AFuzzyIndexTrackingPortfolioSelectionModelYongFangandShou-YangWangInstituteofSystemsScience,AcademyofMathematicsandSystemsScience,ChineseAcademyofSciences,Beijing100080,Chinayfang@amss.
ac.
cnswang@iss.
ac.
cnAbstract.
Theinvestmentstrategiescanbedividedintotwoclasses:passiveinvestmentstrategiesandactiveinvestmentstrategies.
Anindextrackinginvestmentstrategybelongstotheclassofpassiveinvestmentstrategies.
Theindextrackingerrorandtheexcessreturnareconsideredastwoobjectivefunctions,abi-objectiveprogrammingmodelisproposedfortheindextrackingportfolioselectionproblem.
Furthermore,basedonfuzzydecisiontheory,afuzzyindextrackingportfolioselectionmodelisalsoproposed.
Anumericalexampleisgiventoillustratethebehavioroftheproposedfuzzyindextrackingportfolioselectionmodel.
1IntroductionInnancialmarkets,theinvestmentstrategiescanbedividedintotwoclasses:passiveinvestmentstrategiesandactiveinvestmentstrategies.
Investorswhoareadoptingactiveinvestmentstrategiescarryoutsecuritiesexchangeactivelysothattheycanndprotopportunityconstantly.
Activeinvestorstakeitforgrantedthattheycanbeatmarketscontinuously.
Investorswhoareadopt-ingpassiveinvestmentstrategiesconsiderthatthesecuritiesmarketisecient.
Thereforetheycannotgobeyondtheaveragelevelofmarketcontinuously.
Indextrackinginvestmentisakindofpassiveinvestmentstrategy,i.
e.
,investorspur-chaseallorsomesecuritieswhicharecontainedinasecuritiesmarketindexandconstructanindextrackingportfolio.
Thesecuritiesmarketindexisconsideredasabenchmark.
Theinvestorswanttoobtainasimilarreturnasthatofthebenchmarkthroughtheindextrackinginvestment.
In1952,Markowitz[6,7]proposedthemeanvariancemethodologyforport-folioselection.
Ithasservedasabasisforthedevelopmentofmodernnancialtheoryoverthepastvedecades.
KonnoandYamazaki[5]usedtheabsolutedeviationriskfunctiontoreplacetheriskfunctioninMarkowitz'smodeltofor-mulateameanabsolutedeviationportfoliooptimizationmodel.
Roll[8]usedSupportedbytheNationalNaturalScienceFoundationofChinaunderGrantNo.
70221001.
Correspondingauthor.
V.
S.
Sunderametal.
(Eds.
):ICCS2005,LNCS3516,pp.
554–561,2005.
cSpringer-VerlagBerlinHeidelberg2005AFuzzyIndexTrackingPortfolioSelectionModel555thesumofthesquareddeviationsofreturnsonareplicatingportfoliofrombenchmarkasthetrackingerrorandproposedameanvarianceindextrackingportfolioselectionmodel.
Clarke,KraseandStatman[2]denedalineartrack-ingerrorwhichistheabsolutedeviationbetweenthemanagedportfolioreturnandthebenchmarkportfolioreturn.
Basedonthelinearobjectivefunctioninwhichabsolutedeviationsbetweenportfolioandbenchmarkreturnsareused,Rudolf,WolterandZimmermann[9]proposedfouralternativedenitionsofatrackingerror.
Furthermore,theygavefourlinearoptimizationmodelsforin-dextrackingportfolioselectionproblem.
ConsiglioandZenios[3]andWorzel,Vassiadou-ZeniouandZenios[11]studiedthetrackingindexesofxed-incomesecuritiesproblem.
Inthispaper,wewillusetheexcessreturnandthelineartrackingerrorasobjectivefunctionsandproposeabi-objectiveprogrammingmodelfortheindextrackingportfolioselectionproblem.
Furthermore,weusefuzzynumberstodescribeinvestors'vagueaspirationlevelsfortheexcessreturnandthetrackingerrorandproposeafuzzyindextrackingportfolioselectionmodel.
Thepaperisorganizedasfollows.
