shortopeneuler

openeuler  时间:2021-03-17  阅读:()
PHYSICALREVIEWE92,043023(2015)DirectrelationsbetweenmorphologyandtransportinBooleanmodelsChristianScholz,1,2FrankWirner,1MichaelA.
Klatt,3DanielHirneise,1GerdE.
Schr¨oder-Turk,4,3KlausMecke,3andClemensBechinger1,512.
PhysikalischesInstitut,Universit¨atStuttgart,Pfaffenwaldring57,70569Stuttgart,Germany2Institutf¨urMultiskalensimulation,N¨agelsbachstrae49b,Friedrich-AlexanderUniversit¨atErlangen-N¨urnberg,91052Erlangen,Germany3Institutf¨urTheoretischePhysik,Friedrich-AlexanderUniversit¨atErlangen-N¨urnberg,Staudtstrae7B,91058Erlangen,Germany4MurdochUniversity,SchoolofEngineering&IT,Maths&Stats,90SouthStr.
,MurdochWA6150,Australia5Max-Planck-Institutf¨urIntelligenteSysteme,Heisenbergstrae3,70569Stuttgart,Germany(Received22July2015;published30October2015)Westudytherelationofpermeabilityandmorphologyforporousstructurescomposedofrandomlyplacedoverlappingcircularorellipticalgrains,so-calledBooleanmodels.
MicrouidicexperimentsandlatticeBoltzmannsimulationsallowustoevaluateapower-lawrelationbetweentheEulercharacteristicoftheconductingphaseanditspermeability.
Moreover,thisrelationissofaronlydirectlyapplicabletostructurescomposedofoverlappinggrainswherethegraindensityisknownapriori.
WedevelopageneralizationtoarbitrarystructuresmodeledbyBooleanmodelsandcharacterizedbyMinkowskifunctionals.
Thisgeneralizationworkswellforthepermeabilityofthevoidphaseinsystemswithoverlappinggrains,butsystematicdeviationsarefoundifthegrainphaseistransportingtheuid.
Inthelattercaseouranalysisrevealsasignicantdependenceonthespatialdiscretizationoftheporousstructure,inparticulartheoccurrenceofsingleisolatedpixels.
TolinktheresultstopercolationtheoryweperformedMonteCarlosimulationsoftheEulercharacteristicoftheopencluster,whichrevealsdifferentregimesofapplicabilityforourpermeability-morphologyrelationsclosetoandfarawayfromthepercolationthreshold.
DOI:10.
1103/PhysRevE.
92.
043023PACSnumber(s):47.
56.
+r,61.
43.
Gt,47.
61.
kI.
INTRODUCTIONTheowofliquidsthroughporousmediaisofconsiderableimportanceinmanyscienticareas,suchasgroundwaterpollution,secondaryoilrecovery,orbloodperfusioninsidethehumanbody[1,2].
Althoughtheliteratureonporousmediahasbeengrowingrapidlyoverthelastdecades,itisstillnotfullyunderstoodhowtransportpropertiesofliquidsthroughporousmaterialscanberelatedtothemicrostructureevenforsingle-phaseow.
Analyticalresultsexistforregularstructures[3],andrigorousboundshavebeenproposedforrandommedia[4].
Yet,itisstillanopenquestion,inparticularformanyrandomsystems,whichstructuralpropertiesdeterminethepermeability,i.
e.
,theabilityofamaterialtoconductuidow.
Thepermeabilitykofaporousmedium,whichisperhapsthemostfundamentalowproperty,relatestheowrateQandtheappliedpressureP,accordingtoDarcy'slawQ=kAηP,(1)whereAisthecross-sectionalareaofthematerialandηtheviscosityoftheuid.
InEq.
(1)oneassumesalinearrelationbetweenowandpressure.
ThisisstrictlyspeakingonlyvalidforlowReynoldsnumberow(Re0.
999).
Adilutesuspensionofcolloidalparticlesofdiameterσ=3μmisinjectedintothismicrouidicdeviceastracerparticles.
FormacroscopicexperimentsthepermeabilityaccordingtoEq.
(1)istypicallydeterminedbyapplyingaxedowrateandthenmeasuringthepressuredropacrosstheporousstructure.
However,forsoft-lithographicchannelstopreventfeedbackandleakage,onlysmallowratesmustbeapplied,whichrequireshigh-sensitivitymotorizedsyringes.
Additionally,anaccuratedeterminationofthepressuredropbetweeninletandoutletisrequired,whichisdifculttoachievewithmacroscopicpressuretransducers.
Forthisreasonweuseparticletrackingvelocimetry[29–31]todeterminetheaveragevelocityoftheinjectedcolloidaltracerparticlesasafunctionoftheappliedpressurePineachchannel.
Here,incontrasttothexedow-ratemethod,theappliedhydrostaticpressurecanbetunedaccuratelybyvaryingthewaterlevelinthetworeservoirs.
Theouterchannelsactasreferencestocalibratetherelationshipbetweenparticlevelocityanduidvelocity.
Asshowninpreviousexperiments[32–34],theaverageparticlespeedwithinthinrectangularchannelstypicallydeviatessignicantlyfromtheaverageuidvelocity,dependingontheparticlediameter,theheightofthechannelandtheparticles'gravitationalheight[35,36].
However,themeanuidvelocityvandmeanparticle043023-2DIRECTRELATIONSBETWEENMORPHOLOGYAND.
.
.
PHYSICALREVIEWE92,043023(2015)(a)AresLQRef1QStructQRef2Δh=ΔPρgRef1StructRef2(b)ΔPR0RinRporRoutR0(c)050100150200250300050100150200ΔP[Pa]u[μm/s]Ref1Ref2StructFIG.
1.
(Coloronline)Summaryofexperimentalmethod:(a)Amicrouidicsamplewithaporousstructureinthecenterofthemiddlechanneliscreated.
