LBM5xoy.com

5xoy.com  时间:2021-03-19  阅读:()
COMPUTERANIMATIONANDVIRTUALWORLDSComp.
Anim.
VirtualWorlds2007;18:259–269PublishedonlineinWileyInterScience(www.
interscience.
wiley.
com)DOI:10.
1002/cav.
190PhysicallybasedanimationofsandstormByShiguangLiu,ZhangyeWang*,ZhengGong,LeiHuangandQunshengPengThispaperdescribesaphysicallybasedmethodformodelingandanimatingsandstorm,atypeofdisastrousnaturalphenomenon.
Themethodadoptsarelativelystableincompressiblemultipleuidmodeltosimulatethemotionofair,sand,anddustparticles.
ThewindeldofsandstormisestablishedbasedonReynold-averageNavier-Stokesequations.
Thesandanddustparticleowisthereforecomputedtakinginteractionamongthewind,sand,anddustparticlesintoaccount.
Toacceleratethemodelingprocessofadynamicsandstormscene,aspecialMulti-FluidSolverisdesignedandimplementedonGPU.
Variousilluminationeffectsofsandstormscenescanbesimulatedbyspectralsamplingscatteringcalculation.
Animationsofrealisticsandstormsoccurringindesertandurbanareasbasedonourmodelaredemonstrated.
Comparedwiththerealsandstormphotos,oursimulatedresultsaresatisfactory.
Copyright2007JohnWiley&Sons,Ltd.
Received:15May2007;Accepted:15May2007KEYWORDS:sandstorm;naturalphenomenasimulation;physicallybasedanimation;Multi-FluidSolver;GPUIntroductionAlthoughmanyworkswereproposedforsimulatingnaturalscenesinthepasttwodecades,relativelittleattentionwaspaidtomodelingandrenderingofdisastrousnaturalphenomenasuchashurricane,tornado,sandstorm,debrisow,etc.
Onereasonmaybethecomplexphysicalmechanismsbehindthesenaturaldisastrousphenomena.
Recently,sandstorm,atypeofdisastrousphenomenarelatedtodesert,attractsmuchattentionofthepeoplearoundtheworld.
Realisticsimulationofdynamicsandstormscenecanbefoundapplicationsinmanydomains.
Forexample,movieandTVplotsoftenincludethedesertscene.
DesertareasarealsothefavoritesitesformanyPCgameasbattlegrounds.
Ecologistscanevaluatetheecologicaldisasterofsandstormbydynamicsimulation.
Mayorsmayfocusonthetrafcjamsduetothelowvisibilitycausedbyheavysandstorm.
Sandanddustparticlesmaycauseseriousrespiratoryillnessforpeoplewhoinhalethem.
Weproposeafast,physicallybased,andeasilyimplementedmethodformodelingandanimatingrealisticsandstormscenes.
*Correspondenceto:Z.
Wang,StateKeyLabofCADCG,ZhejiangUniversity,Hangzhou310027,P.
R.
China.
E-mail:zywang@cad.
zju.
edu.
cnSandstormisaverystrongwindstormwhichfrequentlyhappensinthedesertanditsneighboringarea.
Itcancarryhugeamountofsandanddustintheatmosphere.
Thiswindisusuallycausedbyconvectioncurrentswhicharecreatedbyintenseheatingoftheground.
Airisunstablewhenheatedandthisinstabilitywillcausethemixtureofhigherwindsinthetropospherewithwindsintheloweratmosphere,incurringstrongsurfacewinds.
Therearemanyresearchworksaboutsimulationofsandstormintheeldofphysicsandmeteorology,however,theseworksmainlyfocusonprecisenumericalanalysis,andaretoocomplextobeusedforanimation.
Untilnow,littleworkhasbeenreportedaboutrealisticmodelingandrenderingofsandstorminComputerGraphics.
Inthispaper,weproposeaphysicallybasedmethodformodelingandanimatingsandstorm.
First,weestablishtheunstablewindeldofsandstormbasedonReynold-averageNavier-Stokesequations.
Themotionofsandanddustparticleisregardedasthecontinuousowsandtheycanbeexpressedbythenon-viscosityuidmodeltakingtheinteractionamongthemintoaccount.
Then,weproposeaGPU-basedMulti-FluidSolverfordynamicsandstormscene.
Thevarietyofilluminationeffectofsandstormscenesissimulatedbyspectralsamplingofthescatteringlight.
Finally,Copyright2007JohnWiley&Sons,Ltd.
S.
LIUETAL.
accordingtothestatisticaldistributionofthesizeofsandanddustparticles,fantasticilluminationeffectsofsandstormindifferentareasandatdifferentstagesarerendered.
Therestofthispaperisorganizedasfollows.
TheSectionRelatedWorkgivesabriefsurveyofrelatedworks.
InSectionModelingoftheSandstormweproposeaphysicallybasedmodelofsandstorm.
SectionRenderingofSandstormScenediscussestherenderingmethodsofsandstorm.
ThisisfollowedbyResultsandDiscussionSection.
