shallowpartnersonline

partnersonline  时间:2021-03-19  阅读:()
AnationallaboratoryoftheU.
S.
DepartmentofEnergyOfficeofEnergyEfficiency&RenewableEnergyNationalRenewableEnergyLaboratoryInnovationforOurEnergyFutureCost-BenefitAnalysisofPlug-InHybridElectricVehicleTechnologyA.
SimpsonPresentedatthe22ndInternationalBattery,HybridandFuelCellElectricVehicleSymposiumandExhibition(EVS-22)Yokohama,JapanOctober23–28,2006ConferencePaperNREL/CP-540-40485November2006NRELisoperatedbyMidwestResearchInstituteBattelleContractNo.
DE-AC36-99-GO10337NOTICEThesubmittedmanuscripthasbeenofferedbyanemployeeoftheMidwestResearchInstitute(MRI),acontractoroftheUSGovernmentunderContractNo.
DE-AC36-99GO10337.
Accordingly,theUSGovernmentandMRIretainanonexclusiveroyalty-freelicensetopublishorreproducethepublishedformofthiscontribution,orallowotherstodoso,forUSGovernmentpurposes.
ThisreportwaspreparedasanaccountofworksponsoredbyanagencyoftheUnitedStatesgovernment.
NeithertheUnitedStatesgovernmentnoranyagencythereof,noranyoftheiremployees,makesanywarranty,expressorimplied,orassumesanylegalliabilityorresponsibilityfortheaccuracy,completeness,orusefulnessofanyinformation,apparatus,product,orprocessdisclosed,orrepresentsthatitsusewouldnotinfringeprivatelyownedrights.
Referencehereintoanyspecificcommercialproduct,process,orservicebytradename,trademark,manufacturer,orotherwisedoesnotnecessarilyconstituteorimplyitsendorsement,recommendation,orfavoringbytheUnitedStatesgovernmentoranyagencythereof.
TheviewsandopinionsofauthorsexpressedhereindonotnecessarilystateorreflectthoseoftheUnitedStatesgovernmentoranyagencythereof.
Availableelectronicallyathttp://www.
osti.
gov/bridgeAvailableforaprocessingfeetoU.
S.
DepartmentofEnergyanditscontractors,inpaper,from:U.
S.
DepartmentofEnergyOfficeofScientificandTechnicalInformationP.
O.
Box62OakRidge,TN37831-0062phone:865.
576.
8401fax:865.
576.
5728email:mailto:reports@adonis.
osti.
govAvailableforsaletothepublic,inpaper,from:U.
S.
DepartmentofCommerceNationalTechnicalInformationService5285PortRoyalRoadSpringfield,VA22161phone:800.
553.
6847fax:703.
605.
6900email:orders@ntis.
fedworld.
govonlineordering:http://www.
ntis.
gov/ordering.
htmPrintedonpapercontainingatleast50%wastepaper,including20%postconsumerwasteCOST-BENEFITANALYSISOFPLUG-INHYBRIDELECTRICVEHICLETECHNOLOGY1ANDREWSIMPSONNationalRenewableEnergyLaboratoryAbstractPlug-inhybrid-electricvehicles(PHEVs)haveemergedasapromisingtechnologythatuseselectricitytodisplacepetroleumconsumptioninthevehiclefleet.
However,thereisaverybroadspectrumofPHEVdesignswithgreatly-varyingcostsandbenefits.
Inparticular,batterycosts,fuelcosts,vehicleperformanceattributesanddrivinghabitsgreatly-influencetherelativevalueofPHEVs.
Thispaperpresentsacomparisonofthecosts(vehiclepurchasecostsandenergycosts)andbenefits(reducedpetroleumconsumption)ofPHEVsrelativetohybrid-electricandconventionalvehicles.
AdetailedsimulationmodelisusedtopredictpetroleumreductionsandcostsofPHEVdesignscomparedtoabaselinemidsizesedan.
Twopowertraintechnologyscenariosareconsideredtoexplorethenear-termandlong-termprospectsofPHEVs.
Theanalysisfindsthatpetroleumreductionsexceeding45%per-vehiclecanbeachievedbyPHEVsequippedwith20mi(32km)ormoreofenergystorage.
However,thelong-termincrementalcostsofthesevehiclesareprojectedtoexceedUS$8,000,withnear-termcostsbeingsignificantlyhigher.
AsimpleeconomicanalysisisusedtoshowthathighpetroleumpricesandlowbatterycostsareneededtomakeacompellingbusinesscaseforPHEVsintheabsenceofotherincentives.
However,thelargepetroleumreductionpotentialofPHEVsprovidesstrongjustificationforgovernmentalsupporttoacceleratethedeploymentofPHEVtechnology.
Keywords:Plug-inHybrid;Hybrid-ElectricVehicles;Battery,SecondaryBattery;Modeling,Simulation;EnergySecurity.
1IntroductiontoPlug-InHybrid-ElectricVehiclesPlug-inhybrid-electricvehicleshaverecentlyemergedasapromisingalternativethatuseselectricitytodisplaceasignificantfractionoffleetpetroleumconsumption[1].
Aplug-inhybrid-electricvehicle(PHEV)isahybrid-electricvehicle(HEV)withtheabilitytorechargeitselectrochemicalenergystoragewithelectricityfromanoff-boardsource(suchastheelectricutilitygrid).
Thevehiclecanthendriveinacharge-depleting(CD)modethatreducesthesystem'sstate-of-charge(SOC),therebyusingelectricitytodisplaceliquidfuelthatwouldotherwisehavebeenconsumed.
Thisliquidfuelistypicallypetroleum(gasolineordiesel),althoughPHEVscanalsousealternativessuchasbiofuelsorhydrogen.
PHEVbatteriestypicallyhavelargercapacitythanthoseinHEVssoastoincreasethepotentialforpetroleumdisplacement.
1.
1Plug-InHybrid-ElectricVehicleTerminologyPlug-inhybrid-electricvehiclesarecharacterizedbya"PHEVx"notation,where"x"typicallydenotesthevehicle'sall-electricrange(AER)–definedasthedistanceinmilesthatafullychargedPHEVcandrivebeforeneedingtooperateitsengine.
TheCaliforniaAirResourcesBoard(CARB)usesthestandardUrbanDynamometerDrivingSchedule(UDDS)tomeasuretheAERofPHEVsandprovideafaircomparisonbetweenvehicles[2].
Bythisdefinition,aPHEV20candrive20mi(32km)all-electricallyonthetestcyclebeforethefirstengineturn-on.
However,thisall-electricdefinitionfails1ThisworkhasbeenauthoredbyanemployeeoremployeesoftheMidwestResearchInstituteunderContractNo.
DE-AC36-99GO10337withtheU.
S.
DepartmentofEnergy.
TheUnitedStatesGovernmentretainsandthepublisher,byacceptingthearticleforpublication,acknowledgesthattheUnitedStatesGovernmentretainsanon-exclusive,paid-up,irrevocable,worldwidelicensetopublishorreproducethepublishedformofthiswork,orallowotherstodoso,forUnitedStatesGovernmentpurposes.
toaccountforPHEVsthatmightcontinuetooperateinCD-modeafterthefirstengineturn-on.
