavikkoN,StrandbergTE,PitklKH.
Effectofphysicalexerciseoncognitiveperformanceinolderadultswithmildcognitiveimpairmentordementia:asystematicreview.
DementGeriatrCognDisord.
2014;38:347–65.
https://doi.
org/10.
1159/000365388.
166.
NiemanDC.
Currentperspectiveonexerciseimmunology.
CurrSportsMedRep.
2003;2:239–42.
167.
GleesonM.
Immunefunctioninsportandexercise.
JApplPhysiol.
2007;103:693–9.
168.
RohH-T,ChoS-Y,YoonH-G,SoW-Y.
Effectofexerciseintensityonneurotrophicfactorsandblood–brainbarrierpermeabilityinducedbyoxidative–nitrosativestressinmalecollegestudents.
IntJSportNutrExercMetab.
2017;27:239–46.
https://doi.
org/10.
1123/ijsnem.
2016-0009.
169.
KasapisC,PDT.
TheeffectsofphysicalactivityonserumC-reactiveproteinandinflammatorymarkers:asystematicreview.
JAmCollCardiol.
2005;45:1563–9.
https://doi.
org/10.
1016/j.
jacc.
2004.
12.
077.
170.
PlaisanceEP,GrandjeanPW.
Physicalactivityandhigh-sensitivityC-reactiveprotein.
SportMed.
2006;36:443–58.
171.
KohSXT,LeeJKW.
S100Basamarkerforbraindamageandblood-brainbarrierdisruptionfollowingexercise.
SportMed.
2014;44:369–85.
https://doi.
org/10.
1007/s40279-013-0119-9.
172.
MarchiN,CavagliaM,FazioV,BhudiaS,HalleneK,JanigroD.
Peripheralmarkersofblood-brainbarrierdamage.
ClinChimActa.
2004;342:1–12.
173.
RohHT,ChoSY,SoWY.
Obesitypromotesoxidativestressandexacerbatesblood-brainbarrierdisruptionafterhigh-intensityexercise.
JSportHealSci.
2017;6:225–30.
174.
AndersonJM,VanItallieCM.
Physiologyandfunctionofthetightjunction.
ColdSpringHarbPerspectBiol.
2009;1:a002584.
https://doi.
org/10.
1101/cshperspect.
a002584.
175.
StlnackeBM,TegnerY,SojkaP.
PlayingsoccerincreasesserumconcentrationsofthebiochemicalmarkersofbraindamageS-100Bandneuron-specificenolaseineliteplayers:apilotstudy.
BrainInj.
2004;18:899–909.
176.
RiuzziF,SorciG,BeccaficoS,DonatoR.
S100BengagesRAGEorbFGF/FGFR1inmyoblastsdependingonitsownconcentrationandmyoblastdensity.
implicationsformuscleregeneration.
PLoSOne.
2012;7177.
ShankerSharmaH,Cervós-NavarroJ,KumarDP.
Increasedblood-brainbarrierpermeabilityfollowingacuteshort-termswimmingexerciseinconsciousnormotensiveyoungrats.
NeurosciRes.
1991;10:211–21.
https://doi.
org/10.
1016/0168-0102(91)90058-7.
178.
BaileyDM,EvansKA,McenenyJ,YoungIS,HullinDA,JamesPE,etal.
Exercise-inducedoxidative-nitrosativestressisassociatedwithimpaireddynamiccerebralautoregulationandblood-brainbarrierleakage.
ExpPhysiol.
2011;96:1196–207.
179.
GrgensSW,EckardtK,JensenJ,DrevonCA,EckelJ.
Exerciseandregulationofadipokineandmyokineproduction.
ProgMolBiolTranslSci.
2015;135:313–36.
180.
GleesonM,McFarlinB,FlynnM.
Exerciseandtoll-likereceptors.
ExercImmunolRev.
2006;12:34–53.
181.
EsserN,Legrand-PoelsS,PietteJ,ScheenAJ,PaquotN.
Inflammationasalinkbetweenobesity,metabolicsyndromeandtype2diabetes.
