AFuzzyIndexTrackingPortfolioSelectionModelYongFangandShou-YangWangInstituteofSystemsScience,AcademyofMathematicsandSystemsScience,ChineseAcademyofSciences,Beijing100080,Chinayfang@amss.
ac.
cnswang@iss.
ac.
cnAbstract.
Theinvestmentstrategiescanbedividedintotwoclasses:passiveinvestmentstrategiesandactiveinvestmentstrategies.
Anindextrackinginvestmentstrategybelongstotheclassofpassiveinvestmentstrategies.
Theindextrackingerrorandtheexcessreturnareconsideredastwoobjectivefunctions,abi-objectiveprogrammingmodelisproposedfortheindextrackingportfolioselectionproblem.
Furthermore,basedonfuzzydecisiontheory,afuzzyindextrackingportfolioselectionmodelisalsoproposed.
Anumericalexampleisgiventoillustratethebehavioroftheproposedfuzzyindextrackingportfolioselectionmodel.
1IntroductionInnancialmarkets,theinvestmentstrategiescanbedividedintotwoclasses:passiveinvestmentstrategiesandactiveinvestmentstrategies.
Investorswhoareadoptingactiveinvestmentstrategiescarryoutsecuritiesexchangeactivelysothattheycanndprotopportunityconstantly.
Activeinvestorstakeitforgrantedthattheycanbeatmarketscontinuously.
Investorswhoareadopt-ingpassiveinvestmentstrategiesconsiderthatthesecuritiesmarketisecient.
Thereforetheycannotgobeyondtheaveragelevelofmarketcontinuously.
Indextrackinginvestmentisakindofpassiveinvestmentstrategy,i.
e.
,investorspur-chaseallorsomesecuritieswhicharecontainedinasecuritiesmarketindexandconstructanindextrackingportfolio.
Thesecuritiesmarketindexisconsideredasabenchmark.
Theinvestorswanttoobtainasimilarreturnasthatofthebenchmarkthroughtheindextrackinginvestment.
In1952,Markowitz[6,7]proposedthemeanvariancemethodologyforport-folioselection.
Ithasservedasabasisforthedevelopmentofmodernnancialtheoryoverthepastvedecades.
KonnoandYamazaki[5]usedtheabsolutedeviationriskfunctiontoreplacetheriskfunctioninMarkowitz'smodeltofor-mulateameanabsolutedeviationportfoliooptimizationmodel.
Roll[8]usedSupportedbytheNationalNaturalScienceFoundationofChinaunderGrantNo.
70221001.
Correspondingauthor.
V.
S.
Sunderametal.
(Eds.
):ICCS2005,LNCS3516,pp.
554–561,2005.
cSpringer-VerlagBerlinHeidelberg2005AFuzzyIndexTrackingPortfolioSelectionModel555thesumofthesquareddeviationsofreturnsonareplicatingportfoliofrombenchmarkasthetrackingerrorandproposedameanvarianceindextrackingportfolioselectionmodel.
Clarke,KraseandStatman[2]denedalineartrack-ingerrorwhichistheabsolutedeviationbetweenthemanagedportfolioreturnandthebenchmarkportfolioreturn.
Basedonthelinearobjectivefunctioninwhichabsolutedeviationsbetweenportfolioandbenchmarkreturnsareused,Rudolf,WolterandZimmermann[9]proposedfouralternativedenitionsofatrackingerror.
Furthermore,theygavefourlinearoptimizationmodelsforin-dextrackingportfolioselectionproblem.
ConsiglioandZenios[3]andWorzel,Vassiadou-ZeniouandZenios[11]studiedthetrackingindexesofxed-incomesecuritiesproblem.
Inthispaper,wewillusetheexcessreturnandthelineartrackingerrorasobjectivefunctionsandproposeabi-objectiveprogrammingmodelfortheindextrackingportfolioselectionproblem.
Furthermore,weusefuzzynumberstodescribeinvestors'vagueaspirationlevelsfortheexcessreturnandthetrackingerrorandproposeafuzzyindextrackingportfolioselectionmodel.
Thepaperisorganizedasfollows.
