AFuzzyApproachtoPortfolioRebalancingwithTransactionCostsYongFang1,K.
K.
Lai2,andShou-YangWang31InstituteofSystemsScience,AcademyofMathematicsandSystemsSciences,ChineseAcademyofSciences,Beijing100080,Chinayfang@amss.
ac.
cn2DepartmentofManagementSciences,CityUniversityofHongKong,Kowloon,HongKongmskklai@cityu.
edu.
hk3InstituteofSystemsScience,AcademyofMathematicsandSystemsSciences,ChineseAcademyofSciences,Beijing100080,Chinaswang@mail.
iss.
ac.
cnAbstract.
Thefuzzysetisapowerfultoolusedtodescribeanuncertainnancialenvironmentinwhichnotonlythenancialmarketsbutalsothenancialmanagers'decisionsaresubjecttovagueness,ambiguityorsomeotherkindoffuzziness.
Basedonfuzzydecisiontheory,twoportfo-liorebalancingmodelswithtransactioncostsareproposed.
Anexampleisgiventoillustratethatthetwolinearprogrammingmodelsbasedonfuzzydecisionscanbeusedecientlytosolveportfoliorebalancingprob-lemsbyusingrealdatafromtheShanghaiStockExchange.
1IntroductionIn1952,Markowitz[8]publishedhispioneeringworkwhichlaidthefoundationofmodernportfolioanalysis.
Itcombinesprobabilitytheoryandoptimizationtheorytomodelthebehaviorofeconomicagentsunderuncertainty.
KonnoandYamazika[5]usedtheabsolutedeviationriskfunction,toreplacetheriskfunc-tioninMarkowitz'smodelthusformulatedameanabsolutedeviationportfoliooptimizationmodel.
Itturnsoutthatthemeanabsolutedeviationmodelmain-tainsthenicepropertiesofMarkowitz'smodelandremovesmostoftheprincipaldicultiesinsolvingMarkowitz'smodel.
Transactioncostisoneofthemainsourcesofconcerntoportfoliomanagers.
ArnottandWagner[2]foundthatignoringtransactioncostswouldresultinaninecientportfolio.
Yoshimoto'sempericalanalysis[12]alsodrewthesameconclusion.
Duetochangesofsituationinnancialmarketsandinvestors'pref-erencestowardsrisk,mostoftheapplicationsofportfoliooptimizationinvolvearevisionofanexistingportfolio,i.
e.
,portfoliorebalancing.
Usually,expectedreturnandriskaretwofundamentalfactorswhichinvestorsconsider.
Sometimes,investorsmayconsiderotherfactorsbesidestheexpectedSupportedbyNSFC,CAS,CityUniversityofHongKongandMADIS.
CorrespondingauthorP.
M.
A.
Slootetal.
(Eds.
):ICCS2003,LNCS2658,pp.
1019,2003.
Springer-VerlagBerlinHeidelberg2003returnandrisk,suchasliquidity.
Liquidityhasbeenmeasuredasthedegreeofprobabilityinvolvedintheconversionofaninvestmentintocashwithoutanysignicantlossinvalue.
Arenas,BilbaoandRodriguez[1]tookintoaccountthreecriteria:return,riskandliquidityandusedafuzzygoalprogrammingapproachtosolvetheportfolioselectionproblem.
In1970,BellmanandZadeh[3]proposedthefuzzydecisiontheory.
Ra-maswamy[10]presentedaportfolioselectionmethodusingthefuzzydecisiontheory.
AsimilarapproachforportfolioselectionusingthefuzzydecisiontheorywasproposedbyLeonetal.
[6].
Usingthefuzzydecisionprinciple,¨Ostermark[9]proposedadynamicportfoliomanagementmodelbyfuzzifyingtheobjectiveandtheconstraints.
Watada[11]presentedanothertypeofportfolioselectionmodelusingthefuzzydecisionprinciple.
Themodelisdirectlyrelatedtothemean-variancemodel,wherethegoalrate(orthesatisfactiondegree)foranex-pectedreturnandthecorrespondingriskaredescribedbylogisticmembershipfunctions.
Thispaperisorganizedasfollows.
InSection2,abi-objectivelinearpro-grammingmodelforportfoliorebalancingwithtransactioncostsisproposed.