ConclusionsandFutureWorksaregivenatlast.
RelatedWorkAsasevereglobalnaturaldisaster,sandstormscauseincredibledamageoffacilitieseveryyearintheworld.
Ithasbeenthehotspotinmanyeldsespeciallyforphysicsandmeteorology,etc.
1–4Josephetal.
studiedtherelationshipbetweentheweatherconditionsandvelocityofsandstorm.
5Later,moreandmoreresearchersbegantosimulatethewind-sandmovementusingthemethodofnumericalanalysis.
Alltheaboveworksfocusonstudyingthemotionofsandstormbyexperimentaldataornumericalanalysismethod.
Astheyaimatcalculatingthemovementofsandstormaspreciseaspossible,thesemodelsaretoocomplicatedtobevisualizedinpracticalapplication.
Tosimulatethesandstormscenesrealisticallyandefciently,anapproximatephysicallybasedsandstormmodelshouldbeputforward.
Forsimulationofuid-likenaturalphenomenasuchassmoke,cloud,volcaniccloud,etc.
,mostworksadoptuidmodels.
6–8Multi-uidmodelswerealsoproposedaccountingforgas–liquiduid,gas–gasuid,etc.
Hongsolvedthemultiphaseowthroughthebubblemotioninliquid.
9Andthevolumeofuid(VOF)methodwashiredtotrackthefreesurface,theminimumstresssurfacetensionmethodwasusedtocalculatethesurfacetensiondirectlyfromthematerialeld.
Premozesimulatedthemulti-uidowbasedonmovingparticlesemi-implicit(MPS)withoutreactions.
10Infact,exceptforthesimplemixingofdifferentmaterials,thechemicalreactionmayexist.
Combustionisanexample.
Nguyenetal.
11consideredthegaswaspremixedandthereactiononlyhappenedattheinterfaceofthebluecoretogeneratehotgaseousproducts.
Ihmsimulatedmoregeneralgaschemicalreactions.
Accordingtothechemicalkinetics,theyusedthereactionprocesstodirectlyupdatethetemperaturesofsubstancesandthedivergencecontrolfunction.
12Byextendingtheparticlelevelsetmethod,Losassoetal.
13simulatedinteractionsamongmultipleliquids.
Liuetal.
14simulatedtornadoscenewithaTwo-Fluidmodel.
Zhuetal.
15proposedaTwo-FluidLatticeBoltzmannmodel.
Withthismodel,theycansimulatemisciblebinarymixtureslikepouringhoneyintowater,etc.
Fanetal.
16simulatedmultiphaseowoncurvedsurfacesusingamethodofadaptedunstructuredLBM.
Zhaoetal.
17simulatedthephenomenaofmeltingandowinginmultiphaseenvironment.
Forthegas-solidow,volcaniccloudsweremodeledbyMizunoetal.
Theyassumedthattheowwascomposedoftwotypesofuids:magmaandentrainedgas,andbothwereconveyedbythevelocityeld.
18Explosioncanberegardedasgas-solidorgas-liquidow.
Feldmanetal.
19suggestedthatexplosionwascomposedofsuspendedparticlesandentrainedgas.
Toaccountfortheinteractionsbetweentheparticlesandthegasduringexplosion,theyenforcedthedragforceoneachparticlefromthevelocitydifferenceandtheoppositeforcewasexertedontheuidcells.
Theyalsoemployedparticlesystemwhichincludedhundredsofthousandsparticlesformodelingthemovementofexplosionparticles.
However,inthecaseofsandstorm,airow(windeld),andsandparticlearenotonlyconveyedbythevelocityeld.
Theinteractionbetweensandparticlesandtheairowisalsoanimportantimpetus.
Furthermore,tomodelthedynamicsandstormscene,agreatnumberofsandanddustparticlesshouldbetakenintoaccount.
Soitwouldbequitedifculttosimulatethesceneatfastrenderingratebyparticlesystems.
Apparentlyanapproximatephysicallybasedsandstormmodelaswellasanefcientcalculatingsolverisindemand.
Asthemulti-phaseuidsaremorecomplexthanthesingleuidowduetothedifferentpropertiesofcomponentsandtheinteractionsamongthem,realisticmulti-uidsimulationisachallengetaskforcomputergraphicsresearchers.
Realisticsimulationofsandstormalsoincludesmodelingofsandparticle,renderingofdesertscene,etc.
Belletal.
20proposedamethodofmodelinggranularmaterialssuchassandandgrains.
Theyrepresentedgranularmaterialbyalargecollectionofnon-sphericalparticleswhichmightbeinpersistentcontact.
Thismethodcanbeintegratedtosimulatehighlydynamicphenomenasuchassplashingandavalanchesefciently.
Butasthenumberofparticlesisnotlargeenough,therenderingeffectofthesceneneedtobeimproved.
OnoueandNishita21proposedamethodformodelingandrenderingrealisticdesertscenesincludesanddunesandwindripples.
Theyrenderedtheduneswiththewind-ripplesbybump-mappingusingLevelofDetail(LOD).