DiabetesResClinPract.
2014;105:141–50.
182.
KristiansenOP,Mandrup-PoulsenT.
Interleukin-6andanddiabetes:thegood,thebad,ortheindifferentDiabetes.
2005;54(suppl2):114–24.
https://doi.
org/10.
2337/diabetes.
54.
suppl_2.
S114.
183.
GmitA,JaworskaJ,MicielskaK,KortasJ,PrusikK,PrusikK,etal.
ImprovementofcognitivefunctionsinresponsetoaregularNordicwalkingtraininginelderlywomen—achangedependentonthetrainingexperience.
ExpGerontol.
2018;104:105–12.
https://doi.
org/10.
1016/j.
exger.
2018.
02.
006.
184.
OstrowskiK,RohdeT,AspS,SchjerlingP,PedersenBK.
Pro-andanti-inflammatorycytokinebalanceinstrenuousexerciseinhumans.
JPhysiol.
1999;515:287–91.
https://doi.
org/10.
1111/j.
1469-7793.
1999.
287ad.
x.
185.
OstrowskiK,SchjerlingP,PedersenBK.
Physicalactivityandplasmainterleukin-6inhumans—effectofintensityofexercise.
EurJApplPhysiol.
2000;83:512–5.
186.
AkiraS,TagaT,KishimotoT.
Interleukin-6inbiologyandmedicine.
AdvImmunol.
1993;54:1–78.
https://doi.
org/10.
1016/S0065-2776(08)60532-5.
187.
OstrowskiK,RohdeT,ZachoM,AspS,PedersenBK.
Evidencethatinterleukin-6isproducedinhumanskeletalmuscleduringprolongedrunning.
JPhysiol.
1998;508:949–53.
188.
JonsdottirIH,SchjerlingP,OstrowskiK,AspS,RichterEA.
Musclecontractionsinduceinterleukin-6mRNAproductioninratskeletalmuscles.
JPhysiol.
2000;528(Pt1):157–63.
https://doi.
org/10.
1111/j.
1469-7793.
2000.
00157.
x.
Makiewiczetal.
JournalofNeuroinflammation(2019)16:15Page14of16189.
SteensbergA,VanHallG,OsadaT,SacchettiM,SaltinB,PedersenBK.
Productionofinterleukin-6incontractinghumanskeletalmusclescanaccountfortheexercise-inducedincreaseinplasmainterleukin-6.
JPhysiol.
2000;529:237–42.
190.
AbramsonJL,VaccarinoV.
Relationshipbetweenphysicalactivityandinflammationamongapparentlyhealthymiddle-agedandolderUSadults.
ArchInternMed.
2002;162:1286–92.
191.
Gomez-CabreraMC,DomenechE,ViaJ.
Moderateexerciseisanantioxidant:Upregulationofantioxidantgenesbytraining.
FreeRadicBiolMed.
2008;44:126–31.
192.
JiL.
Modulationofskeletalmuscleantioxidantdefensebyexercise:roleofredoxsignaling.
FreeRadicBiolMed.
2008;44:142–52.
https://doi.
org/10.
1016/j.
freeradbiomed.
2007.
02.
031.
193.
Teixeira-LemosE,NunesS,TeixeiraF,ReisF.
Regularphysicalexercisetrainingassistsinpreventingtype2diabetesdevelopment:focusonitsantioxidantandanti-inflammatoryproperties.
CardiovascDiabetol.
2011;10:12.
https://doi.
org/10.
1186/1475-2840-10-12.
194.
McKeeAC,DaneshvarDH,AlvarezVE,SteinTD.
Theneuropathologyofsport.
ActaNeuropathol.
2014;127:29–51.
195.
NguyenA,DuquetteN,MamarbachiM,ThorinE.
Epigeneticregulatoryeffectofexerciseonglutathioneperoxidase1expressionintheskeletalmuscleofseverelydyslipidemicmice.
PLoSOne.
2016;11:10.
196.
QiZ,HeJ,ZhangY,ShaoY,DingS.