Therefore,theauthorusesadefinitionofPHEVxthatismoreappropriatelyrelatedtopetroleumdisplacement.
Bythisdefinition,aPHEV20containsenoughuseableenergystorageinitsbatterytodisplace20mi(32km)ofpetroleumconsumptiononthestandardtestcycle.
Notethatthisdefinitiondoesnotimplyall-electriccapabilitysincethevehicleoperationwillultimatelybedeterminedbycomponentpowerratingsandtheircontrolstrategy,aswellastheactualin-usedrivingcycle.
1.
2ThePotentialofPlug-InHybrid-ElectricVehiclesThepotentialforPHEVstodisplacefleetpetroleumconsumptionderivesfromseveralfactors.
First,PHEVsarepotentiallywell-matchedtomotorists'drivinghabits–inparticular,thedistributionofdistancestraveledeachday.
Basedonprototypesfromthelastdecade,PHEVstypicallyfallinthePHEV10-60range[3].
Figure1showstheUSvehicledailymileagedistributionbasedondatacollectedinthe1995NationalPersonalTransportationSurvey(NPTS)[4].
Clearly,themajorityofdailymileagesarerelativelyshort,with50%ofdaysbeinglessthan30mi(48km).
Figure1alsoshowstheUtilityFactor(UF)curveforthe1995NPTSdata.
ForacertaindistanceD,theUtilityFactoristhefractionoftotalvehicle-miles-traveled(VMT)thatoccurswithinthefirstDmilesofdailytravel.
Foradistanceof30mi(48km),theutilityfactorisapproximately40%.
Thismeansthatanall-electricPHEV30candisplacepetroleumconsumptionequivalentto40%ofVMT,(assumingthevehicleisfullyrechargedeachday).
Similarly,anall-electricPHEV60candisplaceabout60%.
Thislow-daily-mileagecharacteristiciswhyPHEVshavepotentialtodisplacealargefractionofper-vehiclepetroleumconsumption.
0204060801000102030405060708090100DailyMileage(mi)Probability(%)DailyMileageDistributionandUtilityFactorCurveDailymileagedistributionUtilityFactorcurveFigure1:DailymileagedistributionforUSmotoristsbasedonthe1995NationalPersonalTransportationSurveyHowever,forPHEVstodisplacefleetpetroleumconsumption,theymustpenetratethemarketandextrapolatethesesavingstothefleetlevel.
AsecondfactorthatisencouragingforPHEVsisthesuccessofHEVsinthemarket.
Globalhybridvehicleproductioniscurrentlyseveralhundredthousandunitsperannum[5].
Becauseofthis,electricmachinesandhigh-powerstoragebatteriesarerapidlyapproachingmaturitywithmajorimprovementsinperformanceandcosthavingbeenachieved.
AlthoughHEVcomponentsarenotoptimizedforPHEVapplications,theydoprovideaplatformfromwhichHEVcomponentsupplierscandeveloparangeofPHEVcomponents.
Finally,PHEVsareverymarketableinthattheycombinethebeneficialattributesofHEVsandbatteryelectricvehicles(BEVs)whilemitigatingtheirdisadvantages.
ProductionHEVsachievehighfueleconomy,buttheyarestilldesignedforpetroleumfuelsanddonotenablefuelsubstitution/flexibility.
PHEVs,however,aretruefuel-flexiblevehiclesthatcanrunonpetroleumorelectricalenergy.
BEVsdonotrequireanypetroleum,butareconstrainedbybatterytechnologiesresultinginlimiteddrivingranges,significantbatterycostsandlengthyrechargingtimes.
PHEVshaveasmallerbatterywhichmitigatesbatterycostandrechargingtimewhiletheonboardpetroleumfueltankprovidesdrivingrangeequivalenttoconventionalandhybridvehicles.
ThiscombinationofattributesisbuildingastrongdemandforPHEVs,asevidencedbytherecentlylaunchedPlug-InPartnersCampaign[6].
PHEVshavethepotentialtocometomarket,penetratethefleet,andachievemeaningfulpetroleumdisplacementrelativelyquickly.
Fewcompetingtechnologiesofferthispotentialcombinedrateandtimingofreductioninfleetpetroleumconsumption[7].
However,PHEVtechnologyisnotwithoutitschallenges.
Energystoragesystemcost,volume,andlifearemajorobstaclesthatmustbeovercomeforthesevehiclestosucceed.
IncreasingthebatterystoragebeyondthatofHEVsincreasesvehiclecostandpresentssignificantpackagingchallenges.
Furthermore,thecombineddeep/shallowcyclinginPHEVbatteriesisuniquelymoredemandingthanthatexperiencedbyHEVsorBEVs.
PHEVbatteriesmayneedtobeoversizedtolastthelifeofthevehicle,furtherincreasingcost.
GiventhatHEVsaresucceedinginthemarket,thequestionrelevanttoPHEVsis,"Whatincrementalpetroleumreductionscanbeachievedatwhatincrementalcosts"ThesefactorswillcriticallyaffectthemarketabilityofPHEVsthroughtheirpurchasepriceandcost-of-ownership.
Thispaperpresentstheresultsofastudydesignedtoevaluatethiscost-benefittradeoff.
2ModelingPHEVPetroleumConsumptionandCostThereductionofper-vehiclepetroleumconsumptioninaPHEVresultsfromtwofactors:1.
PetroleumdisplacementduringCD-mode,whichaspreviouslydiscussedrelatestothePHEVxdesignationbasedontheaddedbatteryenergycapacityofthevehicle.
2.
Fuel-efficiencyimprovementincharge-sustaining(CS)modeduetohybridization,whichrelatestothedegree-of-hybridization(DOH)oraddedbatterypowercapabilityofthevehicle.
HEVs,whichdonothaveaCD-mode,areonlyabletorealizesavingsviathissecondfactor.
ForaPHEVx,thesetwofactorscanbecombinedmathematicallyasfollows:()[]CVCSCVPHEVxFCFCxUFFCFC=1(1)whereFCPHEVxistheUF-weightedfuelconsumptionofthePHEVx,FCCVisthefuelconsumptionofthereferenceconventional(non-hybrid)vehicleandFCCSisthePHEVx'sCS-modefuelconsumption.
NotethatthisexpressionbecomesapproximateforPHEVswithoutall-electriccapabilitybecauseuseoftheutilityfactorinthiswayassumesthatnopetroleumisconsumedinthefirstxmilesoftravel.
Figure2usesEquation1tocomparethepetroleumreductionofvariousPHEVdesigns.
Weseethereareavarietyofwaystoachieveatargetlevelofpetroleumreduction.
Forexample,a50%reductionisachievedbyanHEVwith50%reducedfuelconsumption,aPHEV20with30%CS-modereductionandbyaPHEV40with0%CS-modereduction(thislastexampleisunlikelysincePHEVswillshowCS-modeimprovementduetohybridization,notwithstandingtheincreaseinvehiclemassfromthelargerbattery).