Copyright2007JohnWiley&Sons,Ltd.
260Comp.
Anim.
VirtualWorlds2007;18:259–269DOI:10.
1002/cavANIMATIONOFSANDSTORMBenesdescribedaproceduralalgorithmthatimprovedthepreviousworkofOnoueandNishitabysimulationofsandinteractingwithobjects.
22Nevertheless,theseworksmainlydealwiththestaticdesertandfailtosimulatedynamicsandstorm.
Inthispaper,wepresentanewmethodtosimulatethedynamicsandstormscene.
Belowwewilldescribeitindetail.
ModelingoftheSandstormWeconsidersandstormasamulti-uidcomposedofwind,sand,andsmalldustparticleows.
Belowwewilldiscussthemodelofwindelds,sand,anddustparticleow,respectively.
WindFieldForthestablenear-surfaceairow,wecanestablishitswindeldbasedonclassicalNavier-Stokesequations.
Butsandstormisusuallycausedbyunstableairow,itisnotsuitabletobemodeledwithclassicalNavier-Stokesequations.
Consideringtheeffectsoftheatmosphericturbulence,weestablishthewindeldbyReynold-averageNavier-Stokesequationwhichisexpressedas:ρut=ρ(u·)up+ν2u+·τ+f(1)whereuisthewindvelocity,ρisdensity,pispressure,νdenotesviscosityoftheair,τdenotesReynoldshearstresswhichreectstheunstabilitybyatmosphericturbulence,fdenotesanyexternalforcesactingontheairow.
Theexternalforceconsistsofvorticityconnement,interactionswithsandparticles.
ThersttermisdenedinReference[23].
WewilldescribethesecondterminSubsectionInteractionAmongWind,Sand,andDustParticleFlow.
TheReynoldshearstresscanbeexpressedasthefollowing:τ=ρ|dudy|y2c2k(2)whereyisthedistancefromthesurface,ckistheVonKarmanconstantanditsvalueis0.
4.
ByReynoldshearstress,wecanmodelthevorticityaroundeachsandparticle(Figure1),togenerateamorerealisticsimulationofairowforsandstormscene.
Suppose,sandanddustparticlesarenotbrokenormergedinsandstorm,theairowcanbeconsideredasFigure1.
Thevelocitydistributionaroundasandparticle,(a)notconsideringReynoldshearstress,(b)consideringReynoldshearstress.
incompressibleuid,thatis,·u=0(3)SandandDustParticleFlowModelFordifferenttypesofsandstorm,theratiosofsandparticle(oflargesize)anddustparticle(ofsmallsize)aredifferent.
Sandanddustparticlesarediscretelydistributedinsandstorm.
Ifthenumberofparticlesisnotverylarge,wecantraceeveryparticle'strackaccuratelybyparticlesystem.
Infact,asandstormconsistsofahugenumberofsandsanddustparticles,sotracingeachparticleisnotfeasibleinthiscase.
However,theparticles'movementsobeystatisticaldistribution,andtheyhavethesimilarpropertiesasuid,wecanapproximatethemotionofsandanddustparticleasnon-viscosity,incompressibleuid,whichcanbedescribedasthefollowing:udt=(ud·)udpd+fd(4)·ud=0(5)whereudisthevelocityofsandparticleow,pdispressure,fddenotesanyexternalforcesactingontheCopyright2007JohnWiley&Sons,Ltd.
261Comp.
Anim.
VirtualWorlds2007;18:259–269DOI:10.
1002/cavS.
LIUETAL.
Figure2.
Theforceofasandparticleintheairow.
sandparticle.
fdconsistsofthevalidgravityWdofsandparticleinairow,andtheentrainmentforceFdbyairow.
Next,wewillanalyzetheforceofasingleparticleinairow.
Supposethatthesandanddustparticlesarespherical,withmassmd,diameterDd,anddensityρd.
Forsimplicity,wesupposethattheparticlesmoveinXOYplane.
Theforceconsistsofthevalidgravityofsandparticlesandtheentrainmentforcebyairow.
Theentrainmentforceisproducedbythevelocitydifferencebetweentheairowandthesandparticleow,anditisthemostimportantdrivingforceofsandparticles.
Figure2isthesketchofforcesofasandparticleintheairow.
Thevalidgravityofasandordustparticleintheairowisexpressedas:24Wd=16πDd3(ρdρ)g(6)wherethesubtractionpartisbuoyancyofthesandparticleintheairow,ρandgarethedensityandaccelerationofgravity,respectively.
Theentrainmentforceisexpressedas:Fd=CDπνDd(udu)(7)whereudisthevelocityofthesandparticle,νtheviscosityoftheatmosphere,CDthecoefcientofresistanceandwecalculateitbythefollowingempiricalformula:CD=24Re+6(1+Re)1/2+0.
4(8)whereReistheReynoldnumbercorrespondingtodifferentairowmotion.
Theaboveanalysisisforasingleparticle.
Asweconsiderthemotionofparticlesasanincompressibleuid,theEulermethodcanbeusedtosolveit.