InSection2,wepresentabi-objectiveprogrammingmodelfortheindextrackingportfolioselectionproblem.
InSection3,regardinginvestors'vagueaspirationlevelsfortheexcessreturnandlineartrackingerrorasfuzzynumbers,weproposeafuzzyindextrackingportfolioselectionmodel.
InSection4,anumericalexampleisgiventoillustratethebehavioroftheproposedfuzzyindextrackingportfolioselectionmodel.
SomeconcludingremarksaregiveninSection5.
2Bi-objectiveProgrammingModelforIndexTrackingPortfolioSelectionInthispaper,weassumethataninvestorwantstoconstructaportfoliowhichisrequiredtotrackasecuritiesmarketindex.
Theinvestorallocateshis/herwealthamongnriskysecuritieswhicharecomponentstockscontainedinthesecuritiesmarketindex.
Weintroducesomenotationsasfollows.
rit:theobservedreturnofsecurityi(i=1,2,n)attimet(t=1,2,T);xi:theproportionofthetotalamountofmoneydevotedtosecurityi(i=1,2,n);It:theobservedsecuritiesmarketindexreturnattimet(t=1,2,T).
Letx=(x1,x2,xn).
Thenthereturnofportfolioxattimet(t=1,2,T)isgivenbyRt(x)=ni=1ritxi.
Anexcessreturnisthereturnofindextrackingportfolioxabovethereturnontheindex.
Theexcessreturnofportfolioxattimet(t=1,2,T)isgivenbyEt(x)=Rt(x)It.
556Y.
FangandS.
-Y.
WangTheexpectedexcessreturnofindextrackingportfolioxisgivenbyE(x)=Tt=11T(Rt(x)It).
Roll[8]usedthesumofsquareddeviationsbetweentheportfolioandbench-markreturnstomeasurethetrackingerrorofindextrackingproblem.
Rudolf,WolterandZimmermann[9]usedlineardeviationsinsteadofsquareddeviationstogivefourdenitionsofthelineartrackingerrors.
Weadoptthetrackingerrorbasedonthemeanabsolutedownsidedeviationstoformulatetheindextrackingportfolioselectionmodelinthispaper.
ThetrackingerrorbasedonthemeanabsolutedownsidedeviationscanbeexpressedasTDMAD(x)=Tt=11T|min{0,Rt(x)It}|.
Generally,intheindextrackingportfolioselectionproblem,thetrackerrorandtheexcessreturnaretwoimportantfactorswhichareconsideredbyin-vestors.
Aninvestortriestomaximizetheexpectedexcessreturn.
Atthesametime,theinvestorhopesthatthereturnofportfolioequalsthereturnoftheindexapproximativelytosomeextentintheinvestmenthorizon.
Hence,theex-pectedexcessreturnandthetrackingerrorcanbeconsideredastwoobjectivefunctionsoftheindextrackingportfolioselectionproblem.
Inmanynancialmarkets,thesecuritiesarenoshortselling.
Soweaddthefollowingconstraints:x1,x2,xn≥0,i=1,2,n.
Weassumethattheinvestorpursuestomaximizetheexcessreturnofport-folioandtominimizethetrackingerrorunderthenoshortsellingconstraint.
Theindextrackingportfolioselectionproblemcanbeformallystatedasthefollowingbi-objectiveprogrammingproblem:(BP)maxE(x)minTDMAD(x)s.
t.
ni=1xi=1,x1,x2,xn≥0,i=1,2,n.
Theproblem(BP)canbereformulatedasabi-objectivelinearprogrammingproblembyusingthefollowingtechnique.
Notethatmin{0,a}=12a12aforanyrealnumbera.
Thus,byintroducingauxiliaryvariablesb+t,bt,t=1,2,Tsuchthatb+t+bt=Rt(x)It2,AFuzzyIndexTrackingPortfolioSelectionModel557b+tbt=Rt(x)It2,(1)b+t≥0,bt≥0,t=1,2,T,(2)wemaywriteTDMAD(x)=Tt=12btT.
Hence,wemayrewriteproblem(BP)asthefollowingbi-objectivelinearpro-grammingproblem:(BLP)maxE(x)minTt=12btTs.
t.