TodemonstratethefeasiblerangeofCS-modereduction,Figure2comparesseveralcontemporaryHEVstotheirconventionalcounterparts(inthecaseoftheToyotaPrius,acomparisonismadetotheToyotaCorollawhichhassimilarsizeandperformance).
Atthelowendofthespectrum,the"mild"HEVSaturnVueachievesamodestreductionoflessthan20%.
The"full"HEVToyotaPriusachievesthehighestpercentagereduction(40%)ofallHEVscurrentlyonthemarketalthough,inadditiontotheplatformenhancementsemployedinproductionhybrids,italsousesanPotentialReductionofPetroleumConsumptioninPHEVsPrius(Corolla)CivicAccordHighlanderEscapeVue0%10%20%30%40%50%60%70%80%90%100%0%10%20%30%40%50%60%70%80%90%100%ReductioninCS-modePetroleumConsumption(%)TotalReductioninPetroleumConsumption(%)PHEV60PHEV40PHEV20HEVChallengingregionforHEVtechnologyFigure2:Potentialper-vehiclereductionofpetroleumconsumptioninPHEVsadvanced(Atkinson-cycle)enginetechnology.
NotethatnoneoftheproductionHEVsachievethe50%reductiondiscussedintheaboveexample,suggestingthatthereisanupperlimitonthebenefitofhybridizationalone.
Reductionsexceeding50%areavailablethroughCD-modeoperationinaPHEV,althoughincreasingPHEVxrangescanbeseentoprovidediminishingreturnsduetothenatureoftheUtilityFactorcurve(Figure1).
ThePHEVdesignspaceinFigure2characterizedbyCS/CD-modefuelconsumptionhasamatchingspacecharacterizedbybatterypower/energy.
ImprovingCS-modefuelconsumptionimpliesanincreaseinDOHandbatterypower,whileincreasingCD-modebenefitimpliesanincreaseinPHEVxanduseablebatteryenergy.
Movingineitherdirectionincursadditionalvehiclecosts.
However,thelinkbetweenbatteryspecifications,CS/CD-modereductions,andvehiclecostsisnotobviousandmustbeexploredthroughdetailedvehiclefuelconsumptionandcostmodeling.
Therefore,amodelwasdevelopedtopredictthepetroleumreductionsandcostsofcontrastingPHEVdesignscomparedtoareferenceconventionalvehicle.
Thedetailsofthismodelarepresentedinthefollowingsections.
2.
1ModelingApproachandScopeoftheStudyThePHEVcost-benefitmodelincludesseveralsub-models.
First,aperformancemodelcalculatescomponentsizesnecessarytosatisfytheperformanceconstraintslistedinTable1.
Second,amassbalancecalculatesthevehiclemassbasedoncomponentsizesdeterminedbytheperformancemodel.
Third,anenergy-usemodelsimulatesthevehicle'sgasolineandelectricityconsumptionovervariousdrivingcycles.
Thevehicleperformanceandenergy-usemodelsarecoupledtovehiclemass,sothemodelisabletocapturemasscompoundinginthesizingofcomponents.
Fourth,acostmodelestimatesthevehicleretailpricebasedonthecomponentsizes.
Allcostsarereportedin2006USdollars.
Finally,theresultspost-processingperformscalculationstoreportthevehicleenergyconsumptionandoperatingcostsinmeaningfulways.
ThemodelisimplementedinaniterativeMicrosoftExcelspreadsheet.
Theenergy-usemodelisadetailed,second-by-second,dynamicvehiclemodelthatusesareverse-calculationapproach[8].
Itisalsocharacterizedasapower-flowmodelsinceitmodelscomponentlosses/efficienciesasfunctionsofdevicepower,ratherthanasfunctionsoftorque/speedorcurrent/voltageasinmoredetailedmodels.
Thisreverse-calculation,power-flowmethodprovidesrapidestimationofvehicleenergyusageandenablesthecoupled,iterativespreadsheetdescribedabove.
Asolutionisobtainedinonlyafewseconds,meaningthatthedesignspacecanbeexploredveryquicklyandthoroughly.
SeveralhundredPHEVdesignswerethereforeincludedinthestudy.
Themodelperformssimulationsofbothconventionalvehicles(CVs)andHEVs(includingPHEVs)sothatside-by-sidecomparisonscanbemade.
Theperformanceandenergy-usemodelswerevalidatedforaToyotaCamrysedanandHondaCivicHybrid.
Inbothcases,errorsoflessthan5%wereobservedintheestimatesofvehicleperformanceandenergyuse.
Twopowertraintechnologyscenarios(Table2)wereincludedinthestudy.
Thenear-termscenario(2005-2010)representsvehiclesproducedusingcurrent-statuspowertraintechnologies,whereasthelong-termscenario(2015-2020)allowsforadvancedtechnologiesexpectedtoresultfromongoingR&Deffortsandhigh-volumeproductionlevels.
Thelong-termscenariodoesnot,however,includeadvancedenginetechnologiessincetheauthorwantedtoisolatetheimpactofimprovedelectricdriveandenergystoragetechnologiesontherelativecost-benefitofPHEVs.
2.
2VehiclePlatform,PerformanceandCostAssumptionsAllvehiclesincludedinthestudysatisfiedthesameperformanceconstraintsandusedavehicleplatformidenticaltothebaselineCV.
ThebaselineCVwasamidsizesedan(similartoaToyotaCamryorChevroletMalibu)andrelevantparametersarepresentedinTable1.
Mostparameterswerecalculatedfromsales-weightedaveragedataforthetopsellingUSmidsizesedansin2003[9].
Someparameters,suchasrollingresistance,accessoryloads,passingacceleration,andgradeability,wereengineeringestimates.
Thebaselinemanufacturer'ssuggestedretailprice(MSRP)ofUS$23,392wasusedincombinationwiththepowertraincostmodeltoestimatethebaseline"glider"cost(i.
e.
vehiclewithnopowertrain).
Thecostofa121kWCVpowertrainwasestimatedatUS$6,002,leadingtoanestimatedbaselineglidercostofUS$17,390.
Table1:VehiclePlatformandPerformanceAssumptionsforMidsizeSedanPlatformParametersGliderMass905kgCurbMass1429kgTestMass1565kg(136kgload)GrossVehicleMass(GVM)1899(470kgload)Dragcoefficient0.
3Frontalarea2.
27m2Rollingresistancecoefficient0.
009Baselineaccessoryload800Welec.
(4000Wpeak)PerformanceParametersStandingacceleration0-97kph(0-60mph)in8.
0sPassingacceleration64-97kph(40-60mph)in5.
3sTopspeed177kph(110mph)Gradeability6.
5%at88kph(55mph)atGVMwith2/3fuelconverterpowerVehicleattributesEnginepower121kWFuelconsumption10.
6/6.
7/8.
8Lper100km(urban/highway/composite)MSRP$23,392Table2:PowertrainTechnologyScenariosfortheCost-BenefitAnalysisNear-TermScenarioLong-TermScenarioBatteryChemistryNiMHLi-IonModulecostTwicethatoflong-termscenario$/kWh=11.