Inthiscase,eachsandordustparticleactuallybelongstoagroupofparticlesinavoxel.
Inthisway,wecansimulatethemotionandinteractionamongthewind,sand,anddustparticlesbasedonvoxel,whichismoreefcientcomparedwithparticlesystem.
InteractionAmongWind,Sand,andDustParticleFlowFollowingthetheoryofuiddynamics,sandstormisdifferentfromothernaturalphenomenasuchassmoke,re,etc.
duetotheobviousinteractionamongthesand,dustparticleowsandthewindeld.
Whenthesandanddustparticlesareblownintotheair,itwillbeentrainedbythewind.
Onthecontrary,thevelocityofthewindwillbeaffectedbythecounterforceofthesandanddustparticleow.
Infact,forsandstorm,itsexternalforceismainlytheinteractionforcebetweensandparticleowandairow,whichiscausedbythevelocitydifferencebetweenthem.
Herewewilldiscussthemodelingofinteractionforceforsandstorm.
Thewindeld,sand,anddustparticleowscanberegardedascontinuousuid.
Sotheinteractionamongthemcanbemodeledasthatbetweenwindeldandagroupoftheseparticles.
Weaccountthesandanddustparticlesinaunitvolumeasawhole,andthecounterforcetothewindeldbythesandanddustparticleowisequivalenttoaddingabodyforcetothewindeldmodel.
AccordingtoSubsectionSandandDustParticleFlowModel,theforceexertedbyasingleparticlemovingthroughthegasisCDπDd(udu).
WedescribethediameterdistributionofsandanddustparticlesinsandstormsbyEquation(9):n(Dp)=N01√2πηDpexp(lnDpδ)22η2(9)whereη,δismeanvalueandstandardvarianceoflnDp,N0isthetotalnumberofsandparticlesintheunitvolume.
Figure3showsthedistributionofsandparticleinsandstormsofdifferentvisibility.
Here,L,M,Sarethedifferenttypesofsandstormunderlow,moderateandhighvisibilities,respectively.
Duetothediameterofsandanddustparticleistenstohundredsmicrons,theinteractionforcebetweenthemcanbeignored.
Sotheinteractionforcebetweensandparticlesinaunitvolumeandtheairowcanbeexpressedas:FDP=n(Dp)·CDπDp(udu)dDp(10)Copyright2007JohnWiley&Sons,Ltd.
262Comp.
Anim.
VirtualWorlds2007;18:259–269DOI:10.
1002/cavANIMATIONOFSANDSTORMFigure3.
Diameterdistributionofsandparticlesindifferenttypesofsandstorm.
Multi-FluidSolveronGPUOursandstormmodeldistinguishesfrompreviousuidmodelinthatourmodeldescribesamultipleuidsystem,oneisairowandtheothersaresandanddustparticleows.
Ifweusethepreviousmethodssuchas25tosolvemultipleNavier-Stokesequationsseperatelyformultiplevelocitytextureinonerenderingpass,thecalculatingtimecostwillbeincreasedseveraltimes.
Toavoidthis,wesolvethemultipleNavier-Stokesequationsinparallelinonerenderingpassbycombiningmultipleelddatatextureintoonetexture.
Thetechniqueofat3Dtextureisalsousedtostorethe3Dtexturedata.
Differentfromthepreviousmethods,westoretheairow(wind)velocitytextureandthesandanddustparticleowvelocitytextureinoneat3Dtextureratherthaninseveralat3Dtextures,asshowninFigure4.
Inthisgure,thegreenpartisforthesandparticleow,andthebluepartisfortheairow.
ItisconvenienttoFigure4.
Datatextureinoursandstormmodel.
Figure5.
FlowchartofMulti-FluidSolver.
readandstorevelocitydatabytheYcoordinate.
IftheYcoordinateisabove0.
5,itrepresentsthedataofthesandanddustparticleow.
Ifnot,itrepresentsthedataoftheairow.
Itissimilarforotherelddatasuchaspressuresandsoon.
Thecalculationowcanbedescribedasfollows.
First,weinitializetheairowandsandparticleow,settheinitialconditionandboundarycondition.
Then,wesolvetheNavier-StokesequationsonGPUbytheSemi-Lagrangemethods.
25Thereareseveralvelocitytexturedatainoneat3Dtexture.
Theycanbebothupdatedoronlyoneisupdatedduringonestep.
WeshowthisowinFigure5.
Inthisgure,theyellowpartincludestextureoperation,andthewhitepartinvolvesnotextureoperation.
Bythismethod,wecansolvemultipleNavier-Stokesequationsinparallelinonerenderingpass.
Nowonder,thesizeofourat3Dtextureisseveraltimesaslargeasthatofthepreviousmethod,butitdoesnotaffectthecalculationefciencyverymuchforthelinearcalculationfunctionofGPU.
Copyright2007JohnWiley&Sons,Ltd.
263Comp.
Anim.
VirtualWorlds2007;18:259–269DOI:10.
1002/cavS.