Adilutesuspensionofcolloidalparticlesisinjectedintothedeviceandanexternalhydrostaticpressureisappliedwiththehelpoftworeservoirs.
Theowratethroughthechannelismeasuredfromthevelocityofthecolloidaltracers.
Unpatternedreferencechannelsforcalibrationareaddedparalleltothestructuredchannel.
Toaccountforpossibledeviationsinthechannelheighttworeferencechannelsareusedtocrosschecktheresults.
(b)EquivalentcircuitdiagramofhydraulicresistancesRhyd=PQ=ηLkA.
(c)Meanparticlevelocityumeasuredinthetworeferenceandthemiddlechannelcontainingtheporousstructureasafunctionoftheappliedpressure.
Thedashedlinesaretstothedatapoints.
Theaverageparticlevelocityuislowerinthestructuredchannelduetothelowerpermeabilityoftheporouspart.
Theuidvelocityinthestructurechannelisnoticeablyslowerthaninthereferencechannels.
Similaruidvelocitiesarefoundinthereferencechannels,however,differencesarecausedbydifferentlength(L≈500μm)andheight(h≈0.
5μm)ofthereferencechannelsandmustbetakenintoaccount.
Theerrorbarsaresmallerthanthesymbolsizes.
velocityuinachannelareproportional[37],sothatv=cdu.
(5)Theuidowprobleminthereferencechannels,whichareassumedtobeinniteparallelplates,canbesolvedanalyticallyforagivenpressuredropP.
Thepermeabilityk0ofthereferencechannelsisequaltoh2/12[38].
Therefore,thecalibrationfactorcdcanbeobtainedbycalculatingthetheoreticalvalueforvwithEq.
(1)andmeasuringu.
Sincek0∝h2,thecalibrationisverysensitivetotheheightofthestructure(anditsspatialvariations)[38].
Wedoublecheckthecalibrationforeachsamplewithtworeferencechannelstoaccountfordifferencesbetweenindividualsamples,whichcanoccurduringthelithographicprocess.
Figure1(c)showsanexemplaryplotofuvs.
Pforthethreechannelsofonesample.
Asillustrated,theuidvelocityinthechannelcontainingtheporousstructureisconsiderablyslower,whileinthereferencechannelsitissimilar[smalldifferencesarecausedbythedifferentlength(L≈500μm)andslightlydifferentheightofthechannels(h≈0.
5μm),whichresultfromtheproductionprocess].
ByconsideringthemiddlechannelasaseriesofhydraulicresistancesRhyd=PQ,asdepictedintheequivalentcircuitdiagraminFig.
1(b),wecandeterminethepermeabilityofthecentralstructuredirectlyfromtheowrate.
Ifallowratesareknown,therelativepermeability(normalizedtothek0ofthereferencechannel)ofastructureisgivenbykstructk0=LstructLrefQrefQstruct(Lin+Lout),(6)whereLrefisthetotallengthofthereferencechannelandLin/outarethelengthoftheinletandoutletofthestructurechannel[seeFig.
1(a)].
FromEq.
(5)wehaveQref/struct=cd*uref/struct*A,whichallowsustodirectlydeterminethepermeabilityfromaparallelmeasurementofuinthereferenceandstructurechannels.
Itisimportanttonote,thatcrossovereffectsbetweenthedifferentsectionsofthemiddlechannelareneglectedhere,i.
e.
,theindividualsegmentsareassumedtobewellconnected.
IV.
BOOLEANMODELSBooleanmodelsarewellestablishedmodelsforporousmaterialsfromstochasticgeometry[39–41].
There,porousstructuresarecomposedofoverlappinggrainswithrandompositionandorientation(i.
e.
,pointsinaplanearechosenrandomlyinaPoissonpointprocess).
Ateachpointagrainisplacedandinthecaseofanisotropicgrainsorientationsarealsochosenrandomlyfromauniformdistribution.
Inthisarticle,weconsidermodelsofrandomlyoverlappingmonodispersecircles(ROMCs)andrandomlyoverlappingmonodisperseellipses(ROMEs)withisotropicrandomorien-tation.
Wealsosimulatesystemsofoverlappingmonodisperserectangles(ROMRs)withrandomorientation,whichallowsustominimizediscretizationerrors,becausesuchgrainscanbe,incontrasttospheres,directlyrepresentedbypolygonsofarbitraryprecision.
Eachstructureisparametrizedbythetype,aspectratioandnumberNornumberdensityρ=N/L2ofgrains,whereListhelinearsystemsize.
ExamplesofthesemodelsareshowninFig.
2forgrainpercolation[Figs.
2(a)–2(c)]andvoidpercolation[Figs.
2(d)–2(e)].
Thewhitephasecorrespondstotheconductingphase.
Exchangingthetwophasesresultsintotallydifferentporespacemorphologies.
Fortheexperimentalandnumericaldeterminationofconductivityandpermeability,wecreateverealizationsofROMCandROMEstructuresonaquadratictwo-dimensional(2D)latticewithlinearsizeL=4000inpairsofequalopenporosityφo,i.
e.
,thevolumefractionofonlythesample-spanningpartoftheconductingphase.
Thecircleshavearadiusofr=34inunitsoflatticesitesandtheellipseshavealongandshortsemiaxisofa=96andb=12.
Inthemicrouidicsamplesthisequalsr30μmanda84μm.
Themorphologicalpropertiesoftheresultingstructuresand043023-3CHRISTIANSCHOLZetal.
PHYSICALREVIEWE92,043023(2015)abcdefFIG.
2.
Booleanmodelsofoverlappinggrainsfor(a)circles,(b)ellipses,and(c)rectangles.
AsetofNpointsisselectedrandomlyinaplane(totalareaL2)(Poissonprocess).
Ateachpointagrainwithrandomorientationisplaced.