1xP/E+211.
1[14]Packcost$=($/kWh+13)xkWh+680[14]SameModulemassNiMHbatterydesignfunction[15],seeFigure6Li-Ionbatterydesignfunction[15],seeFigure6Tray/straps+thermalmgmt=0.
06kg/kg[15]PackmassHarness+busbars=0.
14kg/kW[15]SameEfficiencyEquivalentcircuitmodelbasedonP/Eratio,seeFigure5SameSOCwindowSOCdesignwindowcurve,seeFigure4Same(assumesLi-Ioncyclelife=NiMH)MotorMasskg=21.
6+0.
833xkW[13]kg=21.
6+0.
532xkW[14]Cost$=21.
7xkW+425[14]$=16xkW+385[14]Efficiency95%peakefficiencycurve,seeFigure5SameEngineMasskg=1.
62xkW+41.
8[9]SameCost$=14.
5xkW+531[14]SameEfficiency34%peakefficiencycurve,seeFigure5Same2.
3PowertrainArchitectureThetwothingsthatdifferentiateaPHEVfromanHEVaretheinclusionofaCDoperatingmodeandarechargingplug.
Therefore,aPHEVcanbeimplementedusinganyofthetypicalHEVarchitectures(parallel,series,orpower-split).
Forthisstudy,aparallelarchitecturewasassumedwiththeabilitytodeclutchtheenginefromthepowertrain(Figure3).
Thisparallellayoutprovidesgreaterflexibilityinengineon/offcontrolcomparedtoHonda'sintegratedmotorassist(IMA)parallelsystem[10]ENGINETRANS.
BATTERYMOTORFigure3:ParallelHEVpowertrainarchitecturewheretheengineandmotorarealwaysconnected.
Tocreatemoreflexibilityinengineon/offcontrol,itwasalsoassumedthatallaccessories(includingairconditioning)wouldbepoweredelectricallyfromthebattery.
2.
4ComponentSizingBatteryThebatteryisthefirstcomponentsizedbythemodelandthetwokeyinputsarethePHEVxdesignationandthebatterypower-to-energy(P/E)ratio.
Theuseablebatteryenergyiscalculatedusinganestimateofthevehicle'sequivalentelectricalenergyconsumptionperunitdistancemultipliedbythetargetPHEVxdistance.
TheelectricalenergyconsumptionisestimatedusingthePAMVECmodel[11].
ThetotalbatteryenergyisthencalculatedbasedontheSOCdesignwindow.
Finally,theratedbatterypoweriscalculatedbymultiplyingthetotalbatteryenergybytheinputP/Eratioandthende-ratingby20%toaccountforbatterypowerdegradationatend-of-life.
Toachievesimilarbatterycyclelife,differentPHEVxrangesrequiredifferentSOCdesignwindows.
Thedailymileagedistribution(Figure1)meansthataPHEV10isfarmorelikelytoexperienceadeepcyclethanaPHEV60.
Therefore,theSOCdesignwindowmustbechosensuchthattheaveragedailySOCswingisconsistentacrosstherangeofPHEVs.
Figure4showstheSOCdesignwindowsassumedinthePHEVcost-benefitmodel,basedoncycle-lifedatapresentedbyRosenkrantz[12]andatargetbatterylifeof15years(assumingonefullrechargeeachday).
Figure4alsoshowstheresultingaveragedailySOCswingwhichisconsistentacrosstherange.
ElectricMotorThemotorpowerismatchedtothebatterypower,butwiththeresultingmotorpowerbeingslightlysmallerafteraccountingforelectricaccessoryloadsandmotor/controllerefficiency.
0%10%20%30%40%50%60%70%80%90%100%010203040506DailyMileage/PHEVx0DesignSOCwindowbasedonPHEVxAveragedailySOCswingbasedondailymileagedistributionDailymileageprobabilitydistributionFigure4:SOCdesignwindowforPHEVsEngineSeveralstepsarerequiredtosizetheengine.
First,therequiredpeakpoweroftheengineplusmotoriscalculatedusingthePAMVECmodel[11].
Thispoweristypicallydictatedbythestandingaccelerationperformanceandforthebaselinemidsizeplatformisapproximately120kW.
Themotorpoweristhensubtractedfromthetotaltoprovidearequirementfortheenginepower.
Thisproducessome"enginedownsizing,"buttherearedownsizinglimitsimposedbyotherperformanceconstraints.
Continuousperformanceevents(gradeabilityandtopspeed)determinetheminimumpermissibleenginesize.
Gradeabilityperformanceislimitedto2/3ofpeakenginepowerduetoenginethermalmanagementandnoise,vibration,andharshness(NVH)considerations.
Forthebaselinemidsizeplatform,theminimumenginesizeisapproximately80kW.
2.
5ComponentEfficiencies,Masses,andCostsEngineandElectricMotorAsdiscussedinsection2.
1,thePHEVenergy-usemodelisareverse-calculation,power-flowmodelthatsimulatescomponentlosses/efficienciesasafunctionofoutputpower.
Boththeengineandelectricmotorefficienciesaremodeledusingpolynomialexpressionsforcomponentinputpowerasafunctionofoutputpower.
Theenginecurveisbasedona4-cylinder,1.
9L,95kWgasolineengine.
A3rd-orderpolynomialwasfittedtodatafromanADVISORsimulation[8]usingthisengine.
Themotorcurveisbasedona50kWpermanentmagnetmachineanda9th-orderpolynomialwasfittedtodatafromanADVISORsimulationusingthismotor.
BothefficiencycurvesareshowninFigure5.
Theengineandmotormassesandcostsaremodeledaslinearfunctionsofratedoutputpower.
Theenginemassfunctionisderivedfromadatabaseof2003model-yearvehicles[9].
Thenear-termmotor-controllermassfunctionisbasedonthe2006currentstatuslistedintheFreedomCARandVehicleTechnologiesProgramPlan[13].
Thelong-termmotor-controllermassisbasedontechnologydemonstratedintheGMPreceptconceptvehicle[14].
Theenginecostfunctionisbasedonmanufacturers'dataprovidedtotheEPRIHybrid-ElectricVehicleWorkingGroup(HEVWG)[14].
Thenear-termandlong-termmotorcostfunctionsarealsobasedondatareportedbyEPRI[14].
PowertrainComponents-NormalisedEfficiencyCurves0%10%20%30%40%50%60%70%80%90%100%0%10%20%30%40%50%60%70%80%90%100%NormalisedPower(P/Pmax)Efficiency(%)EngineMotor-driveMotor-regenBatteryFigure5:EfficiencycurvesusedinthePHEVcost-benefitmodelBatteryBatteryefficiencyismodeledusinganormalizedfunctionforefficiencyvs.
inputpower(Figure5).
Thisrelationshipwasderivedfromanequivalentcircuitmodelusingrealisticvaluesfornominalopen-circuitvoltageandinternalimpedance.
Battery-modulemassforbothNiMHandLi-IontechnologyismodeledusingbatterydesignfunctionsdevelopedbyDelucchi[15]andshowninFigure6.