LIUETAL.
RenderingofSandstormSceneTogeneraterealisticimagesofsandstorms,wemustconsidertheinteractionofvarioustypesofcomponentsofsandstormwithnaturallight.
Sandstormappearswithdifferentcoloratdifferentareasandstages.
Thisismainlyduetoscatteringandabsorptioneffectofparticlesinsandstorm.
OurrenderingmodelofsandstormsceneisbasedonmultipleMiescatteringtheory.
26Andweadoptpre-computationtechniquetoacceleratetherenderingrate.
BelowwewillsimplydescribeMiescatteringmodelanddiscussourrenderingmethod.
MieScatteringModelforNaturalLightMiescatteringmodelisaclassicaltheoryforexplainingscatteringofsphericalparticles.
SupposeaparticleisofdiameterDd,refractiveindexm.
Mie'smodelofscatteringcanbeexpressedas:I(λ)=I0(λ)i1+i22k2Dd2(11)whereλisthewavelengthofincidentlight,themeaningofotherparametersinEquation(11)canbefoundinReference[27].
CalculationofScatteringinSandstormAccordingtothedataofexperimentandmeasurement,wendthattheshapeofthemajorityofsandanddustparticlesisspherical.
AccordingtotheIsometric-Spheretheory,sand,anddustparticlesinsandstormcanthusberegardedassphericalforsimplicity.
28Figure6.
Theincidentradianceofavoxel.
Figure7.
Renderingsandstorminhardware.
TheeffectofscatteringcanbedeterminedbymeasuringtheintensityIscaofalightrayaftertravelingldistanceinascatteringmedia.
IfI0istheintensityofthelightsource,accordingtoBougureLaw,26theFigure8.
Comparisonbetweenourrenderingresultandtherealphotoindesert,(a)ourrenderingresult,(b)therealphoto.
Copyright2007JohnWiley&Sons,Ltd.
264Comp.
Anim.
VirtualWorlds2007;18:259–269DOI:10.
1002/cavANIMATIONOFSANDSTORMFigure9.
Comparisonbetweenourrenderingresultandtherealphotoinanurbanroad,(a)ourrenderingresult,(b)therealphoto.
ratioisIsca/I0=exp(Qsca(λ)·l)(12)whereQsca(λ)isthescatteringsectionofaparticle.
Consideringthedistributionofsandparticlesinsandstorm(SeeSectionModelingoftheSandstorm),wedenethescatteringcoefcientofsandparticlesinaunitvolumeasσ(λ)=∞0πDp24Qscan(Dp)dDp(13)AsthecomputationoftheMiescatteringisverycomplicated,whichincludecalculationofscatteringsectionandscatteringcoefcient,hereweuseanewmethodtopre-computethesetermsofsandparticleswithdifferentdiameterandstoretheresultsasalook-uptable.
Whilerendering,wecaninterpolatedatafromthistable.
Thespectralsamplingintervalofincidentlightis5nmfrom380to780nm,andsamplingintervalofscatteringangleis1degreefrom0to180.
Figure10.
Sandstormsceneswithdifferentvisibilityinurbanarea,(a)highvisibility,(b)moderatevisibility,(c)lowvisibility.
Copyright2007JohnWiley&Sons,Ltd.
265Comp.
Anim.
VirtualWorlds2007;18:259–269DOI:10.
1002/cavS.
LIUETAL.
Figure11.
Seriesofsandstormscenesindesert,(a)–(d)showthatsandstormisdrawingneartheviewpoint.
RenderingofSandstormSceneToproducetherealisticappearanceofsandstormscene,multiplescatteringeffectofsandsmustbeconsidered.
Herewediscretethespacelledwithsandstormintovoxels.
ForeachvoxelPi,j,itsincidentradiancefromdirectionωincludesthedirectlightfromthelightsourceindirectionωandmultiplescatteredlightfromothervoxels(SeeFigure6).
Themultiplescatteringmodelisexpressedas:IPi,j=I0·Nj=1σj(λ)+Nj=1ImNk=j+1σk(λ)(14)whereImisthemultiplescatteringintodirectionωatarbitraryvoxelX.
In-scatteringfromthesixneighboringvoxelsaresampled,soImcanbeexpressedas:Im=6s=1IPs·p(θ)·σs(λ)(15)wherep(θ)isphasefunction.
Forscatteringofsandparticlesisalmostisotropic,weconsiderthephasefunctionasconstant.
Ourrenderingmethodisatwo-passalgorithm.
AsshowninFigure7,wepre-computetheshadingofsandstormsceneaccordingtothepositionofeachvoxelandtheincidentdirectionoflightsourceintherstpass.
Then,weusetheshadingresulttorenderthesceneunderxedviewpointinthesecondpass.
ResultsandDiscussionWiththeproposedmethods,wesuccessfullygeneratedvarioustypesofrealisticsandstormscenesonaPCwithFigure12.
Sandstormsceneswithmoderatevisibilityinacornerofurbanarea.
Copyright2007JohnWiley&Sons,Ltd.