InSection3,basedonthefuzzydecisiontheory,twolinearprogrammingmodelsforportfoliorebalancingwithtransactioncostsareproposed.
InSection4,anexampleisgiventoillustratethatthetwolinearprogrammingmodelsbasedonfuzzydecisionscanbeusedecientlytosolveportfoliorebalancingproblemsbyusingrealdatafromtheShanghaiStockExchange.
AfewconcludingremarksarenallygiveninSection5.
2LinearProgrammingModelforPortfolioRebalancingDuetochangesofsituationinnancialmarketsandinvestors'preferencesto-wardsrisk,mostoftheapplicationsofportfoliooptimizationinvolvearevisionofanexistingportfolio.
Thetransactioncostsassociatedwithpurchasinganewportfolioorrebalancinganexistingportfoliohaveasignicanteectonthein-vestmentstrategy.
Supposeaninvestorallocateshiswealthamongnsecuritiesoeringrandomratesofreturns.
Theinvestorstartswithanexistingportfolioanddecideshowtoreconstructanewportfolio.
Theexpectednetreturnontheportfolioafterpayingtransactioncostsisgivenbynj=1rj(x0j+x+jxj)nj=1p(x+j+xj)(1)whererjistheexpectedreturnofsecurityj,x0jistheproportionofthesecurityjownedbytheinvestorbeforeportfolioreblancing,x+jistheproportionofthesecurityjboughtbytheinvestor,xjistheproportionofthesecurityjsoldbytheinvestorduringtheportfoliorebalancingprocessandpistherateoftransactioncosts.
Denotexj=x0j+x+jxj,j=1,2,n.
Thesemi-absolutedeviationofreturnontheportfoliox=(x1,x2,xn)belowtheexpectedreturnoverthe11AFuzzyApproachtoPortfolioRebalancingwithTransactionCostspastperiodt,t=1,2,Tcanberepresentedaswt(x)=|min{0,nj=1(rjtrj)xj}|.
(2)whererjtcanbedeterminedbyhistoricalorforecastdata.
Theexpectedsemi-absolutedeviationofthereturnontheportfoliox=(x1,x2,xn)belowtheexpectedreturncanberepresentedasw(x)=1TTt=1wt(x)=1TTt=1|min{0,nj=1(rjtrj)xj}|.
(3)Usually,theanticipationofcertainlevelsofexpectedreturnandriskaretwofundamentalfactorswhichinvestorsconsider.
Sometimes,investorsmaywishtoconsiderotherfactorsbesidesexpectedreturnrateandrisk,suchasliquidity.
Liquidityhasbeenmeasuredasthedegreeofprobabilityofbeingabletoconvertaninvestmentintocashwithoutanysignicantlossinvalue.
Generally,investorsprefergreaterliquidity,especiallysinceinabullmarketforsecurities,returnsonsecuritieswithhighliquiditytendtoincreasewithtime.
Theturnoverrateofasecurityistheproportionofturnovervolumestotradablevolumesofthesecurity,andisafactorwhichmayreecttheliquidityofthesecurity.
Inthispaper,weassumethattheturnoverratesofsecuritiesaremodelledbypossibilitydistributionsratherthanprobabilitydistributions.
CarlssonandFuller[4]introducedthenotationofcrisppossibilisticmean(expected)valueandcrisppossibilisticvarianceofcontinuouspossibilitydistri-butions,whichareconsistentwiththeextensionprinciple.
Denotetheturnoverrateofthesecurityjbythetrapezoidalfuzzynumberlj=(laj,lbj,αj,βj).
Thentheturnoverrateoftheportfoliox=(x1,x2,xn)isnj=1lj.
Bythedenition,thecrisppossibilisticmean(expected)valueoftheturnoverrateoftheportfoliox=(x1,x2,xn)canberepresentedasE(l(x))=E(nj=1ljxj)=nj=1(laj+lbj2+βjαj6)xj.
(4)Assumethattheinvestordoesnotinvesttheadditionalcapitalduringtheport-foliorebalancingprocess.
Weusew(x)tomeasuretheriskoftheportfolioandusethecrisppossibilisticmean(expected)valueoftheturnoverratetomeasuretheliquidityoftheportfolio.