Theaddedmassofbatterypackagingandthermalmanagementwasalsobasedon[15].
Battery-module-specificcosts($/kWh)varyasafunctionofpower-to-energyratio(Figure6).
Thelong-termLi-IoncostcurveisbasedonestimatesfromEPRI[14].
Afterspeakingwithbatterysuppliersandotherexperts,itwasestimatedthatthenear-termspecificcostofNiMHmoduleswasapproximatelydoublethatofEPRI'slong-termprediction.
Thecostsofbatterypackagingandthermalmanagementarealsobasedonthoselistedin[14].
RechargingPlugandChargerPHEVsareassumedtobeequippedwithaninverter-integratedplug/chargerwith90%efficiencyandanincrementalmanufacturedcostofUS$380overthebaselineinvertercost[14].
BatteryDesignFunctions0200400600800100012001400160018002000050100150200SpecificEnergy(Wh/kg)SpecificPower(W/kg)NiMH(near-termscenario)LI-ION(long-termscenario)2520105BatteryCostFunctions020040060080010001200051015202530Power-to-EnergyRatio(1/h)ModuleSpecificCost($/kWh)NiMH(near-term)Li-Ion(long-term)Figure6:BatterydesignfunctionsandmodulecostcurvesassumedforNiMHandLi-IontechnologyRetailMarkupFactorsThecomponentcostfunctionsinTable2modelthemanufacturedcostofcomponents.
Toconvertthesetoretailcostsinavehicle,variousmarkupfactorsareapplied.
Amanufacturer'smarkupof50%anddealer'smarkupof16.
3%areassumedbasedonestimatesbyEPRI[14]2.
6PowertrainControlStrategyAgenericcontrolstrategywasdevelopedforthespectrumofPHEVdesigns.
Thiscontrolstrategyconsistsoffourbasicelements.
ThebasisofthestrategyisanSOC-adjustedenginepowerrequest:()ettdrivelinerequestengineSOCSOCkPParg=(2)WhentheSOCishigherthanthetarget,theenginepowerrequestisreducedtopromoteCDoperation.
Alternatively,whentheSOCislowerthanthetarget,theenginepowerrequestisincreasedtorechargethebattery.
Theadjustmentisgovernedbythefactorkwhichissetproportionaltototalbatterycapacity.
Anelectric-launchspeedof10mph(16kph)isalsospecified,belowwhichthestrategytriestooperatethevehicleall-electricallybysettingtheenginepowerrequesttozero.
However,boththeSOCadjustmentandelectriclaunchcancausethepowerratingsofthemotortobeexceeded.
Therefore,athirdelementofthestrategyistoconstraintheenginepowerrequesttowithinacceptablelimitssuchthatnocomponentsareoverloaded.
Finally,thereisengineon/offcontrollogic.
Theengineistriggeredonwhenevertheadjustedenginepowerrequestbecomespositive.
Onceon,however,theenginecanonlyturnoffafterithasbeenonforatleast5minutes.
Thisfinalconstraintisdesignedtoensuretheenginewarmsupthoroughlysothatrepeatedcoldstartsareavoided.
Theaimofthiscontrolstrategyistoprioritizedischargingofthebatterypack.
Giventhenatureofthedailymileagedistribution,thisapproachensuresthatthemaximumpetroleumwillbedisplaced.
However,thestrategydoesnotexplicitlycommandall-electricoperation.
Rather,itdischargesbatteryenergyatthelimitsofthebattery/motorpowercapabilitiesandusestheengineasneededtosupplementtheroadloadpowerdemand.
Therefore,thevehiclebehaviorthatresultsistotallydependentonthepowerratingsofcomponents.
Vehicleswithhigherelectricpowerratingswillhaveall-electriccapabilityinmoreaggressivedriving,whereasvehicleswithlowerelectricpowerratingswilltendtooperateina"blended"CD-modethatutilizesbothmotorandengine.
Formorediscussionofall-electricvs"blended"operation,thereaderisdirectedto[16].
2.
7DrivingCyclesThecost-benefitmodelsimulatesCVs,HEVs,andPHEVsovertwocycles–theUrbanDynamometerDrivingSchedule(UDDS)andtheHighwayFuelEconomyTest(HWFET)–usedbytheUSEnvironmentalProtectionAgency(EPA)forfueleconomyandemissionstestingandlabeling[17].
2.
8FuelEconomyMeasurementandReportingThePHEVfueleconomiesandoperatingcostsaremeasuredandreportedusingaprocedurebasedonamodificationoftheSocietyofAutomotiveEngineers'(SAE)J1711RecommendedPracticeforMeasuringtheExhaustEmissionsandFuelEconomyofHybrid-ElectricVehicles[18].
ThisproceduremeasuresthefuelandelectricityuseinbothCDandCS-modesandweightsthemaccordingtotheUtilityFactor(UF),assumingthePHEVsarefully-rechargedeachday.
Furtherdiscussionofthisprocedureforfueleconomymeasurementandreportingisprovidedin[17].
3ResultsPHEV2,5,10,20,30,40,50,and60vehicleswereconsideredinthestudy.
Also,anHEV0wasmodeledasaPHEV2withitscharger/plugremoved.
P/EratioswerechosentovaryDOH(definedastheratioofmotorpowertototalmotorplusenginepower)acrossarangeofapproximately10%–55%.
NotethattheenginedownsizinglimitcorrespondstoaDOHofapproximately32%,andthatDOHhigherthanthisresultsinexcesselectricpowercapabilityonboardthevehicle.
Figure7showsthebatteryspecificationsforthespectrumofPHEVsinthelong-termscenario.
Thetotalbatteryenergyvariesfromapproximately1.
5kWhfortheHEV0/PHEV2toapproximately25kWhforthePHEV60.
Thebatterypowervariesfromapproximately10–100kWacrosstherangeofDOH.
Figure7includesdashedlinesofconstantP/Eratio,whichvariedfromapproximately1–50.
Figure7alsoindicatestheminimumbatterypowerrequirement(approximately45kW)forthePHEVstohaveall-electriccapabilityontheUDDStestcycle.
Thebatteryspecificationsforthenear-termscenarioaresimilartoFigure7buthaveincreasedpowerandenergyrequirementsduetomass-compoundingfromthelowerspecificenergyofNiMHbatteries.
BatteryPowervsEnergyforPHEVs020406080100120051015202530TotalBatteryEnergy(kWh)BatteryPower(kW)PHEV2PHEV5PHEV10PHEV20PHEV30PHEV40PHEV50PHEV6011064220UDDSall-electricUDDSblendedFigure7:BatteryspecificationsforthespectrumofPHEVdesigns(long-termscenario)Figure8presentsthereductionsinannualpetroleumconsumptionandincrementalcostsforthespectrumofPHEVsinthelong-termscenario.
Takingamacroscopicview,weseethatincreasingPHEVxprovidesincreasingreductioninpetroleumconsumption.