(1),(2)andallconstraintsof(BP).
Thustheinvestormaygettheindextrackinginvestmentstrategiesbycomputingecientsolutionsof(BLP).
Onecanuseoneoftheexistingalgorithmsofmultipleobjectivelinearprogrammingtosolveiteciently.
3FuzzyIndexTrackingPortfolioSelectionModelInaninvestment,theknowledgeandexperienceofexpertsareveryimportantinaninvestor'sdecision-making.
Basedonexperts'knowledge,theinvestormaydecidehis/herlevelsofaspirationfortheexpectedexcessreturnandthetrackingerrorofindextrackingportfolio.
In[10],Watadaemployedanon-linearSshapemembershipfunction,toexpressaspirationlevelsofexpectedreturnandofriskwhichtheinvestorwouldexpectandproposedafuzzyactiveportfolioselectionmodel.
TheSshapemembershipfunctionisgivenby:f(x)=11+exp(αx).
Inthebi-objectiveprogrammingmodelofindextrackingportfolioselectionproposedinSection2,thetwoobjectives,theexpectedexcessreturnandthetrackingerror,areconsidered.
Sincetheexpectedexcessreturnandthetrack-ingerrorarevagueanduncertain,weusethenon-linearSshapemembershipfunctionsproposedbyWatadatoexpresstheaspirationlevelsoftheexpectedexcessreturnandthetrackingerror.
ThemembershipfunctionoftheexpectedexcessreturnisgivenbyE(x)=11+exp(αE(E(x)EM)),whereEMisthemid-pointwherethemembershipfunctionvalueis0.
5andαEcanbegivenbytheinvestorbasedonhis/herowndegreeofsatisfactionforthe558Y.
FangandS.
-Y.
WangFig.
1.
Membershipfunctionofthegoalforexpectedexcessreturnexpectedexcessreturn.
Figure1showsthemembershipfunctionofthegoalfortheexpectedexcessreturn.
ThemembershipfunctionofthetrackingerrorisgivenbyT(x)=11+exp(αT(TDMAD(x)TM)),whereTMisthemid-pointwherethemembershipfunctionvalueis0.
5andαTcanbegivenbytheinvestorbasedonhis/herowndegreeofsatisfactionregardingtheleveloftrackingerror.
Figure2showsthemembershipfunctionofthegoalforthetracingerror.
Fig.
2.
MembershipfunctionofthegoalfortrackingerrorRemark1:αEandαTdeterminetheshapesofmembershipfunctionsE(x)andT(x)respectively,whereαE>0andαT>0.
ThelargerparametersαEandαTget,thelesstheirvaguenessbecomes.
AccordingtoBellmanandZadeh'smaximizationprinciple[1],wecandeneλ=min{E(x),T(x)}.
Thefuzzyindextrackingportfolioselectionproblemcanbeformulatedasfol-lows:AFuzzyIndexTrackingPortfolioSelectionModel559(FP)maxλs.
t.
E(x)≥λ,T(x)≥λ,andallconstraintsof(BLP).
Letη=log11λ,thenλ=11+exp(η).
Thelogisticfunctionismonotonouslyincreasing,somaximizingλmakesηmaximize.
Therefore,theaboveproblemcanbetransformedtoanequivalentproblemasfollows:(FLP)maxηs.
t.
αE(E(x)EM)η≥0,αT(TDMAD(x)TM)+η≤0,andallconstraintsof(BLP),whereαEandαTareparameterswhichcanbegivenbytheinvestorbasedonhis/herowndegreeofsatisfactionregardingtheexpectedexcessreturnandthetrackingerror.
(FLP)isastandardlinearprogrammingproblem.
Onecanuseoneofseveralalgorithmsoflinearprogrammingtosolveiteciently,forexample,thesimplexmethod.
Remark2:Thenon-linearSshapemembershipfunctionsofthetwofactorsmaychangetheirshapeaccordingtotheparametersαEandαT.
Throughselectingthevaluesoftheseparameters,theaspirationlevelsofthetwofactorsmaybedescribedaccurately.
Ontheotherhand,dierentparametervaluesmayreectdierentinvestors'aspirationlevels.