Assumetheinvestorwantstomaximizereturnonandminimizetherisktotheportfolioafterpayingtransactioncosts.
Atthesametime,herequiresthattheliquidityoftheportfolioisnotlessthanagivencon-stantthroughrebalancingtheexistingportfolio.
Basedontheabovediscussions,theportfoliorebalancingproblemisformulatedasfollows:12Y.
Fang,K.
K.
Lai,andS.
-Y.
Wang(P1)maxnj=1rj(x0j+x+jxj)nj=1p(x+j+xj)minTt=1|nj=1(rjtrj)xj|+nj=1(rjrjt)xj2Ts.
t.
nj=1(laj+lbj2+βjαj6)xj≥l,nj=1xj=1,xj=x0j+x+jxj,j=1,2,n,0≤x+j≤uj,j=1,2,n,0≤xj≤x0j,j=1,2,n.
wherelisagivenconstantbytheinvestorandujrepresentsthemaximumproportionofthetotalamountofmoneydevotedtosecurityj,j∈S.
Eliminatingtheabsolutefunctionofthesecondobjectivefunction,theaboveproblemcanbetransformedintothefollowingproblem:(P2)maxnj=1rj(x0j+x+jxj)nj=1p(x+j+xj)min1TTt=1yts.
t.
nj=1(laj+lbj2+βjαj6)xj≥l,yt+nj=1(rjtrj)xj≥0,t=1,2,T,nj=1xj=1,xj=x0j+x+jxj,j=1,2,n,0≤x+j≤uj,j=1,2,n,0≤xj≤x0j,j=1,2,n.
yt≥0,t=1,2,T.
wherelisagivenconstantbytheinvestor.
Theaboveproblemisabi-objectivelinearprogrammingproblem.
Onecanuseseveralalgorithmsofmultipleobjectivelinearprogrammingtosolveite-ciently.
3PortfolioRebalancingModelsBasedonFuzzyDecisionIntheportfoliorebalancingmodelproposedinabovesection,thereturn,theriskandtheliquidityoftheportfolioareconsidered.
However,investor'ssatisfactorydegreeisnotconsidered.
Innancialmanagement,theknowledgeandexperienceofanexpertareveryimportantindecision-making.
Throughcomparingthepresentproblemwiththeirpastexperienceandevaluatingthewholeportfoliointermsofriskandliquidityinthedecision-makingprocess,theexpertsmayestimatetheobjectivevaluesconcerningtheexpectedreturn,theriskandthe13AFuzzyApproachtoPortfolioRebalancingwithTransactionCostsliquidity.
Basedonexperts'knowledge,theinvestormaydecidehislevelsofaspirationfortheexpectedreturn,theriskandtheliquidityoftheportfolio.
3.
1PortfolioRebalancingModelwithLinearMembershipFunctionDuringtheportfoliorebalancingprocess,aninvestorconsidersthreefactors(theexpectedreturn,theriskandtheliquidityoftheportfolio).
Eachofthefactorsistransformedusingamembershipfunctionsoastocharacterizetheaspirationlevel.
Inthissection,thethreefactorsareconsideredasthefuzzynumberswithlinearmembershipfunction.
a)Membershipfunctionfortheexpectedreturnontheportfolior(x)=0ifE(r(x))r1wherer0representsthenecessityaspirationlevelfortheexpectedreturnontheportfolio,r1representsthesucientaspirationlevelfortheexpectedreturnoftheportfolio.
b)Membershipfunctionfortheriskoftheportfoliow(x)=1ifw(x)w1wherew0representsthenecessityaspirationlevelfortheriskoftheportfolio,w1representsthesucientaspirationlevelfortheriskoftheportfolio.
c)Membershipfunctionfortheliquidityoftheportfoliol(x)=0ifE(l(x))l1wherel0representsthenecessityaspirationlevelfortheliquidityoftheportfolio,l1representsthesucientaspirationlevelfortheliquidityoftheportfolio.
Thevaluesofr0,r1,w0,w1,l0andl1canbegivenbytheinvestorbasedontheexperts'knowledgeorpastexperience.
AccordingtoBellmanandZadeh'smaximizationprinciple,wecandeneλ=min{r(x),w(x),l(x)}.