RelativetothebaselineCV,whichconsumes659gal(2494L)ofpetroleumbasedon15,000mi(24,100km)eachyear,theHEVsreducepetroleumconsumptionby20%–28%.
ThePHEVsreducepetroleumconsumptionfurther,rangingfrom21%–31%forthePHEV2supto53%–64%forthePHEV60s.
However,theseincreasingreductionscomeatincreasingcosts.
TheHEV0sareprojectedtocostUS$2,000–$6,000morethanthebaselineCV,whereasthePHEV60sareprojectedtocostUS$12,000–$18,000more.
Thenear-termtrendisquitesimilartoFigure8,exceptthatpetroleumreductionsareslightlyreducedandvehiclecostincrementsaremuchlargerduetothegreatermassandsignificantlyhighercostofnear-termNiMHbatteries.
ReductioninFuelConsumptionvsPowertrainCostIncrement-MidsizeSedans$-$2,000$4,000$6,000LookingcloselyatFigure8,weseearepeatedtrendintherelativecost-benefitofPHEVswithvaryingDOH,andthereisanoptimumDOHforeachPHEVx.
FortheHEV0s,theoptimumDOH(32%)coincideswiththelimitofenginedownsizing.
ForthePHEVs,theoptimumDOHishigher(35%)tocoincidewiththeminimumbatterypowerrequiredforall-electriccapabilityontheUDDScycle(themaximumpowerrequirementontheHWFETcycleislower).
Thisall-electriccapabilityallowsvehiclestoavoidengineidlinglossesthatwouldotherwisebeincurredduetoengineturn-oneventssubjecttothe5-minuteminimumengineontimeconstraint.
TheoptimumHEVsandPHEVsforthenear-termandlong-termscenariosaresummarizedinTables3and4.
$8,ailCostIn000$10,000$12,000$14,000$16,000$18,000$20,0000100200300400500600ReductioninAnnualPetroleumConsumption(gals.
)RetcrementHEV0PHEV2PHEV5PHEV10PHEV20PHEV30PHEV40PHEV50PHEV60UDDSAERvehiclesFigure8:IncrementalcostsandannualpetroleumconsumptionforthespectrumofPHEVdesigns(long-termscenario)ItmustbeemphasizedthattheseoptimumDOHarehighly-dependentonthevehicleplatform/performanceattributesandthenatureofthedrivingpattern.
Theanalysisshouldberepeatedforotherbaselinevehicles(e.
g.
sport-utilityvehicles)toseehowthePHEVdesignswillvary.
Furthermore,PHEVsshouldbesimulatedoverreal-worlddrivingcyclestoidentifydifferencesinthepetroleumdisplacementandall-electricoperationcomparedtostandardtestcycles.
SuchfurtheranalysesshouldprovidetheunderstandingneededtooptimizePHEVsforthemarket.
Table3:Near-TermScenarioPHEVSpecifications–OptimumDOHVehiclesVehicleCurbMassEnginePowerMotorPowerDOHBatteryEnergyP/ERatioSOCWindowFuelCons.
Elec.
Cons.
RetailCost(kg)(kW)(kW)(kWh)(1/h)(L/100km)(Wh/km)(US$)CV142912210.
3---23,392HEV01451783833%1.
533.
437%7.
5---28,773PHEV21451783833%1.
533.
437%7.
3729,435PHEV51505804235%3.
615.
939%7.
11731,447PHEV101571824435%6.
98.
641%6.
73334,180PHEV201678854735%12.
74.
947%6.
06038,935PHEV301759894936%17.
23.
853%5.
48442,618PHEV401824915136%20.
83.
359%4.
810445,655PHEV501880945236%23.
92.
966%4.
511848,162PHEV601923965336%26.
42.
773%4.
113350,184Table4:Long-TermScenarioPHEVSpecifications–OptimumDOHVehiclesVehicleCurbMassEnginePowerMotorPowerDOHBatteryEnergyP/ERatioSOCWindowFuelCons.
Elec.
Cons.
RetailCost(kg)(kW)(kW)(kWh)(1/h)(L/100km)(Wh/km)(US$)CV142912210.
3---23,392HEV01412773632%1.
532.
837%7.
4---26,658PHEV21412773632%1.
532.
837%7.
2727,322PHEV51445784134%3.
515.
739%7.
01728,365PHEV101481794235%6.
68.
541%6.
53229,697PHEV201531814335%11.
84.
947%5.
75831,828PHEV301569824435%15.
93.
753%5.
07833,533PHEV401598834535%19.
03.
259%4.
59634,839PHEV501618844535%21.
62.
866%4.
110835,857PHEV601636844635%23.
62.
673%3.
712036,6813.
1EconomicsofPHEVsThePHEVcost-benefitanalysisalsoincludesasimplecomparisonofcost-of-ownershipoverthevehiclelifetime.
Thecomparisonincludestheretailcostofthevehicleandthecostofitsannualenergy(fuelandelectricity)consumption,butdoesnotaccountforpossibledifferencesinmaintenancecosts(foramorethoroughanalysisoftotalPHEVlifecyclecosts,thereaderisdirectedto[14]).
Figure9presentseconomiccomparisonsforthenear-termandlong-termscenarios.
Incalculatingannualpetroleumandelectricityconsumption,allvehiclesareassumedtotravel15,000mi(24,100km)peryeartobeconsistentwiththeassumptionsoftheUSEPA.
Thenear-termcostofretailgasolineisassumedtobeUS$3pergallon(US$0.
79perL),whereasahighergasolinecostofUS$5pergallon(US$1.
32perL)isassumedfortheprojectedscenario.
ThecostofretailelectricityisheldconstantatUS$0.
09perkWhbasedonthe2005USaverageretailpriceandhistoricaltrends[19].
Nodiscountratewasappliedtofuturecashflows.
Inthenear-termscenario,theHEVachievesalowercost-of-ownershipthantheCVafterapproximately10years.
However,thePHEVsneverachievealowercost-of-ownershipthantheCVnortheHEVoverthe15-yearvehiclelifetime.
Thelong-termscenarioprovidesasignificantcontrast,withtheHEVprovidinglowercostthantheCVafterapproximately4yearsandthePHEVsprovidinglowercostthantheHEVafterapproximately12years.
CumulativeVehicleplusEnergy(Fuel/Elec.
)Costs$-$10,000$20,000$30,000$40,000$50,000$60,000051015CumulativeVehicleplusEnergy(Fuel/Elec.
)Costs$-$10,000$20,000$30,000$40,000$50,000$60,0000510YearsafterpurchaseCumulativeCostYearsafterpurchaseCumulativeCost15PHEV40PHEV20PHEV10HEV0CVPHEV40PHEV20PHEV10HEV0CVNear-termLong-termFigure9:EconomiccomparisonofPHEVsinthenear-termandlong-termscenariosSeveralobservationscanbemadefromthesecomparisons.
Itisclearthatthese"payback"analysesaresensitivetothecostofgasolineandalsothevehicleretailcosts,whicharestronglyaffectedbythebatterycostassumptionsineachscenario.
ItisalsoclearthattheeconomicsofPHEVsarenotpromisingifgasolinepricesremainatcurrentlevelsandbatterycostscannotbeimproved.