Exercisetrainingattenuatesoxidativestressanddecreasesp53proteincontentinskeletalmuscleoftype2diabeticGoto-Kakizakirats.
FreeRadicBiolMed.
2011;50:794–800.
197.
WolburgH,LippoldtA.
Tightjunctionsoftheblood-brainbarrier:development,compositionandregulation.
VasculPharmacol.
2002;38:323–37.
https://doi.
org/10.
1016/S1537-1891(02)00200-8.
198.
LiebnerS,FischmannA,RascherG,DuffnerF,GroteE-H,KalbacherH,etal.
Claudin-1andclaudin-5expressionandtightjunctionmorphology\rarealteredinbloodvesselsofhumanglioblastomamultiforme.
ActaNeuropathol.
2000;100:323–31.
199.
MoritaK,SasakiH,FuruseM,TsukitaS.
Endothelialclaudin:claudin-5/TMVCFconstitutestightjunctionstrandsinendothelialcells.
JCellBiol.
1999;147:185–94.
https://doi.
org/10.
1083/jcb.
147.
1.
185.
200.
NittaT,HataM,GotohS,SeoY,SasakiH,HashimotoN,etal.
Size-selectivelooseningoftheblood-brainbarrierinclaudin-5-deficientmice.
JCellBiol.
2003;161:653–60.
https://doi.
org/10.
1083/jcb.
200302070.
201.
FuruseM,FujitaK,HiiragiT,FujimotoK,TsukitaS.
Claudin-1and-2:novelintegralmembraneproteinslocalizingattightjunctionswithnosequencesimilaritytooccludin.
JCellBiol.
1998;141:1539–50.
https://doi.
org/10.
1083/jcb.
141.
7.
1539.
202.
BaldaMS,WhitneyJA,FloresC.
Functionaldissociationofparacellularpermeabilityandtransepithelialelectricalresistanceanddisruptionoftheapical-basolateralintramembranediffusionbarrierbyexpressionofamutanttightjunctionmembraneprotein.
JCellBiol.
1996;134:1031–49.
https://doi.
org/10.
1083/jcb.
134.
4.
1031.
203.
TsukitaS,FuruseM,ItohM.
StructuralandsignallingmoleculescometogetherattightjunctionsShoichiroTsukita*,MikioFuruseandMasahikoItoh.
CurrOpinCellBiol.
1999;11:628–33.
Figure1:https://doi.
org/10.
1016/S0955-0674(99)00016-2.
204.
TsukitaS,ItohM.
Multifunctionalstrandsintightjunctions.
NatRev.
2001;2:285–93.
205.
WongAST,GumbinerBM.
Adhesion-independentmechanismforsuppressionoftumorcellinvasionbyE-cadherin.
JCellBiol.
2003;161:1191–203.
206.
GreenwoodJ,AmosCL,WaltersCE,CouraudP-O,LyckR,EngelhardtB,etal.
Intracellulardomainofbrainendothelialintercellularadhesionmolecule-1isessentialforTlymphocyte-mediatedsignalingandmigration.
JImmunol.
2003;171:2099–108.
https://doi.
org/10.
4049/jimmunol.
171.
4.
2099.
207.
Oppenheimer-MarksN,DavisLS,BogueDT,RambergJ,LipskyPE.
DifferentialutilizationofICAM-1andVCAM-1duringtheadhesionandtransendothelialmigrationofhumanTlymphocytes.
JImmunol.
1991;147:2913–21.
http://www.
ncbi.
nlm.
nih.
gov/pubmed/1717579.
Accessed27Sept2018208.
delZoppoGJ,MilnerR.
Integrin-MatrixInteractionsintheCerebralMicrovasculature.
ArteriosclerThrombVascBiol.
2006;26:1966–75.
https://doi.
org/10.
1161/01.
ATV.
0000232525.
65682.
a2.
209.
AlvarezJI,CayrolR,PratA.
Disruptionofcentralnervoussystembarriersinmultiplesclerosis.
BiochimBiophysActa.
1812;2011:252–64.
https://doi.
org/10.
1016/j.
bbadis.
2010.
06.
017.
210.