Thefuzzyportfoliorebalancingproblemcanbeformulatedasfollows:(P3)maxλs.
t.
r(x)≥λ,w(x)≥λ,l(x)≥λ,nj=1xj=1,xj=x0j+x+jxj,j=1,2,n,0≤x+j≤uj,j=1,2,n,0≤xj≤x0j,j=1,2,n,0≤λ≤1.
14Y.
Fang,K.
K.
Lai,andS.
-Y.
WangFurthermore,thefuzzyportfoliorebalancingproblemcanberewrittenasfollows:(P4)maxλs.
t.
nj=1rjxjnj=1p(x+j+xj)≥λ(r1r0)+r0,1TTt=1yt≤w1λ(w1w0),nj=1(laj+lbj2+βjαj6)xj≥λ(l1l0)+l0,yt+nj=1(rjtrj)xj≥0,t=1,2,T,nj=1xj=1,xj=x0j+x+jxj,j=1,2,n,0≤x+j≤uj,j=1,2,n,0≤xj≤x0j,j=1,2,n,yt≥0,t=1,2,T,0≤λ≤1.
wherer0,r1,l0,l1,w0andw1areconstantsgivenbytheinvestorbasedontheexperts'knowledgeorpastexperience.
Theaboveproblemisastandardlinearprogrammingproblem.
Onecanuseseveralalgorithmsoflinearprogrammingtosolveiteciently,forexample,thesimplexmethod.
3.
2PortfolioRebalancingModelwithNon-linearMembershipFunctionWatada[11]employedalogisticfunctionforanon-linearmembershipfunctionf(x)=11+exp(α).
Wecanndthatatrapezoidalmembershipfunctionisanapproximationfromalogisticfunction.
Therefore,thelogisticfunctioniscon-sideredmuchmoreappropriatetodenoteavaguegoallevel,whichaninvestorconsiders.
Membershipfunctionsr(x),w(x)andl(x)fortheexpectedreturn,theriskandtheliquidityontheportfolioarerepresentedrespectivelyasfollows:r(x)=11+exp(αr(E(r(x))rM)),(5)w(x)=11+exp(αw(w(x)wM)),(6)l(x)=11+exp(αl(E(l(x))lM))(7)whereαr,αwandαlcanbegivenrespectivelybytheinvestorbasedonhisowndegreeofsatisfactionfortheexpectedreturn,thelevelofriskandtheliquidity.
rM,wMandlMrepresentthemiddleaspirationlevelsfortheexpectedreturn,15AFuzzyApproachtoPortfolioRebalancingwithTransactionCoststhelevelofriskandtheliquidityoftheportfoliorespectively.
ThevalueofrM,wMandlMcanbegottenapproximatelybythevaluesofr0,r1,w0,w1,l0andl1,i.
e.
rM=r0+r12,wM=w0+w12andlM=l0+l12.
Remark:αr,αwandαldeterminerespectivelytheshapesofmembershipfunc-tionsr(x),w(x)andl(x)respectively,whereαr>0,αw>0andαl>0.
Thelargerparametersαr,αwandαlget,thelesstheirvaguenessbecomes.
Thefuzzyportfoliorebalancingproblemcanbeformulatedasfollows:(P5)maxηs.
t.
r(x)≥η,w(x)≥η,l(x)≥η,nj=1xj=1,xj=x0j+x+jxj,j=1,2,n,0≤x+j≤uj,j=1,2,n,0≤xj≤x0j,j=1,2,n,0≤η≤1.
Letθ=log11η,thenη=11+exp(θ).
Thelogisticfunctionismonotonouslyincreasing,somaximizingηmakesθmaximize.
Therefore,theaboveproblemmaybetransformedtoanequivalentproblemasfollows:(P6)maxθs.
t.
αr(nj=1rjxjnj=1p(x+j+xj))θ≥αrrM,θ+αwTTt=1yt≤αwwM,αlnj=1(laj+lbj2+βjαj6)xjθ≥αllM,yt+nj=1(rjtrj)xj≥0,t=1,2,T,nj=1xj=1,xj=x0j+x+jxj,j=1,2,n,0≤x+j≤uj,j=1,2,n,0≤xj≤x0j,j=1,2,n,yt≥0,t=1,2,T,θ≥0.
whereαr,αwandαlareparameterswhichcanbegivenbytheinvestorbasedonhisowndegreeofsatisfactionregardingthethreefactors.