266Comp.
Anim.
VirtualWorlds2007;18:259–269DOI:10.
1002/cavANIMATIONOFSANDSTORM2.
8GHZ,PentiumIVprocessor,2GBmemoryandanNVIDIA'sGeForceFX6800GTgraphicscard.
Figure8showsthecontrastofourrenderingresultsofsandstormindesertandtherealphoto.
Fromthegures,wecanseethatoursimulatedresultisquitesatisfactory.
Figure9isthecomparisonbetweenourrenderingresultsofsandstorminanurbanroadatnightwiththerealphoto.
Figure10showsthesandstormsceneswithdifferentvisibilityatnightinurbanarea.
Withtheincreaseofthedensityofsandanddustparticles,thescatteringcolorischanginggraduallyfromlightyellowtoyellow,thentored,andthevisibilitydecreasescorrespondingly.
Thiscolorchangeismainlycausedbythechangeofdensitydistributionofsandparticles.
Asourmethodisbasedonphysicaltheory,theappearanceofsandstormandscatteringeffectsoftheroadlamplooksrealistic.
Figure11showsseriesofdynamicsandstormscenesindesert.
From(a)to(d),sandstormisrollingneartheviewpoint.
Thedynamicseriesofsandstormscenecanbeseenfromtheaccompanyinganimationvideo.
Wecanalsoseetheilluminationeffectsofsandstormsceneatdifferentstagescausedbymultiplescatteringofsandparticles.
Figure12showsacornerofurbanareainsand-stormwithmoderatevisibility.
Thesimulationdomainis64*64*64.
Theaveragerenderingrateofourmethodfordynamicsandstormisabout6framespersecond.
ConclusionandFutureWorksWehaveproposedanovelphysicallybasedmethodformodelingandanimatingsandstormscenes.
Ourmethodadoptsmulti-phaseuidmodelstosimulatethemotionofair,sand,anddustparticlesinthesandstorm.
ThewindeldisestablishedbyReynold-averageNavier-Stokesequationsandthesandanddustparticleowisbuiltwiththenon-viscosityuidmodeltakingthestatisticaldistributionofparticlesofvariedsizeintoaccount.
Toefcientlycomputethedynamicsandstormscene,wedesignaMulti-FluidSolverandimplementitonGPUtoachievehighrenderingrates.
Byspectralsamplingofthelightscattering,thepeculiarilluminationeffectofdynamicsandstormscenesisrevealed.
Comparedwithrealsandstormdisplays,oursimulatedresultsarequitesatisfactory.
Thecontributionsofthispapercanbesummarizedasfollows.
(1)Asfarasweknow,itisthersttimetosimulatedynamicsandstormscenerealisticallybasedonphysicalprinciples.
(2)Ratherthanusingsingleuidmodel,weadoptmultipleuidmodeltodealwiththemotionandthecomplexinteractionofvariouscomponentsinthesandstorm.
AspecialMulti-FluidSolverisdesignedandimplementedonGPU,whichgreatlyacceleratestherenderingspeedofthescene.
(3)Oursystemiseasytoimplement.
Withdifferentinitialparameters,thewind,sand,anddustparticleowswillblowautomaticallyanduserscangeneratevariousrealisticsandstormsceneswithdifferentvisibilityatdifferentstages.
Furthermore,thismodelcanbeextendedtosimulateotherphenomenaofmultiplegas-solidmixtures.
However,itisnotsuitableforsimulatingphenomenawithobviousinterface,suchasoil-water,etc.
Simulatingthesephenomenainvolvesreconstructingthedynamicfreesurface,whichisournextgoal.
Ontheotherhand,ourdynamicsandstormmodelisstillfarfromperfect.
Forexample,thoughwecansimulaterealisticdynamicsandstormscenewhichisfarfromtheviewpoint,westillsufferfromfog-likeappearanceofsandparticleswhenitisclosetotheviewpoint.
Euler-basedmethodcombiningwithparticlesystemsuggestsapotentialwayforovercomingthislimitation.
Ourfutureworksalsoincludesimulationofothernaturaldisastrousphenomenasuchasdebrisow,avalanche,etc.
ACKNOWLEDGEMENTSThisresearchwassupportedby973ProgramofChinaunderGrantNo.
2002CB312101,theNationalHighTechnologyRe-searchandDevelopmentProgramofChina(863Program)underGrantNo.
2006AA01Z314andNaturalScienceFoundationofChinaunderGrantNo.
60475013andNo.
60603076.
Wearedeeplygratefultothereviewersfortheirprecisecomments,whichhaveimprovedthequalityofthispaperandwillbenetourfuturework.
References1.
HankinEH.
Ondustraisingwindsanddescendingcurrents.
IndiaMeteorologicalMemoirs,1921.
2.
IdsoSB,IngramRS.
Pritchard.
AnAmericanHaboob.
BullAMS1972;53:930–935.
3.
JosephPV,RaipalDK,DekaSN.
"Andhi",theconvectiveduststormsofNorthwestIndia.