LarochelleC,AlvarezJI,PratA.
Howdoimmunecellsovercometheblood-brainbarrierinmultiplesclerosisFEBSLett.
2011;585:3770–80.
211.
WeissN,MillerF,CazaubonS,CouraudPO.
Theblood-brainbarrierinbrainhomeostasisandneurologicaldiseases.
BiochimBiophysActa.
2009;1788:842–57.
https://doi.
org/10.
1016/j.
bbamem.
2008.
10.
022.
212.
RaleighDR,BoeDM,YuD,WeberCR,MarchiandoAM,BradfordEM,etal.
OccludinS408phosphorylationregulatestightjunctionproteininteractionsandbarrierfunction.
JCellBiol.
2011;193:565–82.
213.
JiaJP,MengR,SunYX,SunWJ,JiXM,JiaLF.
Cerebrospinalfluidtau,Aβ1-42andinflammatorycytokinesinpatientswithAlzheimer'sdiseaseandvasculardementia.
NeurosciLett.
2005;383:12–6.
214.
WenH,WatryDD,MarcondesMCG,FoxHS.
Selectivedecreaseinparacellularconductanceoftightjunctions:roleofthefirstextracellulardomainofclaudin-5.
MolCellBiol.
2004;24:8408–17.
https://doi.
org/10.
1128/MCB.
24.
19.
8408-8417.
2004.
215.
SouzaPS,GonalvesED,PedrosoGS,FariasHR,JunqueiraSC,MarconR,etal.
Physicalexerciseattenuatesexperimentalautoimmuneencephalomyelitisbyinhibitingperipheralimmuneresponseandblood-brainbarrierdisruption.
MolNeurobiol.
2017;54:4723–37.
https://doi.
org/10.
1007/s12035-016-0014-0.
216.
SchreibeltG,MustersRJP,ReijerkerkA,deGrootLR,vanderPolSMA,HendrikxEML,etal.
Lipoicacidaffectscellularmigrationintothecentralnervoussystemandstabilazesblood-brainbarrierintegrity.
JImmunol.
2006;177:2630–7.
https://doi.
org/10.
4049/jimmunol.
177.
4.
2630.
217.
RamirezSH,FanS,DykstraH,RomS,MercerA,ReichenbachNL,etal.
Inhibitionofglycogensynthasekinase3βpromotestightjunctionstabilityinbrainendothelialcellsbyhalf-lifeextensionofoccludinandclaudin-5.
PLoSOne.
2013;8.
https://doi.
org/10.
1371/journal.
pone.
0055972.
218.
IslaAG,Vázquez-CuevasFG,Pea-OrtegaF.
Exercisepreventsamyloid-β-inducedhippocampalnetworkdisruptionbyinhibitingGSK3βactivation.
JAlzheimer'sDis.
2016;52:333–43.
https://doi.
org/10.
3233/JAD-150352.
219.
RamirezSH,FanS,ZhangM,PapuganiA,ReichenbachN,DykstraH,etal.
Inhibitionofglycogensynthasekinase3β(GSK3β)decreasesinflammatoryresponsesinbrainendothelialcells.
AmJPathol.
2010;176:881–92.
https://doi.
org/10.
2353/ajpath.
2010.
090671.
220.
BoothFW,RobertsCK,LayeMJ.
Lackofexerciseisamajorcauseofchronicdiseases.
In:ComprehensivePhysiology.
JohnWiley&Sons,Inc.
;2012.
p.
1143–211.
https://doi.
org/10.
1002/cphy.
c110025.
221.
Lange-AsschenfeldtC,KojdaG.
Alzheimer'sdisease,cerebrovasculardysfunctionandthebenefitsofexercise:Fromvesselstoneurons.
ExpGerontol.
2008;43:499–504.
https://doi.
org/10.
1016/j.
exger.
2008.
04.
002.
222.
IntlekoferKA,CotmanCW.
ExercisecounteractsdeclininghippocampalfunctioninagingandAlzheimer'sdisease.
NeurobiolDis.
2013;57:47–55.
https://doi.
org/10.