Therefore,itisconvenientfordierentin-vestorstoformulateinvestmentstrategiesbyusingtheproposedfuzzyindextrackingportfolioselectionmodel.
4NumericalExampleInthissection,wewillgiveanumericalexampletoillustratetheproposedfuzzyindextrackingportfolioselectionmodel.
WesupposethattheinvestorconsidersShanghai180indexasthetrackinggoal.
WechoosethirtycomponentstocksformShanghai180indexastheriskysecurities.
WecollecthistoricaldataofthethirtystocksandShanghai180indexfromJanuary,1999toDecember,2002.
Thedataaredownloadedfromtheweb-sitewww.
stockstar.
com.
Weuseonemonthasaperiodtogetthehistoricalratesofreturnsoffortyeightperiods.
ThevaluesoftheparametersαE,αT,EMandTMcanbegivenbytheinvestoraccordinghis/heraspirationlevelsfortheexpectedexcessreturnandthetrackingerror.
Intheexample,weassumethatαE=500,αT=1000,EM=0.
010andTM=0.
009.
Usingthehistoricaldata,wegetanindextrackingportfolioselectionstrategybysolving(FLP).
AllcomputationswerecarriedoutonaWINDOWSPCusingtheLINDOsolver.
Table1showstheobtainedexpectedexcessreturnandtrackingerrorofportfoliobysolving(FLP).
Table2showstheinvestmentratiooftheobtainedfuzzyindextrackingportfolio.
560Y.
FangandS.
-Y.
WangTable1.
Membershipgradeλ,obtainedexpectedexcessreturnandobtainedtrackingerrorληexcessreturntrackingerror0.
94312.
80950.
01520.
0062Table2.
InvestmentratiooftheobtainedfuzzyindextrackingportfolioStock12345678910Ratio0.
00000.
00000.
06200.
02540.
00000.
04080.
01800.
13890.
03240.
0082Stock11121314151617181920Ratio0.
14400.
14880.
01300.
00000.
00000.
00000.
18890.
00000.
00000.
0000Stock21222324252627282930Ratio0.
02760.
00000.
00000.
01240.
10010.
00000.
03950.
00000.
00000.
000001020304050600.
20.
100.
10.
20.
30.
40.
5January,1999March,2003ReturnIndextrackingportfolioShanghai180indexFig.
3.
ThedeviationsbetweenthereturnsoftheobtainedindextrackingportfolioandthereturnsonthebenchmarkShanghai180indexFigure3showsthedeviationsbetweenthereturnsoftheobtainedindextrackingportfolioandthereturnsonthebenchmarkShanghai180indexforeachmonthfromJanuary,1999toMarch,2003.
FromFigure3,wecanndthattheobtainedfuzzyindexportfoliobysolving(FLP)tracksShanghai180indexeciently.
AFuzzyIndexTrackingPortfolioSelectionModel5615ConclusionRegardingtheexpectedexcessreturnandthetrackingerrorastwoobjectivefunctions,wehaveproposedabi-objectiveprogrammingmodelfortheindextrackingportfolioselectionproblem.
Furthermore,investors'vagueaspirationlevelsfortheexcessreturnandthetrackingerrorareconsideredasfuzzynum-bers.
Basedonfuzzydecisiontheory,wehaveproposedafuzzyindextrackingportfolioselectionmodel.
Anexampleisgiventoillustratethattheproposedfuzzyindextrackingportfolioselectionmodel.
Thecomputationresultsshowthattheproposedmodelcangenerateafavoriteindextrackingportfoliostrat-egyaccordingtotheinvestor'ssatisfactorydegree.
References1.
Bellman,R.
,Zadeh,L.
A.
:DecisionMakinginaFuzzyEnvironment.
ManagementScience17(1970)141–164.
2.
Clarke,R.
G.
,Krase,S.
,Statman,M.
:TrackingErrors,Regret,andTacticalAssetAllocation.
JournalofPortfolioManagement20(1994)16–24.
3.
Consiglio,A.
,Zenios,S.
A.
:IntegratedSimulationandOptimizationModelsforTrackingInternationalFixedIncomeIndices.
MathematicalProgramming89(2001)311–339.
4.