Theaboveproblemisalsoastandardlinearprogrammingproblem.
Onecanuseseveralalgorithmsoflinearprogrammingtosolveiteciently,forexample,thesimplexmethod.
Remark:Thenon-linearmembershipfunctionsofthethreefactorsmaychangetheirshapeaccordingtotheparametersαr,αwandαl.
Throughselectingthevaluesoftheseparameters,theaspirationlevelsofthethreefactorsmaybede-scribedaccurately.
Ontheotherhand,deferentparametervaluesmayreect16Y.
Fang,K.
K.
Lai,andS.
-Y.
Wangdeferentinvestors'aspirationlevels.
Therefore,itisconvenientfordeferentin-vestorstoformulateinvestmentstrategiesusingtheaboveportfoliorebalancingmodelwithnon-linearmembershipfunctions.
4AnExampleInthissection,wegiveanexampletoillustratethemodelsforportfoliorebal-ancingbasedonfuzzydecisionasproposedinthispaper.
WesupposethataninvestorwantstochoosethirtydierenttypesofstocksfromtheShanghaiStockExchangeforhisinvestment.
Therateoftransactioncostsforstocksis0.
0055inthetwosecuritiesmarketsontheChinesemainland.
Assumethattheinvestorhasalreadyownedanex-istingportfolioandhewillnotinvesttheadditionalcapitalduringtheportfoliorebalancingprocess.
TheproportionsofthestocksarelistedinTable1.
Table1.
TheproportionsofstocksintheexistingportfolioStock1234567Proportions0.
050.
080.
050.
350.
100.
120.
25Suddenly,thenancialmarketsituationchanges,andtheinvestorneedstochangehisinvestmentstrategy.
Intheexample,weassumethattheupperboundoftheproportionsofStockjownedbytheinvestoris1.
Nowweusethefuzzyportfoliorebalancingmodelsinthispapertore-allocatehisassets.
Atrst,wecollecthistoricaldataofthethirtykindsofstocksfromJanuary,1999toJanuary,2002.
Thedataaredownloadedfromthewebsitewww.
stockstar.
com.
Thenweuseonemonthasaperiodtogetthehistoricalratesofreturnsofthirty-sixperiods.
Usinghistoricaldataoftheturnoverratesofthesecurities,wecanestimatetheturnoverratesofthesecuritiesasthetrapezoidalfuzzynumbers.
Inthefollowing,wewillgivetwokindscomputationalresultsaccordingtowhethertheinvestorhasaconservativeoranaggressiveapproach.
Atrst,weassumethattheinvestorhasaconservativeandpessimisticmind.
Thenthevaluesofr0,r1,l0,l1,w0,andw1whicharegivenbytheinvestormaybesmall.
Theyareasfollows:r0=0.
028,r1=0.
030,l0=0.
020,l1=0.
025,w0=0.
025andw1Table2.
Membershipgradeλ,obtainedrisk,obtainedreturnandobtainedliquiditywhenr0=0.
028,r1=0.
030,l0=0.
020,l1=0.
025,w0=0.
025andw1=0.
035.
λobtainedriskobtainedreturnobtainedliquidity0.
8350.
02660.
02970.
0301Consideringthethreefactors(thereturn,theriskandliquidity)asfuzzynumberswithnon-linearmembershipfunction,wegetaportfoliorebalancingstrategybysolving(P6).
17AFuzzyApproachtoPortfolioRebalancingwithTransactionCosts=0.
035.
Consideringthethreefactors(thereturn,theriskandliquidity)asfuzzynumberswithtrapezoidalmembershipfunction,wegetaportfoliorebalancingstrategybysolving(P4).
Themembershipgradeλ,theobtainedrisk,theob-tainedreturnandobtainedliquidityarelistedinTable2.
Intheexample,wegivethreedeferentvaluesofparametersαr,αwandαl.
Themembershipgradeη,theobtainedrisk,theobtainedreturnandobtainedliquidityarelistedinTable3.
Table3.
Membershipgradeη,obtainedrisk,obtainedreturnandobtainedliquiditywhenrM=0.
029,wM=0.
030andlM=0.
0225.
ηθαrαwαlobtainedriskobtainedreturnobtainedliquidity0.