EachstructureischaracterizedbyitspointdensityN/L2.
Thewhitephasecorrespondstotheconductingphase.
(a)–(c)arestructures,whichweclassifyasvoidpercolation,whereasthestructures(d)–(f)exhibitgrainpercolation.
theirpercolatingphase(markedwithanindexoforopen)aresummarizedinTableI.
V.
MINKOWSKIFUNCTIONALSMinkowskifunctionalsaremorphologicalmeasures,cor-respondingtovolumeandsurfaceintegralsofgeometricsets,whichareparticularlyusefulforcharacterizingrandomstructures[39,42–47].
IntwodimensionstheMinkowskifunctionalsofacompactsetAaregivenbyW0(A)=Ad2r,(7)W1(A)=12Adr,(8)W2(A)=12A1Rdr,(9)whereRistheradiusofcurvature.
Fromthisdenition,theMFinthecontinuumcanbeidentiedwithareaV,perimeterP,andEulercharacteristicχofaset:V=W0,P=2W1,andχ=W2/π,sothatthevaluesforaunitdiskareWi=π.
Ona2DlatticethenormalizationofWiischosendifferently,sothatthevaluesforaunitpixelareWi=1,i.
e.
,V=W0,P=4W1,andχ=W2.
AschematicillustrationoftheMFisgiveninFig.
3.
TheEulercharacteristicisatopologicalconstant,whichintwodimensionsisequivalenttothenumberdifferencebetweenconnectedcomponentsandholesinaset.
Thisquantityisparticularlyusefulforthecharacterizationofpercolatingstructures,becauseformanyrandomsets,χbecomeszeroclosetothepercolationthreshold,i.
e.
,thenumberofconnectedcomponentsofbothphasesareapproximatelythesame[42].
ForBooleanmodelsinthecontinuumtheMFsofindividualgrains(localMFswi)andthemeanMFsofrealizationsofthemodel(globalMFsWi)withmeandensityρ=N/L2arerelatedby(a)(b)1423512(c)FIG.
3.
SchematicillustrationoftheMinkowskifunctionals:(a)TheareaVoftheconductingphaseisshowninwhite,(b)theperimeterPcorrespondstothelengthoftheblackboundary,and(c)theEulercharacteristicχisthenumberdifferenceoftheconnectedcomponentsofeachphase,whichinthecaseshownwouldbe25=3.
TheopenEulercharacteristicχo(similartoopenporosityφoandopenperimeterSo)doesnotcountanyinclusions,i.
e.
,χo=15=4,astheinclusioninclusterNo.
5wouldbeneglected.
W0(ρ)/L2=1eρw0,(10)W1(ρ)/L2=ρw1eρw0,(11)W2(ρ)/L2=ρw2(2w1)24ρeρw0.
(12)However,porousstructures,inparticularwhenobtainedfromexperimentaldata,areoftenrepresentedasdiscretizedbinarydatasetsonalattice.
ForsuchdataitisconvenienttodenetheMFsinadiscretesystem.
ForBooleanmodelsonalatticewitheight-pointconnectivity(horizontal,vertical,anddiagonalneighbors)therelationsareW0(ρ)/L2=1eρw0,(13)W1(ρ)/L2=eρw0(1eρw1),(14)W2(ρ)/L2=eρw0(1+2eρw1eρ(2w1+w2)).
(15)Inbothcasestheseequationsareinvertible.
SuchaninversionhasbeenusedtodetermineBooleanmodelswithgraincompositionswithmatchingwitoreconstructnaturalporousmedia,suchasFontainebleausandstone[5].
NumericallytheMinkowskifunctionalscanalsobecalcu-latedforthepercolating(open)phase.
Fromthisweobtainφo,So,andχo.
VI.
KATZ-THOMPSONMODELIntheliteratureitiscontroversiallydiscussedwhetherpermeabilityandconductivityhavedifferentorequalscalingexponents[2].
IntheKatz-Thompsonmodelequalscalingexponentsareassumed,whichgivesarelationshipbetweenconductivityandpermeabilitybasedonargumentsfrompercolationtheory.
Thisequalityisrelevantinourcase,sincemanyanalyticalresultsontheporescaleareonlyobtainedfortheconductivity,butnotthepermeabilityofporousmedia.
ThelengthscalethatdeterminesthepermeabilityintheKatz-Thompsonmodelisidentiedasthecriticalporediameter[seeFig.
4(b)].
Duetothequasi-2Dgeometryofour043023-4DIRECTRELATIONSBETWEENMORPHOLOGYAND.
.
.
PHYSICALREVIEWE92,043023(2015)TABLEI.
Tableofpropertiesoftheanalyzedstructures,correspondingtheBooleanmodelsofrandomlyoverlappingcirclesandellipses:NumberofgrainsN,porosityφ,openporosityφo,totalperimeterofthevectorizedimageS,perimeteroftheopenclusterS0,perimeterofthepixelizedimageassumingeight-pointconnectivitySd8,Eulercharacteristicofthevectorizedimageχ,Eulercharacteristicofpercolationclusterχo,Eulercharacteristicassumingeight-pointconnectivityχd8,criticalporediameterintwodimensionsDc,criticalporediameterinthreedimensionslc,effectivenumberofgrainscalculatedfrominvertingMinkowskifunctionalsofthevectorizedimageNeffandthepixelizedimageNeffd8,reconstructednumberofgrainsNrec8frominversionoftheMinkowskifunctionalsofthegrainphase(equalsNeffd8forS1–S10),permeabilityksim/clc2fromLBsimulations,conductivityσ/σ0fromFEMsimulations.
StructureNφφoSSoSd8χχoχd8DclcNeffNeffd8Nrec8kexp/cl2cksim/cl2cσ/σ0S145920.
3650.
298367820281380444740167220(d4)1952.
4212.
4214593547254720.
01580.
02730.