InSection2,wepresentabi-objectiveprogrammingmodelfortheindextrackingportfolioselectionproblem.
InSection3,regardinginvestors'vagueaspirationlevelsfortheexcessreturnandlineartrackingerrorasfuzzynumbers,weproposeafuzzyindextrackingportfolioselectionmodel.
InSection4,anumericalexampleisgiventoillustratethebehavioroftheproposedfuzzyindextrackingportfolioselectionmodel.
SomeconcludingremarksaregiveninSection5.
2Bi-objectiveProgrammingModelforIndexTrackingPortfolioSelectionInthispaper,weassumethataninvestorwantstoconstructaportfoliowhichisrequiredtotrackasecuritiesmarketindex.
Theinvestorallocateshis/herwealthamongnriskysecuritieswhicharecomponentstockscontainedinthesecuritiesmarketindex.
Weintroducesomenotationsasfollows.
rit:theobservedreturnofsecurityi(i=1,2,n)attimet(t=1,2,T);xi:theproportionofthetotalamountofmoneydevotedtosecurityi(i=1,2,n);It:theobservedsecuritiesmarketindexreturnattimet(t=1,2,T).
Letx=(x1,x2,xn).
Thenthereturnofportfolioxattimet(t=1,2,T)isgivenbyRt(x)=ni=1ritxi.
Anexcessreturnisthereturnofindextrackingportfolioxabovethereturnontheindex.
Theexcessreturnofportfolioxattimet(t=1,2,T)isgivenbyEt(x)=Rt(x)It.
556Y.
FangandS.
-Y.
WangTheexpectedexcessreturnofindextrackingportfolioxisgivenbyE(x)=Tt=11T(Rt(x)It).
Roll[8]usedthesumofsquareddeviationsbetweentheportfolioandbench-markreturnstomeasurethetrackingerrorofindextrackingproblem.
Rudolf,WolterandZimmermann[9]usedlineardeviationsinsteadofsquareddeviationstogivefourdenitionsofthelineartrackingerrors.
Weadoptthetrackingerrorbasedonthemeanabsolutedownsidedeviationstoformulatetheindextrackingportfolioselectionmodelinthispaper.
ThetrackingerrorbasedonthemeanabsolutedownsidedeviationscanbeexpressedasTDMAD(x)=Tt=11T|min{0,Rt(x)It}|.
Generally,intheindextrackingportfolioselectionproblem,thetrackerrorandtheexcessreturnaretwoimportantfactorswhichareconsideredbyin-vestors.
Aninvestortriestomaximizetheexpectedexcessreturn.
Atthesametime,theinvestorhopesthatthereturnofportfolioequalsthereturnoftheindexapproximativelytosomeextentintheinvestmenthorizon.
Hence,theex-pectedexcessreturnandthetrackingerrorcanbeconsideredastwoobjectivefunctionsoftheindextrackingportfolioselectionproblem.
Inmanynancialmarkets,thesecuritiesarenoshortselling.
Soweaddthefollowingconstraints:x1,x2,xn≥0,i=1,2,n.
Weassumethattheinvestorpursuestomaximizetheexcessreturnofport-folioandtominimizethetrackingerrorunderthenoshortsellingconstraint.
Theindextrackingportfolioselectionproblemcanbeformallystatedasthefollowingbi-objectiveprogrammingproblem:(BP)maxE(x)minTDMAD(x)s.
t.
ni=1xi=1,x1,x2,xn≥0,i=1,2,n.
Theproblem(BP)canbereformulatedasabi-objectivelinearprogrammingproblembyusingthefollowingtechnique.
Notethatmin{0,a}=12a12aforanyrealnumbera.
Thus,byintroducingauxiliaryvariablesb+t,bt,t=1,2,Tsuchthatb+t+bt=Rt(x)It2,AFuzzyIndexTrackingPortfolioSelectionModel557b+tbt=Rt(x)It2,(1)b+t≥0,bt≥0,t=1,2,T,(2)wemaywriteTDMAD(x)=Tt=12btT.
Hence,wemayrewriteproblem(BP)asthefollowingbi-objectivelinearpro-grammingproblem:(BLP)maxE(x)minTt=12btTs.
t.