1016/j.
nbd.
2012.
06.
011.
223.
PhillipsC,AkifBaktirM,DasD,LinB,SalehiA.
ThelinkbetweenphysicalactivityandcognitivedysfunctioninAlzheimerdisease.
PhysTher.
2015;95:1046–60.
https://doi.
org/10.
2522/ptj.
20140212.
224.
BhererL,EricksonKI,Liu-AmbroseT.
Areviewoftheeffectsofphysicalactivityandexerciseoncognitiveandbrainfunctionsinolderadults.
JAgingRes.
2013;2013:1–8.
https://doi.
org/10.
1155/2013/657508.
225.
MuscariA,GiannoniC,PierpaoliL,BerzigottiA,MaiettaP,FoschiE,etal.
Chronicenduranceexercisetrainingpreventsaging-relatedcognitivedeclineinhealthyolderadults:arandomizedcontrolledtrial.
IntJGeriatrPsychiatry.
2010;25:1055–64.
https://doi.
org/10.
1002/gps.
2462.
226.
TenBrinkeLF,BolandzadehN,NagamatsuLS,HsuCL,DavisJC,Miran-KhanK,etal.
Aerobicexerciseincreaseshippocampalvolumeinolderwomenwithprobablemildcognitiveimpairment:a6-monthrandomisedcontrolledtrial.
BrJSportsMed.
2015;49:248–54.
https://doi.
org/10.
1136/bjsports-2013-093184.
227.
ForbesSC,ForbesD,ForbesS,BlakeCM,ChongLY,ThiessenEJ,etal.
Exerciseinterventionsforpreventingdementiaordelayingcognitivedeclineinpeoplewithmildcognitiveimpairment.
CochraneDatabaseSystRev.
2015;2015https://doi.
org/10.
1002/14651858.
CD011706.
228.
ColcombeSJ,EricksonKI,ScalfPE,KimJS,PrakashR,McAuleyE,etal.
Aerobicexercisetrainingincreasesbrainvolumeinaginghumans.
JGerontolABiolSciMedSci.
2006;61:1166–70.
https://doi.
org/10.
1093/gerona/61.
11.
1166.
229.
ShuklaSK,KumarS,SelvarajP,SubbaRV.
Computerizedmaintenancemanagementsystemforindigenouslydevelopedfighteraircraftinlinewithemergingtrends.
ARPNJEngApplSci.
2014;9:500–4.
https://doi.
org/10.
1073/pnas.
1015950108.
230.
TuRH,ZengZY,ZhongGQ,WuWF,LuYJ,BoZD,etal.
Effectsofexercisetrainingondepressioninpatientswithheartfailure:asystematicreviewMakiewiczetal.
JournalofNeuroinflammation(2019)16:15Page15of16andmeta-analysisofrandomizedcontrolledtrials.
EurJHeartFail.
2014;16:749–57.
https://doi.
org/10.
1002/ejhf.
101.
231.
RosenbaumS,TiedemannA,SherringtonC,CurtisJ,WardPB.
Physicalactivityinterventionsforpeoplewithmentalillness:asystematicreviewandmeta-analysis.
JClinPsychiatry.
2014;75:964–74.
https://doi.
org/10.
4088/JCP.
13r08765.
232.
FirthJ,CotterJ,ElliottR,FrenchP,YungAR.
Asystematicreviewandmeta-analysisofexerciseinterventionsinschizophreniapatients.
PsycholMed.
2015;45:1343–61.
https://doi.
org/10.
1017/S0033291714003110.
233.
DauwanM,BegemannMJH,HeringaSM,SommerIE.
Exerciseimprovesclinicalsymptoms,qualityoflife,globalfunctioning,anddepressioninschizophrenia:asystematicreviewandmeta-analysis.
SchizophrBull.
2016;42:588–99.
https://doi.
org/10.
1093/schbul/sbv164.
234.
NiebauerJ,MaxwellAJ,LinPS,TsaoPS,KosekJ,BernsteinD,etal.
Impairedaerobiccapacityinhypercholesterolemicmice:partialreversalbyexercisetraining.