0118S239680.
4180.
40136563733751644436181395(d4)5311.
50683999469746970.
0470.
04140.
0764S327040.
5510.
549326905321646401440442635(d4)41621.
98482553289428940.
1370.
15750.
2107S416320.
7010.
700249486248098313041628724(d4)60751.
30681496166816680.
3850.
38070.
4405S57540.
8500.
850137404137123180900485520(d4)474100.
01886887407400.
6410.
66530.
7031S620640.
6510.
26650841816900961468266445(d4)7045.
9575.
9572014247424740.
006960.
01120.
00851S721760.
6390.
40052254327161663136375180(d4)7906.
2456.
2452151265926590.
020.
01740.
0135S818400.
6840.
549474276332151577379463146(d4)5006.
2756.
2751714210821080.
03850.
03550.
0392S913870.
7510.
70039195933678747998454275(d4)8641.
25481283151115110.
1180.
11930.
1501S107710.
8540.
850247904241577313061250352(d4)23167.
42987128058050.
35980.
33330.
3787S1150170.
6680.
2783687881421024514336883786605.
855.
852547283354570.
0160.
0190.
01228S1248350.
6580.
40036700921180145017068057465310.
7282579288050750.
02280.
0210.
02602S1352730.
6820.
5503565482745524381167747917456.
056.
052496276152890.
0400.
0340.
03498S1461740.
7420.
70034691631743642886111221179109535.
9382600283368880.
2100.
1320.
16322S1587260.
8510.
85027808427683035058218341842181447.
97826852829102840.
3040.
4250.
47783S1624050.
3880.
27054424137089166550114061114136313.
738133821581624810.
011060.
0170.
0227S1726020.
4170.
40056951954162169796917931808175212.
918135861598826910.
043660.
0490.
0636S1838820.
5510.
54964493864173780040338653881381918.
298138111587341540.
09640.
1310.
1724S1958220.
7010.
70064772864772881565363386348629021.
548133101481686980.
1860.
2970.
3779S2090950.
8500.
85050437150437265258186558657861727.
6681194112756187080.
74160.
5360.
6388043023-5CHRISTIANSCHOLZetal.
PHYSICALREVIEWE92,043023(2015)102101100102101100lcσ/σ0k/clc2ROMCvoidROMEvoidROMCgrainROMEgrainKatz-ThompsonFIG.
4.
(Coloronline)Cross-propertyrelationbetweenperme-abilitykdeterminedbyLBsimulationsandconductivityσobtainedfromFEMsimulations.
Theconductivityisnormalizedbythebulkconductivityσ0.
Thepermeabilityisnormalizedbythesquareofthecriticalporediameterlcandaconstantc=1/12,determinedfromthelimitlc→handφ→1,wherethesystemequalstheowproblembetweeninnitelylargeparallelplateswithspacinglc.
Inset:Determinationofthecriticalporediameterlcfromparallelsurfaces.
samplesthiscriticaldiameterisgivenbylc=min(Dc,h),(16)whereDcistheactual2Dcriticaldiameter.
Ifthisdiameterisgreaterthantheheighthofthestructure,hconnestheowandbecomestherelevantlengthscale.
ForourstructureswedeterminedlcdirectlyfromtheimagesofthestructurescomputingtheEuclideandistancetransform(EDT).
ForeachpointintheconductingphaseofthesampletheEDTassignsthedistancetotheclosestpointonthesurface.
Fromthislccanbeeasilyidentied[48,49](seeinsetofFig.
4).
Theconstantc=1/12ischosentotthedilutegrainlimit,wherecl2c=h2/12.
InFig.
4therelativepermeabilityisshownindepen-denceoftheconductivity,bothdeterminednumericallyfromlattice-Boltzmann(LB)andnite-element(FEM)simulations,respectively.
ThepredictionoftheKatz-Thompsonmodelisdepictedasadashedline.
Inparticularforlargerφ,thedataagreesverywellwiththeKatz-Thompsonmodel,withonlyaslightdeviationofthepermeabilitytowardslowervaluesthanpredicted.
Additionallyevenforlowpermeabilitiesthepredictionsdeviatebylessthanafactoroftwoforallbutonestructure.
Forφ→1,thisagreementisnotsurprising,sincetheheightofthestructureismuchsmallerthanthedistancebetweentheobstacles,whichleadstoanequivalenceoftheowandtheconductanceproblemsincetheweightofthedifferentpathwaysisthesameforowandconductance.
Astheowproleislocallyequivalenttoowconnedbetweeninnitelylargeparallelplatesthesystemcanbethoughtofasanetworkofhydraulicconductorswithconductivityproportionaltoh3.
Inbothcases,ahomogeneouscurrentorowisonlydisturbedbyisolatedobstacles,whichonlylocallyinuencesthe(hydraulic)conductanceoftheporousstructure,withoutchangingthehydraulicradius,whichremainsontheorderoftheheighth.
However,thisisnotthecaseclosetothepercolationthresholdφc.
KatzandThompsonarguethatσandkfollowsimilaruniversalpowerlawsclosetothecriticalporositywithanaccuratechoiceofthecriticalporediameter.
Accordingto00.
20.
40.
60.
8100.
20.
40.
60.
81φc≈0.
32φc≈0.
66ROMCROME(a)φk/clc200.
20.
40.
60.
8100.
20.
40.
60.
81φc≈0.
34φc≈0.
68ROMEROMC(b)φk/clc200.
51102101100(c)(φφc)/(1φc)k/clc200.
51102101100(d)(φφc)/(1φc)k/clc20.
20.
40.
60.
8102101100(e)φok/clc20.
20.
40.
60.
8102101100(f)φok/clc2102101100102101100(g)αv=1.
27(1χo)/Nk/clc2102101100102101100(h)(h)αv=1.
27αg=2.
05(1χo)/Nk/clc2FIG.