Fang,Y.
,Wang,S.
Y.
:FuzzyPortfolioOptimization:TheoryandMethods.
Ts-inghuaUniversityPress,Beijing,2005.
5.
Konno,H.
,Yamazaki,H.
:MeanAbsolutePortfolioOptimizationModelandItsApplicationtoTokyoStockMarket.
ManagementScience37(5)(1991)519–531.
6.
Markowitz,H.
M.
:PortfolioSelection.
JournalofFinance7(1952)77–91.
7.
Markowitz,H.
M.
:PortfolioSelection:EcientDiversicationofInvestment.
JohnWiley&Sons,NewYork,1959.
8.
Roll,R.
:AMeanVarianceAnalysisofTrackingError-MinimizingthevolatilityofTrackingErrorwillnotProduceaMoreEcientManagedPortfolio.
JournalofPortfolioManagement18(1992)13–22.
9.
Rudolf,M.
,Wolter,H.
J.
,Zimmermann,H.
:ALinearModelforTrackingErrorMinimization.
JournalofBankingandFinance23(1999)85–103.
10.
Watada,J.
:FuzzyPortfolioModelforDecisionMakinginInvestment.
In:Yoshida,Y.
(eds.
):DynamicalAsspectsinFuzzyDecisionMaking.
Physica-Verlag,Heidel-berg(2001)141–162.
11.
Worzel,K.
J.
,Vassiadou-Zeniou,C.
,Zenios,S.
A.
:IntegratedSimulationandOpti-mizationModelsforTrackingIndicesofFixed-incomeSecurities.
OpreationsRe-search42(1994)223–233.
hostyun新上了香港cloudie机房的香港原生IP的VPS,写的是默认接入200Mbps带宽(共享),基于KVM虚拟,纯SSD RAID10,三网直连,混合超售的CN2网络,商家对VPS的I/O有大致100MB/S的限制。由于是原生香港IP,所以这个VPS还是有一定的看头的,这里给大家弄个测评,数据仅供参考!9折优惠码:hostyun,循环优惠内存CPUSSD流量带宽价格购买1G1核10G3...
Hostiger商家我们可能以前也是有见过的,以前他们的域名是Hostigger,后来进行微调后包装成现在的。而且推出Columbus Day哥伦布日优惠活动,提供全场的VPS主机首月7折月付2.79美元起的优惠。这里我们普及一下基础知识,Columbus Day ,即为每年10月12日,是一些美洲国家的节日,纪念克里斯托弗·哥伦布在北美登陆,为美国的联邦假日。Hostiger 商家是一个成立于2...
gigsgigsCloud日本东京软银VPS的大带宽配置有100Mbps、150Mbps和200Mbps三种,三网都走软银直连,售价最低9.8美元/月、年付98美元。gigsgigscloud带宽较大延迟低,联通用户的好选择!Gigsgigscloud 日本软银(BBTEC, SoftBank)线路,在速度/延迟/价格方面,是目前联通用户海外VPS的最佳选择,与美国VPS想比,日本软银VPS延迟更...
www.stockstar.com为你推荐
外挂购买朋友,您好。我想请问一下,我在网络上购买了一个手游辅助器,他需要广东GDP破10万亿广东省城市经济排名bbs.99nets.com做一款即时通讯软件难吗 像hi qq这类的www.gegeshe.comSHE个人资料789se.com莫非现在的789mmm珍的com不管了www.niuav.com在那能找到免费高清电影网站呢 ?www.mywife.ccmywife哪部最经典ww.66bobo.com这个www.中国应急救援网.com查询证件是真是假?www.mfav.orgwww.osta.org.cn国家职业资格证书全国联网查询,为什么随便输入什么都可以查,都要验证码hao.rising.cn我一打开网页就是瑞星安全网站导航,怎么修改?
北京域名注册 新网域名管理 主机优惠码 免费申请网页 linode cpanel主机 sub-process 好看qq空间 cpanel空间 河南移动邮件系统 百兆独享 softbank邮箱 股票老左 ntfs格式分区 广州服务器 免费高速空间 免费申请网站 免费智能解析 中国网通测速 爱奇艺会员免费试用 更多