(1),(2)andallconstraintsof(BP).
Thustheinvestormaygettheindextrackinginvestmentstrategiesbycomputingecientsolutionsof(BLP).
Onecanuseoneoftheexistingalgorithmsofmultipleobjectivelinearprogrammingtosolveiteciently.
3FuzzyIndexTrackingPortfolioSelectionModelInaninvestment,theknowledgeandexperienceofexpertsareveryimportantinaninvestor'sdecision-making.
Basedonexperts'knowledge,theinvestormaydecidehis/herlevelsofaspirationfortheexpectedexcessreturnandthetrackingerrorofindextrackingportfolio.
In[10],Watadaemployedanon-linearSshapemembershipfunction,toexpressaspirationlevelsofexpectedreturnandofriskwhichtheinvestorwouldexpectandproposedafuzzyactiveportfolioselectionmodel.
TheSshapemembershipfunctionisgivenby:f(x)=11+exp(αx).
Inthebi-objectiveprogrammingmodelofindextrackingportfolioselectionproposedinSection2,thetwoobjectives,theexpectedexcessreturnandthetrackingerror,areconsidered.
Sincetheexpectedexcessreturnandthetrack-ingerrorarevagueanduncertain,weusethenon-linearSshapemembershipfunctionsproposedbyWatadatoexpresstheaspirationlevelsoftheexpectedexcessreturnandthetrackingerror.
ThemembershipfunctionoftheexpectedexcessreturnisgivenbyE(x)=11+exp(αE(E(x)EM)),whereEMisthemid-pointwherethemembershipfunctionvalueis0.
5andαEcanbegivenbytheinvestorbasedonhis/herowndegreeofsatisfactionforthe558Y.
FangandS.
-Y.
WangFig.
1.
Membershipfunctionofthegoalforexpectedexcessreturnexpectedexcessreturn.
Figure1showsthemembershipfunctionofthegoalfortheexpectedexcessreturn.
ThemembershipfunctionofthetrackingerrorisgivenbyT(x)=11+exp(αT(TDMAD(x)TM)),whereTMisthemid-pointwherethemembershipfunctionvalueis0.
5andαTcanbegivenbytheinvestorbasedonhis/herowndegreeofsatisfactionregardingtheleveloftrackingerror.
Figure2showsthemembershipfunctionofthegoalforthetracingerror.
Fig.
2.
MembershipfunctionofthegoalfortrackingerrorRemark1:αEandαTdeterminetheshapesofmembershipfunctionsE(x)andT(x)respectively,whereαE>0andαT>0.
ThelargerparametersαEandαTget,thelesstheirvaguenessbecomes.
AccordingtoBellmanandZadeh'smaximizationprinciple[1],wecandeneλ=min{E(x),T(x)}.
Thefuzzyindextrackingportfolioselectionproblemcanbeformulatedasfol-lows:AFuzzyIndexTrackingPortfolioSelectionModel559(FP)maxλs.
t.
E(x)≥λ,T(x)≥λ,andallconstraintsof(BLP).
Letη=log11λ,thenλ=11+exp(η).
Thelogisticfunctionismonotonouslyincreasing,somaximizingλmakesηmaximize.
Therefore,theaboveproblemcanbetransformedtoanequivalentproblemasfollows:(FLP)maxηs.
t.
αE(E(x)EM)η≥0,αT(TDMAD(x)TM)+η≤0,andallconstraintsof(BLP),whereαEandαTareparameterswhichcanbegivenbytheinvestorbasedonhis/herowndegreeofsatisfactionregardingtheexpectedexcessreturnandthetrackingerror.
(FLP)isastandardlinearprogrammingproblem.
Onecanuseoneofseveralalgorithmsoflinearprogrammingtosolveiteciently,forexample,thesimplexmethod.
Remark2:Thenon-linearSshapemembershipfunctionsofthetwofactorsmaychangetheirshapeaccordingtotheparametersαEandαT.
Throughselectingthevaluesoftheseparameters,theaspirationlevelsofthetwofactorsmaybedescribedaccurately.
Ontheotherhand,dierentparametervaluesmayreectdierentinvestors'aspirationlevels.