5.
(Coloronline)Experimentally(closedsymbols)andnumerically(opensymbols)determinedpermeabilitykofvoid(top)andgrainpercolation(bottom)vs.
differentmorphologicalproperties:(a),(b)porosityφ,asexpectedk/cl2cvanishesaroundφcandgoesto1forφ→1;(c),(d)rescaledporosity,datapointscollapsewithsomedeviationsduetonite-sizeeffects;(e),(f)openporosity,forvoidpercolationROMCstructureshavehigherpermeabilities,forgrainpercolationROMEstructureshavehigherpermeabilityatequalφo;and(g),(h)Eulercharacteristic:datacollapsesontoasinglecurveforvoidpercolation,butforgrainpercolationdeviationsarefound.
Thedashedlinesin(g)and(h)aretstoEq.
(17)withonefreeparameterα.
Errorbarsareonlyshowniflargerthansymbolsize.
043023-6DIRECTRELATIONSBETWEENMORPHOLOGYAND.
.
.
PHYSICALREVIEWE92,043023(2015)FIG.
6.
(Coloronline)(a),(b)Currentdensitymagnitudefromnite-elementsimulationsoftheLaplaceequation(i.
e.
,conductivity)normalizedtothetotalmaximumcurrent.
(c),(d)Fluidvelocitymagnitudefromlattice-Boltzmannsimulations.
Forellipticalgrainstheoverlapleadstopronouncedstagnantparts,whilecirculargrainsformmorecompactobstacles,asillustratedin(e),(f)respectively.
Withinsuchstagnantpartsastrongdecreaseofboththecurrentandtheowvelocityisobserved.
Howeverthedecreaseofjappearstobefaster,asobservedinRef.
[50].
someauthorsthisisonlytruefortwodimensions[12–14].
Otherwise,nonuniversalpower-lawexponentshavetobeconsidered.
ToobtainfurtherinsightintothisproblemweshowthecurrentdensityandtheowvelocitymagnitudeforrepresentativeROMCandROMEstructuresinFig.
6.
Eventhoughtheeldssharesomemorphologicalfeatures,suchastheprincipalowpaths,thedecayofthecurrentmagnitudeintodeadendsappearstobefasterthanthatoftheuidvelocity.
Thisfeatureisalsoobservedwhenconsideringthedistribu-tionofcurrentsorowvelocityrespectively.
AsshowninFig.
7thecurrentdistributiondecaysfasterforbothstructures.
However,thedistributionsappeartobequalitativelysimilar,ROMCROME102101100107106105104103102101100v/vmax|j/jmaxp(v)|p(j)FIG.
7.
(Coloronline)Comparisonofvelocitymagnitudedistri-butionp(v)(solid)andcurrentmagnitudedistributionp(j)(dashed)inROMC(black)andROME(red)structuresshowninFig.
6.
Bothdistributions,i.
e.
,p(v)andp(j),followsimilartrends,however,thevelocitydecayswithasignicantlyfasteramplitude.
whichcouldexplainthesurprisinglyaccuratepredictionoftheKatz-Thompsonconjecture.
VII.
TRANSPORTANDMORPHOLOGYTransportinBooleanmodelsiseitherdescribedbyper-colationtheoryorbyeffectivemediumapproximations[22].
Inpercolationtheoryoneassumesthatclosetoφctransportpropertiesaredescribedbypowerlawsandfarawayfromφceffectivemediumtheoriesareapplied.
Inbothcasesthedataagreesqualitativelywiththisassumption.
InFig.
5boththeexperimentally(closedsymbols)andnumericallyobtainedvalues(opensymbols)forthepermeabilitieskareplottedversusseveralquantitiesforvoidandgrainpercolation.
AsshowninFig.
5(a)andFig.
5(b)thepermeabilitiesvanishclosetoφcandapproachthevalueofanunpatternedchannelforφ→1.
Duetothenitesizeofthesamplesthemeasuredpermeabilitiesscattermoreandmoreasthepercolationthresholdisapproached.
Duetothenitesystemsizesomestructureshaveporositiesbelowφcandarestillconductive(technicallyforthesemodelsφcisonlywelldenedforinnitesystems).
Thisbecomesparticularlyclearwhenkisplottedvs.
therescaledporosity[seeFigs.
5(c),5(d)],asmotivatedbyArchie'slaw.
Themeasuredpermeabilitiescollapseontoasinglecurvewithintheexperimentalaccuracy.
However,inthecaseofnegativerescaledporosities,Eq.
(4)obviouslycannotbeapplied.
Independenceoftheopenporosityforvoidpercolation,ROMCstructureshaveahigherpermeabilitythanROMEstructuresforequalφo[seeFig.
5(e)].
Inthecaseofgrainpercolationthissituationisreversed[seeFig.
5(f)].
Thisfactcanbeexplainedfromthemorphologyofthevelocityeldsasshownbelow.
Comparedtocirclestheellipsesformmoreelongatedinterconnectedobstacleswithasignicantamountofstagnantpartsbetweengrains.
Thisreducesthepermeabilitysignif-icantly.
Inthecaseofgrainpercolationtheellipsesform043023-7CHRISTIANSCHOLZetal.
PHYSICALREVIEWE92,043023(2015)moredirectpathwaysfortheow,whichexplainsthehigherpermeabilitycomparedtoROMCstructures.
Theexperimentalandnumericalresultssupportthatk=clc21χoNα(17)forthevoidpercolationmodels[7]whereαisafreeparameter.
Equation(17)canbejustiedfromthevelocitymagnitudedistributionsinsidetheporousstructuresshowninFig.
6.
WhencomparingROMCandROMEstructuresitbecomesclearthatcirculargrainsformmorecompactobstaclesatequalφocomparedtoellipticalgrains[compareFigs.
6(e)andFig.