AmJPhysiol.
1999;276(4Pt2):H1346–54.
https://doi.
org/10.
1152/ajpheart.
1999.
276.
4.
H1346.
235.
NiebauerJ,MaxwellAJ,LinPS,WangD,TsaoPS,CookeJP.
NOSinhibitionacceleratesatherogenesis:reversalbyexercise.
AmJPhysiolHearCircPhysiol.
2003;285:H535–40.
https://doi.
org/10.
1152/ajpheart.
00360.
2001.
236.
AdamsV,NiebauerJ.
Reversingheartfailure-associatedpathophysiologywithexercise:whatactuallyimprovesandbyhowmuchHeartFailClin.
2015;11:17–28.
https://doi.
org/10.
1016/j.
hfc.
2014.
08.
001.
237.
LenkK,SchulerG,AdamsV.
Skeletalmusclewastingincachexiaandsarcopenia:molecularpathophysiologyandimpactofexercisetraining.
JCachexiaSarcopeniaMuscle.
2010;1:9–21.
https://doi.
org/10.
1007/s13539-010-0007-1.
238.
WilsonMG,EllisonGM,CableNT.
Basicsciencebehindthecardiovascularbenefitsofexercise.
BrJSportsMed.
2016;50:93–9.
https://doi.
org/10.
1136/bjsports-2014-306596rep.
239.
ZiemannE,Zembroń-LacnyA,KasperskaA,AntosiewiczJ,GrzywaczT,GarsztkaT,etal.
Exercisetraining-inducedchangesininflammatorymediatorsandheatshockproteinsinyoungtennisplayers.
JSportSciMed.
2013;12:282–9.
240.
RibeiroF,AlvesAJ,TeixeiraM,MirandaF,AzevedoC,DuarteJA,etal.
Exercisetrainingincreasesinterleukin-10afteranacutemyocardialinfarction:arandomisedclinicaltrial.
IntJSportMed.
2012;33:192–8.
https://doi.
org/10.
1055/s-0031-1297959.
241.
LinR,ChenF,WenS,TengT,PanY,HuangH.
Interleukin-10attenuatesimpairmentoftheblood-brainbarrierinasevereacutepancreatitisratmodel.
JInflamm.
2018;15:15.
242.
EyreHA,PappsE,BauneBT.
Treatingdepressionanddepression-likebehaviorwithphysicalactivity:Animmuneperspective.
FrontPsychiatry.
2013;4:3.
https://doi.
org/10.
3389/fpsyt.
2013.
00003.
243.
FlynnMG,McFarlinBK,PhillipsMD,StewartLK,TimmermanKL.
Toll-likereceptor4andCD14mRNAexpressionarelowerinresistiveexercise-trainedelderlywomen.
JApplPhysiol.
2003;95:1833–42.
https://doi.
org/10.
1152/japplphysiol.
00359.
2003.
244.
McFarlinBK,FlynnMG,CampbellWW,StewartLK,TimmermanKL.
TLR4islowerinresistance-trainedolderwomenandrelatedtoinflammatorycytokines.
MedSciSportsExerc.
2005;37:1876–83.
https://doi.
org/10.
1249/01.
MSS.
0000145465.
71269.
10.
245.
McFarlinBK,FlynnMG,CampbellWW,CraigBA,RobinsonJP,StewartLK,etal.
Physicalactivitystatus,butnotage,influencesinflammatorybiomarkersandtoll-likereceptor4.
JGerontolABiolSciMedSci.
2006;61:388–93.
https://doi.
org/10.
1093/gerona/61.
4.
388.
246.
BanchereauJ,SteinmanRM.
Dendriticcellsandthecontrolofimmunology.
1998.
doi:https://doi.
org/10.
1038/32588.
247.
PasareC,MedzhitovR.
Toll-likereceptors:linkinginnateandadaptiveimmunity.
MechLymphActImmuneRegulX.
2004;6:11–8.
https://doi.
org/10.
1007/0-387-24180-9_2.
248.
TakedaK,AkiraS.
TLRsignalingpathways.