Therefore,itisconvenientfordierentin-vestorstoformulateinvestmentstrategiesbyusingtheproposedfuzzyindextrackingportfolioselectionmodel.
4NumericalExampleInthissection,wewillgiveanumericalexampletoillustratetheproposedfuzzyindextrackingportfolioselectionmodel.
WesupposethattheinvestorconsidersShanghai180indexasthetrackinggoal.
WechoosethirtycomponentstocksformShanghai180indexastheriskysecurities.
WecollecthistoricaldataofthethirtystocksandShanghai180indexfromJanuary,1999toDecember,2002.
Thedataaredownloadedfromtheweb-sitewww.
stockstar.
com.
Weuseonemonthasaperiodtogetthehistoricalratesofreturnsoffortyeightperiods.
ThevaluesoftheparametersαE,αT,EMandTMcanbegivenbytheinvestoraccordinghis/heraspirationlevelsfortheexpectedexcessreturnandthetrackingerror.
Intheexample,weassumethatαE=500,αT=1000,EM=0.
010andTM=0.
009.
Usingthehistoricaldata,wegetanindextrackingportfolioselectionstrategybysolving(FLP).
AllcomputationswerecarriedoutonaWINDOWSPCusingtheLINDOsolver.
Table1showstheobtainedexpectedexcessreturnandtrackingerrorofportfoliobysolving(FLP).
Table2showstheinvestmentratiooftheobtainedfuzzyindextrackingportfolio.
560Y.
FangandS.
-Y.
WangTable1.
Membershipgradeλ,obtainedexpectedexcessreturnandobtainedtrackingerrorληexcessreturntrackingerror0.
94312.
80950.
01520.
0062Table2.
InvestmentratiooftheobtainedfuzzyindextrackingportfolioStock12345678910Ratio0.
00000.
00000.
06200.
02540.
00000.
04080.
01800.
13890.
03240.
0082Stock11121314151617181920Ratio0.
14400.
14880.
01300.
00000.
00000.
00000.
18890.
00000.
00000.
0000Stock21222324252627282930Ratio0.
02760.
00000.
00000.
01240.
10010.
00000.
03950.
00000.
00000.
000001020304050600.
20.
100.
10.
20.
30.
40.
5January,1999March,2003ReturnIndextrackingportfolioShanghai180indexFig.
3.
ThedeviationsbetweenthereturnsoftheobtainedindextrackingportfolioandthereturnsonthebenchmarkShanghai180indexFigure3showsthedeviationsbetweenthereturnsoftheobtainedindextrackingportfolioandthereturnsonthebenchmarkShanghai180indexforeachmonthfromJanuary,1999toMarch,2003.
FromFigure3,wecanndthattheobtainedfuzzyindexportfoliobysolving(FLP)tracksShanghai180indexeciently.
AFuzzyIndexTrackingPortfolioSelectionModel5615ConclusionRegardingtheexpectedexcessreturnandthetrackingerrorastwoobjectivefunctions,wehaveproposedabi-objectiveprogrammingmodelfortheindextrackingportfolioselectionproblem.
Furthermore,investors'vagueaspirationlevelsfortheexcessreturnandthetrackingerrorareconsideredasfuzzynum-bers.
Basedonfuzzydecisiontheory,wehaveproposedafuzzyindextrackingportfolioselectionmodel.
Anexampleisgiventoillustratethattheproposedfuzzyindextrackingportfolioselectionmodel.
Thecomputationresultsshowthattheproposedmodelcangenerateafavoriteindextrackingportfoliostrat-egyaccordingtotheinvestor'ssatisfactorydegree.
References1.
Bellman,R.
,Zadeh,L.
A.
:DecisionMakinginaFuzzyEnvironment.
ManagementScience17(1970)141–164.
2.
Clarke,R.
G.
,Krase,S.
,Statman,M.
:TrackingErrors,Regret,andTacticalAssetAllocation.
JournalofPortfolioManagement20(1994)16–24.
3.
Consiglio,A.
,Zenios,S.
A.
:IntegratedSimulationandOptimizationModelsforTrackingInternationalFixedIncomeIndices.