Mausam1980;31:431–442.
4.
BagnoldRA.
ThePhysicsofBlownSandandDesertDunes.
Mathuen&Co.
Ltd:London,1941.
5.
ZinggAW.
Astudyonthemovementofsurfacewind.
AquaEngineering1949;30:11–19.
Copyright2007JohnWiley&Sons,Ltd.
267Comp.
Anim.
VirtualWorlds2007;18:259–269DOI:10.
1002/cavS.
LIUETAL.
6.
ClavetS,BeaudoinP,PoulinP.
Particle-basedviscoelasticuidsimulation.
InProceedingsofACMSIGGRAPHSymposiumonComputerAnimation2005,2005;pp.
219–228,LosAngeles,USA,July31–August4.
7.
M¨ullerM,SolenthalerB,KeiserR,etal.
Particle-Baseduid-uidinteraction.
InProceedingsofACMSIGGRAPHSymposiumonComputerAnimation2005,2005;pp.
237–244,LosAngeles,USA,July31–August4.
8.
GenevauxO,HabibiA,DischlerJM.
Simulatinguid-solidinteraction.
InProceedingsofGraphicsInterface2003,2003;pp.
56–66.
9.
HongJM,KimCH.
Animationofbubblesinliquids.
ComputerGraphicsForum2003;22(3):253–262.
10.
PremozeS,TasdizenT,BiglerJ,etal.
Particle-basedsimulationofuids.
ComputerGraphicsForum2003;22(3):401–410.
11.
NguyenDQ,FedkiwR,JensenHW.
Physicallybasedmodelingandanimationofre.
ACMTransactionsonGraphics2002;21(3):721–728.
12.
IhmI,KangB,ChaD.
Animationofreactivegaseousuidsthroughchemicalkinetics.
InProceedingsofthe2004ACMSIGGRAPH/EurographicsSymposiumonComputerAnimation,2004;pp.
203–212.
13.
LosassoF,ShinarT,SelleA,FedkiwR.
Multipleinteractingliquids.
InProceedingsofSIGGRAPH2006,2006;pp.
812–819.
14.
LiuSG,WangZY,ChenFF,GongZ,PengQS.
Physicallybasedmodelingandanimationoftornado.
JournalofZhejiangUniversityScience2006;7(7):1099–1106.
15.
ZhuHB,LiuXH,LiuYQ,WuEH.
SimulationofmisciblebinarymixturesbasedonLatticeBoltzmannMethod.
InProceedingsofComputerAnimationandSocialAgents2006,2006;pp.
403–410.
16.
FanZ,ZhaoY,KaufmanA,HeY.
AdaptedunstructuredLBMforowsimulationoncurvedsurfaces.
InProceedingsofACMSIGGRAPH/EUROGRAPHICSSymposiumonComputerAnimation2005,2005;pp.
245–254.
17.
ZhaoY,WangLJ,QiuF,KaufmanA,MuellerK.
Meltingandowinginmultiphaseenvironment,Computers&Graphics2006;30(4):519–528.
18.
MizunoR,DobashiY,ChenBY,etal.
Physicsmoti-vatedmodelingofvolcaniccloudsasaTwoFluidsmodel.
InProceedingsofPacicGraphics,2003;Canmore,pp.
440–444.
19.
FeldmanBE,O'BrienJF,ArikanO.
Animatingsuspendedparticleexplosions.
InProceedingsofSIGGRAPH2003,2003;pp.
708–715.
20.
BellN,YuY,MuchaPJ.
Particle-basedsimulationofgranularmaterials.
InProceedingsofACMSIG-GRAPH/EUROGRAPHICSSymposiumonComputerAnima-tion2005,2005;pp.
77–86.
21.
OnoueK,NishitaT.
Amethodformodelingandrenderingduneswithwind-ripples.
InProceedingsofPacicGraphics2000,2000;pp.
427–428.
22.
BenesB,RoaT.
Simulatingdesertscenery.
InProceedingsofWSCG2004,2004;pp.
17–25.
23.
FedkiwR,StamJ,JensenHW.
Visualsimulationofsmoke.
InProceedingsofSIGGRAPH2001,2001;pp.
15–22.
24.
MarbleFE.
Dynamicsofdustygases.
AnnualReviewofFluidMechanics1970;2:397–446.
25.
StamJ.
Stableuids.
InProceedingsofSIGGRAPH1999,1999;pp.
121–128.
26.
VandeHulstHC.
LightScatteringbySmallParticles.
JohnWiley&Sons:NewYork,1957.
27.
JakelD,WalterB.
ModelingandrenderingoftheatmosphereusingMiescattering.
ComputerGraphicsForum1997;16(4):201–210.
28.
PrigozhinL.
NonlineardynamicsofAeoliansandripples.
PhysicalReviewE.
1999;60:729–739.
Authors'biographies:ShiguangLiuisassistantprofessoratSchoolofComputerScienceandTechnology,TianjinUniversityP.
R.
China.
HegraduatedfromZhejiangUniversityandin2007hereceivedaPhDfromStateKeyLabofCAD&CG.