6(f)],becausetheprobabilitytooverlapandformmoretortuouspathwaysaswellasdeadendswherenoowoccursislargerforelongatedellipsesatequalgraindensities.
Thisfactiscapturedbythefactor(1χo)/N,whichcanbeinterpretedasthenumberdensityofobstaclesformedbyjoinedgrains.
AlldatapointsforvoidpercolationarewelldescribedbyattoEq.
(17)withαv=1.
27[seeFig.
5(g)],whichisclosetothecriticalexponentμ=1.
3intwodimensionsforArchie'slaw.
OneparticularshortcomingofEq.
(17)istheexplicitdependenceonthegrainnumberN,whichmightbeunknownorill-denedformanyporousmaterials,wheretheformationprocessisunknown.
Also,inthecaseofgrainpercolationtheuseofNinthedenominatorofEq.
(17)giveseventhewronglimitk=0forN→∞.
ThereforewereplaceNbyaneffectivegrainnumberN,whichisderivedfromthemorphologicalcorrelationsoftheMinkowskifunctionalsofBooleanmodels[Eqs.
(10)–(12)].
InthecontinuumoneobtainsN=P24πAφχφ(18)andfrom(13)–(15)onthe2DlatticeN=L2lnχL2φ1S4L2φ21S4L2φ2+21S4L2φ1.
(19)InthecaseofvoidpercolationNis,asexpected,typicallyclosetotheactualvalueofN(seeTableI).
InthiscaseNcaneitherbecalculatedfromvectorizedimages(thebinaryimagesofthestructuresarevectorizedusingamarchingsquaresalgorithm)usingEq.
(18)ordirectlyfromtherasterimagesusingEq.
(19).
AsshowninTableI,similarvaluesareobtained,withslightlybetteragreementofNandNforthelatticeequation.
ForgrainpercolationtheroleofbothphasesisinvertedandNdoesobviouslynotcorrespondtoN,butinsteadisusedtodeneaneffectivegrainnumber.
AsshowninFig.
5(h)thepredictionofthepermeability,i.
e.
,theblackdashedline,whichwegotforvoidpercolation,isquiteaccurateforROMEstructuresathighporositiesbutsignicantlyoverestimateskforROMCstructures.
Thereasonforthisdeviationmightbetheoccurrenceofmanyverysmallisolatedobstacles(seeFig.
8)withasizeofafewpixels,whichsignicantlyinuenceNwithoutstronglyinuencingk.
SuchisolatedobstaclesarefoundmorefrequentlyforROMEthanforROMCstructures.
LookingagainatFig.
5(h),thedata012345100101102103log10(X)(px2)p(X)(a)012345100101102103log10(X)(px2)p(X)(b)FIG.
8.
(Coloronline)Distributionforobstaclesizesp(X)for(a)voidpercolationand(b)grainpercolation.
OpenbarscorrespondtoROMEandlledbarscorrespondtoROMCstructures.
Thehistogramsforgrainpercolationshowalargenumberofverysmallobstacles.
pointsfollowasimilartrendasinFig.
5(g).
However,thescatteringissignicantlystronger.
AtofEq.
(17)tothemeasureddata,whichisshownasagreendashedline,yieldsanexponentαg=2.
05.
Thequantitativedeviationfromαvcouldindicatethatthemotivation,whichgaverisetoEq.
(17),isobviouslynotdirectlyapplicableinthecaseofNforarbitrarystructures.
Thefactor(1χo)/Nwasinterpretedasthenumberdensityofobstacles,whichareformedbyjoinedindividualgrains.
Thisinterpretationisnotthatstraightforwardforgrainpercolation,sincetheobstaclesareformedbywhatisleftafterremovinganumberNofcircularorellipticalareas.
However,eveninthiscasetheequationdoesnotfailqualitatively,sothatweexpectareasonablepredictionofkforanystructurescomposedofoverlappinggrains.
VIII.
LOWGRAINDENSITYThesuccessoftherelation[Eq.
(17)]betweenpermeabilityandEulercharacteristicofBooleanmodelsraisesthequestionwhethercertainresultscanbeobtainedanalyticallyoratleastsemiempirically.
Intheregimeoflowgraindensityanalyticalresultsareavailablefortheconductivityσ[51].
Inthisregime,i.
e.
,forφ→1theEulercharacteristicoftheconductingphasebecomesχo→χasthegraindensityissolowthatindividualgrainsdonotoverlap.
ConsequentlywecanexpandEq.
(10)–(12)andobtainχN=11+4aE1b2a224π2ab(1φ)+O(φ2),(20)whereaandbarethelongandshortsemiaxisoftheellipseandEistheellipticalintegralofthesecondkind.
Hereweapproximatethecircumferenceoftheellipse4aE(1b2a2)≈π2(a2+b2)andobtainχN≈1(a+b)22ab(1φ).
(21)Thisresultisindeedequivalenttotheexactresultforσofaconductivesheetwithasmallnumberofcircularobstacles(i.
e.
,thedilutelimit)intwodimensions[51]andthusσσ0≈χN.
(22)Forlargeobstacledensitieshowever,noanalyticalresultsareavailable.
Intheregionclosetoφc,whereBooleanmodels043023-8DIRECTRELATIONSBETWEENMORPHOLOGYAND.
.
.
PHYSICALREVIEWE92,043023(2015)fallintotheuniversalityclassof2Dlatticepercolation,itisassumedthattheconductivityisdescribedbypowerlaws,aspreviouslystated[22].
However,whetherthesameistrueforχoisnotobvious.
Inthefollowingwepresentanumericalanalysisofthedependenceofχoclosetoφc,intheintermediaterangeandfarawayfromφcforBooleanmodelsandlatticepercolation,independenceofgrainshapeandsystemsize,toevaluatethepossibleuniversalbehaviorofχoandlinktheresultstopercolationtheory.
IX.