However,itdoesseemthatacompellingbusinesscaseforplug-inhybridscanbemadeunderascenarioofbothhighergasolinepricesandprojected(lower)batterycosts,atleastfromtheperspectiveofthesimpleconsumereconomiccomparisonpresentedhere.
DespitetheuncertaintyofPHEVeconomics,thereareotherfactorsthatmayjustifytheincrementalPHEVcost.
Examplesincludetaxincentives;reductionsinpetroleumuse,airpollution,andgreenhouseemissions;nationalenergysecurity;reducedmaintenance;fewerfill-upsatthegasstation;convenienceofhomerecharging;improvedaccelerationfromhigh-torqueelectricmotors;agreenimage;opportunitiestoprovideemergencybackuppowerinthehome;andthepotentialforvehicle-to-gridapplications.
Alternativebusinessmodels—suchasbatteryleasing—alsodeservefurtherconsiderationsincetheymighthelptomitigatethedauntingincrementalvehiclecostandencouragePHEVbuyerstofocusonthepotentialforlong-termcostsavings.
4ConclusionThispaperhaspresentedacomparisonofthecosts(vehiclepurchasecostsandenergycosts)andbenefits(reducedpetroleumconsumption)ofPHEVsrelativetoHEVsandCVs.
Basedonthestudyresults,thereisaverybroadspectrumofHEV-PHEVdesignswithgreatlyvaryingcostsandbenefits.
Furthermore,thePHEVcost-benefitequationisquitesensitivetoarangeoffactors.
Inparticular,batterycosts,fuelcosts,vehicleperformance,anddrivinghabitshaveastronginfluenceontherelativevalueofPHEVs.
Giventhelargevariabilityanduncertaintyinthesefactors,itisdifficulttopredictthefuturepotentialforPHEVstopenetratethemarketandreducefleetpetroleumconsumption.
However,thepotentialforPHEVstoreduceper-vehiclepetroleumconsumptionisclearlyveryhigh.
Reductionsinexcessof45%areavailableusingdesignsofPHEV20orhigher.
Thiscomparesfavorablywiththe30%maximumreductionestimatedforHEVsHowever,itseemslikelythattheaddedbatterycapacityofaPHEVwillresultinsignificantvehiclecostincrements,eveninthelongterm.
Fortheprojectedscenariointhisstudy,aretailcostincrementofUS$3,000wasestimatedforamidsizesedanHEV.
Incontrast,thelong-termcostincrementsforamidsizePHEV20andPHEV40wereestimatedatUS$8,000andUS$11,000respectively.
Withoutknowingthefuturecostsofpetroleum,itisimpossibletodeterminethefutureeconomicsofPHEVs.
Butitdoesseemlikely,basedontheresultsofthisstudy,thatitwillbequiteachallengetojustifythePHEVcapitalcostpremiumonthebasisofreducedlifetimeenergycostsalone.
OtherincentivesandbusinessmodelsmayberequiredtocreateanattractivevaluepropositionforPHEVmotorists.
However,thelargepetroleumreductionpotentialofPHEVsofferssignificantnationalbenefitsandprovidesstrongjustificationforgovernmentalsupporttoacceleratethedeploymentofPHEVtechnology.
AcknowledgementTheauthorswouldliketoacknowledgetheprogrammaticsupportoftheU.
S.
DepartmentofEnergyOfficeofEnergyEfficiencyandRenewableEnergyFreedomCARandVehicleTechnologiesProgram.
References[1]Sanna,L.
,"DrivingtheSolution:ThePlug-InHybridVehicle.
"EPRIJournal,2005.
[2]CaliforniaAirResourcesBoard,"CaliforniaExhaustEmissionStandardsandTestProceduresfor2005andSubsequentModelZero-EmissionVehicles,and2002andSubsequentModelHybridElectricVehicles,inthePassengerCar,Light-DutyTruckandMedium-DutyVehicleClasses.
"CaliforniaEPA,2003.
[3]"Plug-InHybrids.
"CaliforniaCarsInitiativeonline,www.
calcars.
org/vehicles.
html.
AccessedJuly30,2006.
[4]1995NationalPersonalTransportationSurvey(NPTS),npts.
ornl.
gov/npts/1995/doc/index.
shtml.
[5]"SalesNumbers"hybridCARS.
comonline,www.
hybridcars.
com/sales-numbers.
html.
AccessedJuly30,2006.
[6]Plug-InPartnersonline,http://www.
pluginpartners.
org/.
AccessedJuly30,2006.
[7]Markel,T.
;O'Keefe,M.
;Gonder,J.
;Brooker,A.
.
Plug-inHEVs:ANear-termOptiontoReducePetroleumConsumption.
NREL39415.
Golden,CO:NationalRenewableEnergyLaboratory,2006.
[8]Wipke,K.
B.
;Cuddy,M.
R.
;Burch,S.
D.
"ADVISOR2.
1:AUser-FriendlyAdvancedPowertrainSimulationUsingaCombinedBackward/ForwardApproach.
"IEEETransactionsonVehicularTechnology;Vol48,No.
6,1999;pp.
1751-1761.
[9]Rush,D.
MarketCharacterizationforLightDutyVehicleTechnicalTargetsAnalysis,NationalRenewableEnergyLaboratory,2003.
[10]"HondaIMASystem/PowerUnit.
"Hondaonline,world.
honda.
com/CIVICHYBRID/Technology/NewHondaIMASystem/PowerUnit/index_1.
html,accessedJuly30,2006.
[11]"PAMVECModel.
"UniversityofQueenslandSustainableEnergyResearchGrouponline,www.
itee.
uq.
edu.
au/~serl/PAMVEC.
html,accessedJuly30,2006.
[12]Rosenkrantz,K.
"Deep-CycleBatteriesforPlug-InHybridApplication.
"EVS20Plug-InHybridVehicleWorkshop,LongBeach,2003.
[13]"Multi-YearProgramPlan.
"FreedomCARandVehicleTechnologiesProgramonline.
http://www.
eere.
energy.
gov/vehiclesandfuels/resources/fcvt_mypp.
html,accessedJuly30,2006.
[14]Graham,R.
etal.
"ComparingtheBenefitsandImpactsofHybridElectricVehicleOptions.
"ElectricPowerResearchInstitute(EPRI),2001.
[15]Delucchi,M.
"ElectricandGasolineVehicleLifecycleCostandEnergy-UseModel.
"InstituteofTransportationStudies.
UniversityofCalifornia,Davis,2000.
[16]Markel,T.
;Simpson,A.
;"Plug-InHybridElectricVehicleEnergyStorageSystemDesign,"Proc.
AdvancedAutomotiveBatteryConference;2006,Baltimore,Maryland.
[17]Gonder,J.
;Simpson,A.
"MeasuringandReportingFuelEconomyofPlug-InHybridElectricVehicles,"22ndInternationalBattery,HybridandFuelCellElectricVehicleSymposium&Exposition;2006,Yokohama.