8111.
4546008006000.
02820.
03140.
03040.
8061.
42550010005000.
02860.
03190.
03030.
7851.
29540012004000.
02890.
03220.
0302Secondly,weassumethattheinvestorhasanaggressiveandoptimisticmind.
Thenthevaluesofr0,r1,l0,l1,w0,andw1whicharegivenbytheinvestorarebig.
Theyareasfollows:r0=0.
028,r1=0.
036,l0=0.
021,l1=0.
031,w0=0.
032andw1=0.
036.
Consideringthethreefactors(thereturn,theriskandliquidity)asfuzzynumberswithtrapezoidalmembershipfunction,wegetaportfoliorebalancingstrategybysolving(P4).
Themembershipgradeλ,theobtainedrisk,theob-tainedreturnandobtainedliquidityarelistedinTable4.
Table4.
Membershipgradeλ,obtainedrisk,obtainedreturnandobtainedliquiditywhenr0=0.
028,r1=0.
036,l0=0.
021,l1=0.
031,w0=0.
032andw1=0.
036.
λobtainedriskobtainedreturnobtainedliquidity0.
8900.
03240.
03510.
0298Consideringthethreefactors(thereturn,theriskandliquidity)asfuzzynumberswithnon-linearmembershipfunction,wegetaportfoliorebalancingstrategybysolving(P6).
Intheexample,wegivethreedeferentvaluesofparametersαr,αwandαl.
Themembershipgradeη,theobtainedrisk,theobtainedreturnandobtainedliquidityarelistedinTable5.
Table5.
Membershipgradeη,obtainedrisk,obtainedreturnandobtainedliquiditywhenrM=0.
032,wM=0.
034andlM=0.
026.
ηθαrαwαlobtainedriskobtainedreturnobtainedliquidity0.
8491.
7266008006000.
03180.
03490.
02950.
8361.
63050010005000.
03240.
03530.
02930.
8021.
39640012004000.
03280.
03550.
0295Fromtheaboveresults,wecanndthatwegetthedierentportfoliorebal-ancingstrategiesbysolving(P6)inwhichthedierentvaluesoftheparameters(αr,αwandαl)aregiven.
Throughchoosingthevaluesoftheparametersαr,αwandαlaccordingtotheinvestor'sframeofmind,theinvestormaygetafavoriteportfoliorebalancingstrategy.
Theportfoliorebanlancingmodelwiththenon-linearmembershipfunctionismuchmoreconvenientthantheonewiththelinearmembershipfunction.
18Y.
Fang,K.
K.
Lai,andS.
-Y.
Wang5ConclusionConsideringtheexpectedreturn,theriskandliquidity,alinearprogrammingmodelforportfoliorebalancingwithtransactioncostsisproposed.
Basedonfuzzydecisiontheory,twofuzzyportfoliorebalancingmodelswithtransactioncostsareproposed.
Anexampleisgiventoillustratethatthetwolinearpro-grammingmodelsbasedonfuzzydecision-makingcanbeusedecientlytosolveportfoliorebalancingproblemsbyusingrealdatafromtheShanghaiStockExchange.
Thecomputationresultsshowthattheportfoliorebanlancingmodelwiththenon-linearmembershipfunctionismuchmoreconvenientthantheonewiththelinearmembershipfunction.
Theportfoliorebalaningmodelwithnon-linearmembershipfunctioncangenerateafavoriteportfoliorebalancingstrategyaccordingtotheinvestor'ssatisfactorydegree.
References1.
Arenas,M.
,Bilbao,A.
,Rodriguez,M.
V.
:AFuzzyGoalProgrammingApproachtoPortfolioSelection.
EuropeanJournalofOperationalResearch133(2001)287–297.
2.
Arnott,R.
D.
,Wanger,W.
H.
:TheMeasurementandControlofTradingCosts.
FinancialAnalystsJournal46(6)(1990)73–80.
3.
Bellman,R.
,Zadeh,L.
A.
:DecisionMakinginaFuzzyEnvironment.
ManagementScience17(1970)141–164.
4.
Carlsson,C.
,Fuller,R.
:OnPossibilisticMeanValueandVarianceofFuzzyNum-bers.
FuzzySetsandSystems122(2001)315–326.
5.
Konno,H.