MathematicalProgramming89(2001)311–339.
4.
Fang,Y.
,Wang,S.
Y.
:FuzzyPortfolioOptimization:TheoryandMethods.
Ts-inghuaUniversityPress,Beijing,2005.
5.
Konno,H.
,Yamazaki,H.
:MeanAbsolutePortfolioOptimizationModelandItsApplicationtoTokyoStockMarket.
ManagementScience37(5)(1991)519–531.
6.
Markowitz,H.
M.
:PortfolioSelection.
JournalofFinance7(1952)77–91.
7.
Markowitz,H.
M.
:PortfolioSelection:EcientDiversicationofInvestment.
JohnWiley&Sons,NewYork,1959.
8.
Roll,R.
:AMeanVarianceAnalysisofTrackingError-MinimizingthevolatilityofTrackingErrorwillnotProduceaMoreEcientManagedPortfolio.
JournalofPortfolioManagement18(1992)13–22.
9.
Rudolf,M.
,Wolter,H.
J.
,Zimmermann,H.
:ALinearModelforTrackingErrorMinimization.
JournalofBankingandFinance23(1999)85–103.
10.
Watada,J.
:FuzzyPortfolioModelforDecisionMakinginInvestment.
In:Yoshida,Y.
(eds.
):DynamicalAsspectsinFuzzyDecisionMaking.
Physica-Verlag,Heidel-berg(2001)141–162.
11.
Worzel,K.
J.
,Vassiadou-Zeniou,C.
,Zenios,S.
A.
:IntegratedSimulationandOpti-mizationModelsforTrackingIndicesofFixed-incomeSecurities.
OpreationsRe-search42(1994)223–233.
今天看到群里的老秦同学在布局自己的网站项目,这个同学还是比较奇怪的,他就喜欢用这些奇怪的域名。比如前几天看到有用.in域名,个人网站他用的.me域名不奇怪,这个还是常见的。今天看到他在做的一个范文网站的域名,居然用的是 .asia 后缀。问到其理由,是有不错好记的前缀。这里简单的搜索到.ASIA域名的新注册价格是有促销的,大约35元首年左右,续费大约是80元左右,这个成本算的话,比COM域名还贵。...
WordPress专业外贸企业网站搭建模版,特色专业外贸企业风格 + 自适应网站开发设计 通用流行的外贸企业网站模块 + 更好的SEO搜索优化和收录 自定义多模块的产品展示功能 + 高效实用的后台自定义模块设置!采用标准的HTML5+CSS3语言开发,兼容当下的各种主流浏览器: IE 6+(以及类似360、遨游等基于IE内核的)、Firefox、Google Chrome、Safari、Opera...
DiyVM是一家成立于2009年的国人主机商,提供的产品包括VPS主机、独立服务器租用等,产品数据中心包括中国香港、日本大阪和美国洛杉矶等,其中VPS主机基于XEN架构,支持异地备份与自定义镜像,VPS和独立服务器均可提供内网IP功能。商家VPS主机均2GB内存起步,三个地区机房可选,使用优惠码后每月69元起;独立服务器开设在香港沙田电信机房,CN2线路,自动化开通上架,最低499元/月起。下面以...
www.stockstar.com为你推荐
小度商城小度智能音箱1s上面的黄圈不熄灭怎么回事,第一天还能熄灭云爆发什么是蒸汽云爆炸?要具备那些条件?关键字什么叫关键词22zizi.com福利彩双色球22号开奖号杰景新特美国杰尼.巴尼特的资料同ip网站同IP的两个网站,做单向链接,会不会被K掉??www.119mm.com看电影上什么网站??4400av.com在www.dadady.com 达达电影看片子很快的啊ip查询器查看自己IP的指令www.03ggg.comwww.tvb33.com这里好像有中国性戏观看吧??
大连虚拟主机 域名备案中心 qq云存储 vpsio ix主机 傲盾官网 免费申请网站 免费phpmysql空间 免费网页申请 linux使用教程 shopex主机 美国盐湖城 中国电信测速网站 wordpress中文主题 镇江高防 测试网速命令 大化网 asp简介 阿里云宕机故障 studentmain 更多