[18]"SAEJ1711–RecommendedPracticeforMeasuringFuelEconomyofHybrid-ElectricVehicles.
"SocietyofAutomotiveEngineersSurfaceVehicleRecommendedPractice.
SocietyofAutomotiveEngineers,Warrendale,1999.
[19]U.
S.
EnergyInformationAdministrationonline,www.
eia.
doe.
gov,accessedJuly30,2006.
AuthorAndrewSimpson,VehicleSystemsEngineer,NationalRenewableEnergyLaboratory(NREL),1617ColeBlvd,GoldenCO80401USA;Tel:303-275-4430;Fax:303-275-4415;andrew_simpson@nrel.
gov.
AndrewjoinedtheAdvancedVehicleSystemsGroupatNRELin2005andhiscurrentfocusisplug-inhybrid-electricvehicles.
HeholdsaBachelorofMechanicalEngineering(2000)andPh.
D.
inElectricalEngineering(2005)fromtheUniversityofQueensland,Brisbane,Australia.
PriortoNREL,AndrewworkedasaCFDconsultantforMaunsellAustralia.
Healsoco-foundedtheSustainableEnergyResearchGroupatTheUniversityofQueenslandandwasacoordinatingmemberoftheUniversity's"SunShark"solarcarteamwhichracedsuccessfullyfrom1996-2000.
REPORTDOCUMENTATIONPAGEFormApprovedOMBNo.
0704-0188Thepublicreportingburdenforthiscollectionofinformationisestimatedtoaverage1hourperresponse,includingthetimeforreviewinginstructions,searchingexistingdatasources,gatheringandmaintainingthedataneeded,andcompletingandreviewingthecollectionofinformation.
Sendcommentsregardingthisburdenestimateoranyotheraspectofthiscollectionofinformation,includingsuggestionsforreducingtheburden,toDepartmentofDefense,ExecutiveServicesandCommunicationsDirectorate(0704-0188).
Respondentsshouldbeawarethatnotwithstandinganyotherprovisionoflaw,nopersonshallbesubjecttoanypenaltyforfailingtocomplywithacollectionofinformationifitdoesnotdisplayacurrentlyvalidOMBcontrolnumber.
PLEASEDONOTRETURNYOURFORMTOTHEABOVEORGANIZATION.
1.
REPORTDATE(DD-MM-YYYY)November20062.
REPORTTYPEConferencePaper3.
DATESCOVERED(From-To)5a.
CONTRACTNUMBERDE-AC36-99-GO103375b.
GRANTNUMBER4.
TITLEANDSUBTITLECost-BenefitAnalysisofPlug-InHybridElectricVehicleTechnology5c.
PROGRAMELEMENTNUMBER5d.
PROJECTNUMBERNREL/CP-540-404855e.
TASKNUMBERFC06.
20006.
AUTHOR(S)A.
Simpson5f.
WORKUNITNUMBER7.
PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)NationalRenewableEnergyLaboratory1617ColeBlvd.
Golden,CO80401-33938.
PERFORMINGORGANIZATIONREPORTNUMBERNREL/CP-540-4048510.
SPONSOR/MONITOR'SACRONYM(S)NREL9.
SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)11.
SPONSORING/MONITORINGAGENCYREPORTNUMBER12.
DISTRIBUTIONAVAILABILITYSTATEMENTNationalTechnicalInformationServiceU.
S.
DepartmentofCommerce5285PortRoyalRoadSpringfield,VA2216113.
SUPPLEMENTARYNOTES14.
ABSTRACT(Maximum200Words)Thispaperpresentsacomparisonofvehiclepurchaseandenergycosts,andfuel-savingbenefitsofplug-inhybridelectricvehiclesrelativetohybridelectricandconventionalvehicles.
15.
SUBJECTTERMSplug-inhybridelectricvehicles;PHEVs;fuelsavings;fueleconomy;vehiclecosts16.
SECURITYCLASSIFICATIONOF:19a.
NAMEOFRESPONSIBLEPERSONa.
REPORTUnclassifiedb.
ABSTRACTUnclassifiedc.
THISPAGEUnclassified17.
LIMITATIONOFABSTRACTUL18.
NUMBEROFPAGES19b.
TELEPONENUMBER(Includeareacode)StandardForm298(Rev.
8/98)PrescribedbyANSIStd.
Z39.
18

hostyun评测香港原生IPVPS

hostyun新上了香港cloudie机房的香港原生IP的VPS,写的是默认接入200Mbps带宽(共享),基于KVM虚拟,纯SSD RAID10,三网直连,混合超售的CN2网络,商家对VPS的I/O有大致100MB/S的限制。由于是原生香港IP,所以这个VPS还是有一定的看头的,这里给大家弄个测评,数据仅供参考!9折优惠码:hostyun,循环优惠内存CPUSSD流量带宽价格购买1G1核10G3...

gcorelabs:CDN业务节点分布100多个国家地区,免费版提供1T/月流量

卢森堡商家gcorelabs是个全球数据中心集大成的运营者,不但提供超过32个数据中心的VPS、13个数据中心的cloud(云服务器)、超过44个数据中心的独立服务器,还提供超过100个数据中心节点的CDN业务。CDN的总带宽容量超过50Tbps,支持免费测试! Gcorelabs根据业务分,有2套后台,分别是: CDN、流媒体平台、DDoS高防业务、块存储、cloud云服务器、裸金属服务器...

哪个好Vultr搬瓦工和Vultr97%,搬瓦工和Vultr全方位比较!

搬瓦工和Vultr哪个好?搬瓦工和Vultr都是非常火爆的国外VPS,可以说是国内网友买的最多的两家,那么搬瓦工和Vultr哪个好?如果要选择VPS,首先我们要考虑成本、服务器质量以及产品的售后服务。老玩家都知道目前在国内最受欢迎的国外VPS服务商vultr和搬瓦工口碑都很不错。搬瓦工和Vultr哪个稳定?搬瓦工和Vultr哪个速度快?为了回答这些问题,本文从线路、速度、功能、售后等多方面对比这两...

partnersonline为你推荐
甲骨文不满赔偿劳动法员工工作不满一个月辞退赔偿标准同ip域名不同域名解析到同一个IP是否有影响网站检测如何进行网站全面诊断www.xvideos.com请问www.****.com.hk 和www.****.com.cn一样吗?苗惟妮和空姐一起的日子全集在线观看 优酷播放迅雷看看QVOD 和空姐一起的日子下载 剧情介绍?关键词挖掘关键词拓展挖掘怎么用大虫手绘古代文人称的大虫是什么禹仁姬禹仁姬事件是咋回事 详细点仇恨长矛魔兽猎人请教浪子成神浪子回头是什么动物
韩国服务器租用 x3220 缓存服务器 gateone windows2003iso 警告本网站美国保护 全站静态化 卡巴斯基试用版 亚马逊香港官网 umax120 新世界服务器 如何建立邮箱 申请免费空间和域名 上海电信测速网站 贵阳电信 域名转入 葫芦机 塔式服务器 优惠服务器 此网页包含的内容将不使用安全的https 更多