CRITICALBEHAVIORClosetoφctransportpropertiescanchangedramatically,duetothefractalbehaviorofthepercolatingcluster.
Resultscanthendependdramaticallyonthesystemsize.
Inpercolationtheoryauniversalcriticalexponentisassumedfortheconductivity.
BecauseoftherelationbetweenφcandχoinEq.
(17),thequestionariseswhetherχoalsoshowsacriticalbehaviorclosetoφc.
Toanalyzethedependenceofχoonthesystemsizeandφclosetoφcwegeneratetwodifferenttypesofstructuresthatminimizediscretizationerrors:sitepercolationonalatticeandROMRstructuresinthecontinuum.
Thepercolationprobabilityofsitepercolationsystemsclosetoφcisdescribedbyauniversalexponentβ=5/36,whichisknownanalyticallyintwodimensionsfromconformaleldtheory(weusethestandardnotationforcriticalexponentsascommonintheliterature,e.
g.
,Ref.
[26]).
Booleanmodelsofrandomlyoverlappinggrainsfallintothesameuniversalityclass,sothecriticalexponentsareequal.
However,thepercolationthresholdisnonuniversalanddependsonthedetailsofthegrains.
InthecaseoftheEulercharacteristictheproblemislesswellunderstood.
AlthoughformanyrandomeldstheEulercharacteristiccanbedeterminedanalytically,thisisnotthecasefortheEulercharacteristicoftheopenphase,i.
e.
,thepercolatingcluster.
Forfractals,thescalingofarea,perimeterandEulercharacteristicbehavedifferently.
Whiletheareascaleswithonecriticalexponent,suchasinthecaseofthepercolationprobability,theperimeterhasoneadditional,andtheEulercharacteristichastwoadditionalscalingexponents,whicharenotindependent[52,53].
Theamplitudesofthescalingrelationsareingeneralnotknownanalytically.
Therefore,weanalyzethescalingbehavioroftheEulercharacteristicnumerically.
First,wecalculate(1χo)/NforROMRstructuresindependenceoftherescaledporosity.
Calculationsareper-formedforsystemsizesL=10a,20a,50a,100awhereaisthelengthofthelongsideoftherectangles.
Thesimulationsarerepeatedfordifferentaspectratios1:1,1:2,1:4and1:10.
Anensembleof2500samplesforthesmallestandsixsamplesforthelargestsystemsizewassimulated,which,exceptforthelargestsystemsize,resultsinanegligibleerrorofthemeanforalldatapoints.
AsshownintheresultingcurvesinFigs.
9(a)–9(d),weobserveforallsystemstwodistinctregimeswithsignicantlydifferentφdependence.
First,acriticalregimeclosetoφcandsecond,aneffectivemediumregimewherethedatapointscollapsefordifferentaspectratios,butasignicantlydifferentslopeofthecurvecomparedtothecriticalregimeisobserved.
Noqualitativechangeinthisbehaviorisobservedfordifferentsystemsizes.
However,duetotheratherlimitedsystemsizeoftheROMRstructures,itisnotobviouswhetherthesetworegimespersistforinnitesystemsize.
Therefore,wealsosimulatesitepercolationona2Dsquarelattice,forwhichalinearsystemsizeofL=214latticesitescanbeachievedwithanensembleof26realizationsandupto216forthesmallestsystemsizeL=25.
Here,Nmustbereplacedby(1p)L2,which,pbeingtheprobabilitythat102101100102101100eectivecritical(a)(φφc)/(1φc)1χoNL=10a1:1L=10a1:2L=10a1:4L=10a1:10102101100102101100(b)(φφc)/(1φc)1χoNL=20a1:1L=20a1:2L=20a1:4L=20a1:10102101100102101100(c)(φφc)/(1φc)1χoNL=50a1:1L=50a1:2L=50a1:4L=50a1:10102101100102101100(d)(φφc)/(1φc)1χoNL=100a1:1L=100a1:2L=100a1:4L=100a1:10103102101100102101100(ppc)5/36(e)(ppc)/(1pc)1χo(1p)·L2L=25L=26L=27L=28L=29L=210L=211L=212L=213L=214101102103104101.
8101.
7101.
6101.
5(f)L1χo(1pc)·L2(pc,L)SitePercolationL5/48101102103101.
8101.
6101.
4101.
2101100.
8100.
6(g)L1χoN(φc,L)1:11:21:41:10L5/48FIG.
9.
(Coloronline)BehavioroftheEulercharacteristicofthepercolatingclusterχofor(a)–(d)voidpercolationofdifferentROMRsystems(aspectratios1:1,1:2,1:4,1:10)asafunctionoftheporosityφand(e)sitepercolationona2Dlatticefunctionoftheoccupationprobabilityp.
FortheROMRstructuressystemsizesofL=10a,20a,50a,and100ahavebeensimulated.
ForsitepercolationL=22214.
(f)Finite-sizescalinganalysisofχoforsitepercolationatthepercolationthresholdfordifferencelinearsystemsizeL.
(g)Finite-sizescalingofχoindependenceofthelinearsystemsizeLforROMRstructures.
043023-9CHRISTIANSCHOLZetal.
PHYSICALREVIEWE92,043023(2015)asiteisconducting,correspondstothevolumeoccupiedbyobstacles.
Inthissystem,asshowninFig.
9(e),wendexactlythesamebehaviorasforROMRstructures,forallsystemsizes.
Thisfurthersupportsourassumptionthattheoccurrenceoftwoscalingregimespersistsforothergrainshapesandlargersystemsizes.
However,adirectdeterminationofthescalingexponentfromnite-sizesystemsimulationsisnotfeasible[26].
Instead,anestablishedmethodtoextractcriticalexponentsnumericallyisusedfromnite-sizescaling[25,26].
Here,weonlygiveabriefdescriptionofthemethod:IfwecombineEq.
(4)andEq.