SeminImmunol.
2004;16:3–9.
https://doi.
org/10.
1016/j.
smim.
2003.
10.
003.
249.
NationalInstituteofClinicalExcellence.
Depressioninadults:thetreatmentandmanagementofdepressioninadults|depression|Informationforthepublic|NICE.
2009.
http://www.
nice.
org.
uk/guidance/cg90/ifp/chapter/depression.
250.
WHO.
Fiscalpoliciesfordietandthepreventionofnoncommunicablediseases.
2015.
http://www.
who.
int/dietphysicalactivity/publications/fiscal-policies-diet-prevention/en/.
251.
RajaR,RosenbergGA,CaprihanA.
MRImeasurementsofblood-brainbarrierfunctionindementia:areviewofrecentstudies.
Neuropharmacol.
2018;134:259–71.
https://doi.
org/10.
1016/j.
neuropharm.
2017.
10.
034.
Makiewiczetal.
JournalofNeuroinflammation(2019)16:15Page16of16

香港服务器多少钱一个月?香港云服务器最便宜价格

香港服务器多少钱一个月?香港服务器租用配置价格一个月多少,现在很多中小型企业在建站时都会租用香港服务器,租用香港服务器可以使网站访问更流畅、稳定性更好,安全性会更高等等。香港服务器的租用和其他地区的服务器租用配置元素都是一样的,那么为什么香港服务器那么受欢迎呢,香港云服务器最便宜价格多少钱一个月呢?阿里云轻量应用服务器最便宜的是1核1G峰值带宽30Mbps,24元/月,288元/年。不过我们一般选...

Sharktech:鲨鱼机房1Gbps无限流量美国服务器;丹佛$49/月起,洛杉矶$59/月起

sharktech怎么样?sharktech鲨鱼机房(Sharktech)我们也叫它SK机房,是一家成立于2003年的老牌国外主机商,提供的产品包括独立服务器租用、VPS主机等,自营机房在美国洛杉矶、丹佛、芝加哥和荷兰阿姆斯特丹等,主打高防产品,独立服务器免费提供60Gbps/48Mpps攻击防御。机房提供1-10Gbps带宽不限流量服务器,最低丹佛/荷兰机房每月49美元起,洛杉矶机房最低59美元...

RAKsmart新年钜惠:E3服务器秒杀$30/月起,新上韩国服务器,香港/日本/美国站群服务器,VPS月付$1.99起,GPU服务器,高防服务器_vps香港

RAKsmart发布了新年钜惠活动,即日起到2月28日,商家每天推出限量服务器秒杀,美国服务器每月30美元起,新上了韩国服务器、GPU服务器、香港/日本/美国常规+站群服务器、1-10Gbps不限流量大带宽服务器等大量库存;VPS主机全场提供7折优惠码,同时针对部分特惠套餐无码直购每月仅1.99美元,支持使用PayPal或者支付宝等方式付款,有中英文网页及客服支持。爆款秒杀10台/天可选精品网/大...

ww.00271.com为你推荐
网络访问为什么Wifi无internet访问杨紫别祝我生日快乐祝自己生日快乐内涵丰富的话留学生认证留学生的学位证书怎样认证?firetrap流言终结者 中的银幕神偷 和开保险柜 的流言是 取材与 那几部电影的access数据库ACCESS数据库有什么用22zizi.comwww 地址 didi22怎么打不开了,还有好看的吗>comxyq.163.cbg.com梦幻西游里,CBG是什么?在那里,能帮忙详细说一下吗丑福晋谁有好看的言情小说介绍下长尾关键词挖掘工具怎么挖掘长尾关键词,可以批量操作的那种网站检测请问论文检测网站好的有那些?
国外服务器租用 vps是什么 阿里云搜索 缓存服务器 美国主机代购 xen html空间 嘉洲服务器 湖南服务器托管 韩国网名大全 架设服务器 tna官网 南通服务器 国外视频网站有哪些 域名与空间 万网主机管理 便宜空间 云营销系统 国外的代理服务器 石家庄服务器托管 更多