,Yamazaki,H.
:MeanAbsolutePortfolioOptimizationModelandItsApplicationtoTokyoStockMarket.
ManagementScience37(5)(1991)519–531.
6.
Leon,T.
,Liern,V.
,Vercher,E.
:ViabilityofInfeasiblePortfolioSelectionProblems:aFuzzyApproach.
EuropeanJournalofOperationalResearch139(2002)178–189.
7.
Mansini,R.
,Speranza,M.
G.
:HeuristicAlgorithmsforthePortfolioSelectionProb-lemwithMinimumTransactionLots.
EuropeanJournalofOperationalResearch114(1999)219–233.
8.
Markowitz,H.
M.
:PortfolioSelection.
JournalofFinance7(1952)77–91.
9.
¨Ostermark,R.
:AFuzzyControlModel(FCM)forDynamicPortfolioManagement.
FuzzySetsandSystems78(1996)243–254.
10.
Ramaswamy,S.
:PortfolioSelectionUsingFuzzyDecisionTheory,WorkingPaperofBankforInternationalSettlements,No.
59,1998.
11.
Watada,J.
:FuzzyPortfolioModelforDecisionMakinginInvestment.
In:Yoshida,Y.
(eds.
):DynamicalAsspectsinFuzzyDecisionMaking.
Physica-Verlag,Heidel-berg(2001)141–162.
12.
Yoshimoto,A.
:TheMean-VarianceApproachtoPortfolioOptimizationSubjecttoTransactionCosts.
JournaloftheOperationalResearchSocietyofJapan39(1996)99–117.
19AFuzzyApproachtoPortfolioRebalancingwithTransactionCosts
华纳云(HNCloud Limited)是一家专业的全球数据中心基础服务提供商,总部在香港,隶属于香港联合通讯国际有限公司,拥有香港政府颁发的商业登记证明,保证用户的安全性和合规性。 华纳云是APNIC 和 ARIN 会员单位。主要提供数据中心基础服务、互联网业务解决方案, 以及香港服务器租用、香港服务器托管、香港云服务器、美国云服务器,云计算、云安全技术研发等产品和服务。其中云服务器基于成熟的 ...
racknerd怎么样?racknerd最近发布了一些便宜美国服务器促销,包括大硬盘服务器,提供120G SSD+192TB HDD,有AMD和Intel两个选择,默认32G内存,1Gbps带宽,每个月100TB流量,5个IP地址,月付$599。价格非常便宜,需要存储服务器的朋友可以关注一下。RackNerd主要经营美国圣何塞、洛杉矶、达拉斯、芝加哥、亚特兰大、新泽西机房基于KVM虚拟化的VPS、...
LOCVPS发来了针对元旦新年的促销活动,除了全场VPS主机8折优惠外,针对德国/荷兰KVM #1/美国KVM#2 VPS提供终身7折优惠码(限量50名,先到先得)。LOCVPS是一家成立于2012年的国人VPS服务商,提供中国香港、韩国、美国、日本、新加坡、德国、荷兰、俄罗斯等地区VPS服务器,基于KVM或XEN架构(推荐优先选择KVM),均选择直连或者优化线路,国内延迟低,适合建站或远程办公使...
www.stockstar.com为你推荐
8080端口8080是什么端口?杰景新特杰德特这个英雄怎么样百花百游百花净斑方效果怎么样?haole16.com国色天香16 17全集高清在线观看 国色天香qvod快播迅雷下载地址www.baitu.com我看电影网www.5ken.com为什么百度就不上关键字呢www.ijinshan.com驱动人生是电脑自带的还是要安装啊!?在哪里呢?没有找到haole012.com012.com网站真的可以挂Q升级吗?555sss.comms真的是500万像素?javlibrary.comImage Library Sell Photos Digital Photos Photo Sharing Photo Restoration Digital Photos Photo Albums汴京清谈汴京还被称为什么?
韩国vps 看国外视频直播vps godaddy续费优惠码 万网优惠券 qq数据库下载 老左来了 空间技术网 视频服务器是什么 外贸空间 vul 摩尔庄园注册 supercache 中国联通宽带测试 机柜尺寸 linux服务器系统 cloudflare 中国域名根服务器 电信测速器在线测网速 dbank kosskeb4 更多