Hisresearchinterestsincludenaturalphenomenasimulation,uidsimulationandcomputeranimation.
ZhangyeWangisassociateprofessorattheStateKeyLaboratoryofCAD&CG,ZhejiangUniversity,P.
R.
China.
HereceivedhisBSdegreeinPhysicsin1987andMScdegreeinOpticsin1990,respectively,bothfromEastChinaNormalUniversity.
In2002,hereceivedhisPhDincomputergraphicsfromZhejiangUniversity.
Hisresearchnterestsincluderealisticimagesynthesis,computeranimationandvirtualreality.
ZhengGongisaMScandidateattheStateKeyLabofCAD&CG,ZhejiangUniversity,P.
R.
China.
HereceivedhisBSdegreeinDepartmentofComputerScience,Xi'anCopyright2007JohnWiley&Sons,Ltd.
268Comp.
Anim.
VirtualWorlds2007;18:259–269DOI:10.
1002/cavANIMATIONOFSANDSTORMJiaotongUniversity,P.
R.
China.
Hisresearchinterestsincluderealisticimagesynthesisandsimulationofmultiplescattering.
LeiHuangisaMScandidateattheStateKeyLabofCAD&CG,ZhejiangUniversity,P.
R.
China.
HereceivedhisBSdegreeinDepartmentofComputerScience,HunanUniversity,P.
R.
China.
Hisresearchinterestsincluderealisticimagesynthesisandnaturalphenomenasimulation.
QunshengPengisprofessorattheStateKeyLabofCAD&CG,ZhejiangUniversity.
Hisresearchinterestsincluderealisticimagesynthesis,virtualreality,infraredimagesynthesis,point-basedrendering,scienticvisu-alization,andbiologicalcalculation,etc.
HegraduatedfromBeijingMechanicalCollegein1970andreceivedaPhDfromtheDepartmentofComputingStudies,UniversityofEastAnglia,in1983.
HeiscurrentlytheViceChairmanoftheAcademicCommittee,StateKeyLabofCAD&CG,ZhejiangUniversityandisservingasamem-beroftheeditorialboardsofseveralChinesejournals.
Copyright2007JohnWiley&Sons,Ltd.
269Comp.
Anim.
VirtualWorlds2007;18:259–269DOI:10.
1002/cav

3G流量免费高防CDN 50-200G防御

简介酷盾安全怎么样?酷盾安全,隶属于云南酷番云计算有限公司,主要提供高防CDN服务,高防服务器等,分为中国境内CDN,和境外CDN和二个产品,均支持SSL。目前CDN处于内测阶段,目前是免费的,套餐包0.01一个。3G流量(高防CDN)用完了继续续费或者购买升级包即可。有兴趣的可以看看,需要实名的。官方网站: :点击进入官网云南酷番云计算有限公司优惠方案流量3G,用完了不够再次购买或者升级套餐流量...

HostYun 新上美国CN2 GIA VPS 月15元

HostYun 商家以前是玩具主机商,这两年好像发展还挺迅速的,有点在要做点事情的味道。在前面也有多次介绍到HostYun商家新增的多款机房方案,价格相对还是比较便宜的。到目前为止,我们可以看到商家提供的VPS主机包括KVM和XEN架构,数据中心可选日本、韩国、香港和美国的多个地区机房,电信双程CN2 GIA线路,香港和日本机房,均为国内直连线路。近期,HostYun上线低价版美国CN2 GIA ...

宝塔面板批量设置站点404页面

今天遇到一个网友,他在一个服务器中搭建有十几个网站,但是他之前都是采集站点数据很大,但是现在他删除数据之后希望设置可能有索引的文章给予404跳转页面。虽然他程序有默认的404页面,但是达不到他引流的目的,他希望设置统一的404页面。实际上设置还是很简单的,我们找到他是Nginx还是Apache,直接在引擎配置文件中设置即可。这里有看到他采用的是宝塔面板,直接在他的Nginx中设置。这里我们找到当前...

5xoy.com为你推荐
广东GDP破10万亿广东省2019年各市gdp是多少?地陷裂口天上顿时露出一个大窟窿地上也裂开了,一到黑幽幽的深沟可以用什么四字词语来?www.jjwxc.net有那个网站可以看书?百花百游百花百游的五滴自游进程789se.com莫非现在的789mmm珍的com不管了www.baitu.com韩国片爱人.欲望的观看地址se95se.comwww.sea8.com这个网站是用什么做的 需要多少钱avtt4.comCOM1/COM3/COM4是什么意思??/javbibibibi直播是真的吗kb123.netwww.zhmmjyw.net百度收录慢?
日本私人vps 重庆服务器托管 dreamhost 42u机柜尺寸 账号泄露 unsplash realvnc debian7 国内加速器 网通代理服务器 东莞数据中心 最好的qq空间 酷番云 移动服务器托管 广州虚拟主机 贵阳电信测速 华为k3 成都主机托管 万网服务器 wordpress空间 更多