(17),weget(1χo)/N∝(φφc)β,whereβ=μ/α.
Becausethecorrelationlengthξdivergesatφcaccordingtoapowerlaw,wecanusethatξ∝(φφc)νtoobtain(1χo)/N∝ξβ/ν.
Sinceξisinniteatφ=φc,Lbecomestheconninglengthscaleofthesystemandweobtain(1χo)/N∝Lβ/ν.
Thisassumptionisnowtestednumerically.
Here,ourresultsmightdifferforsitepercolation[Fig.
9(e)]andROMRstructures[Fig.
9(f)].
Forsitepercolationweclearlyobserveapowerlawwithanexponentofβ/ν=5/48inperfectagreementwithpercolationtheory.
Thissuggeststhatβ=5/36indeeddescribesthescalingoftheopenEulercharacteristic.
However,forROMRstructurestheslopeofthecurveissignicantlydifferentforsmallLandonlyatlargeLbecomesconsistentwithascalingofLβ/ν(seedashedline).
ApparentlytheROMRsystemismoresensitivetonite-sizeeffects.
However,largerLarecomputationallytooexpensive,sothatL<256forsquaregrainsandworseforlargeraspectratios,sincetheamountofgrainsataxedφdivergeswiththeaspectratio.
Nevertheless,ournumericalresultssupportthefollowinginterpretation:WhenweconnectthescalingoftheopenEulercharacteristictotheexperimentalobservationthecriticalex-ponentseemstobeirrelevantwithrespecttoourexperimentalsystemsizes.
InthecriticalregimefromEq.
(4)percolationtheorywouldyieldk∝1χoNμ/β,(23)whichweobviouslydonotobserveintheexperiment.
InsteadourinterpretationisthatthepowerlawfromEq.
(17)isrelatedtotheeffectiveregime.
SinceinthisregimetheopenEulercharacteristiccollapses,wearguethatthesameshouldbetrueforconductivityandpermeability,howeverwithasignicantlydifferentexponent(comparedtoβ)withavaluecloseto1.
Amoredetailedanalysisofthisproblem,however,requireseithernewsimulationsorexperimentalstudiesofconductivityorpermeabilityofstructureswithmuchlargersystemsize.
Consequently,asignicantimprovementofthecomputationaland/orexperimentaleffortisrequired.
Sofar,only20structurescouldbemeasuredandsimulated.
Forahighernumberofsamplesareliableautomationoftheexperimentwouldberequired.
Forlargestructuresclosetoφctheresolutionoftheexperimentmustbeimprovedbyatleastoneorderofmagnitude.
Thesameistrueforthecompu-tationaltimerequiredtosolvetheconductivityorpermeabilityproblem.
X.
SUMMARYWehaveanalyzedthepermeabilityandconductivityofporousmicromodelscomposedofrandomlyoverlappinggrains(Booleanmodels).
Wehaveanalyzedvoidandgrainpercolationforoverlappingcirclesandellipses(i.
e.
,structureswherethevoidisconductiveandstructureswherethegrainsareconductive).
InallcasestherelationbetweenpermeabilityandconductivityiswellpredictedbytheKatz-Thompsonmodel.
InthecaseofvoidpercolationthepermeabilitycanbededucedfromtheEulercharacteristicofthepercolatingclusternormalizedtothetotalnumberofgrains,whichrequiredaprioriknowledgeofthegraindensity.
ForgrainpercolationasimilarapproachisstudiedbasedonthedenitionofaneffectivegrainnumberN,whichiscalculatedfromtheglobalMinkowskifunctionalsofthestructures.
ThisapproachworksqualitativelyforROMEstructures,butoverestimateskforROMCstructures,duetothesensitivityofNontheoccurrenceofisolatedpixels,whichotherwisedonotstronglyaffectk.
Forvoidpercolationinthelowgrain-densitylimititcanbeanalyticallyshownthattheformationfactorisgivenbytheEulercharacteristic.
ThecriticalbehavioroftheEulercharacteristicofthepercolationclusterχoforφ→φcisanalyzednumericallytolinkourresultstopercolationtheory.
Forthe2Dsquarelattice,wendthatχoscaleswiththecriticalexponentβonlyveryclosetoφc.
Furtherawayfromφc,aneffectiveregimeisfoundforbothsquarelatticeandBooleanmodelswherethevaluesofχooverlapfordifferentsystems,i.
e.
,differentgrainshapesandsystemsizes,justifyingtheapplicabilityofourmodeltomanydifferenttypesofstructures.
Aremainingquestionistheapplicabilitytofullythree-dimensional(3D)porousmedia.
Inprinciple,3Dmodelsareaccessibleexperimentally,e.
g.
,via3Dprinting,andhavealsobeenstudiednumerically[54].
AlsoMFsarewellunderstoodinthe3Dcase,e.
g.
,theEulercharacteristicalsovanishesclosetoφc.
Therefore,itisreasonabletoassumethatEq.
(17)couldholdinthreedimensions,eventhoughthereisnointuitiveinterpretationsimilartothe2Dcase.
Itmustbeexpectedhowever,thatmeasurementsandsimulationsaresignicantlymorechallengingandcomputationallymoreexpensive.
ACKNOWLEDGMENTSWethankJanG¨otzforthesupportonLBsimulationsforinvertedBooleanstructures.
WealsoacknowledgefundingbytheGermanScienceFoundation(DFG)throughGrantsNo.
ME1361/12andNo.
SCHR-1148/3.
[1]CommitteeonChemicalEngineeringFrontiers:ResearchNeedsandOpportunities,NationalResearchCouncil,FrontiersinChemicalEngineering:ResearchNeedsandOpportunities(TheNationalAcademiesPress,Washington,D.
C.
,1988).
[2]M.
Sahimi,Rev.
Mod.
Phys.
65,1393(1993).
[3]J.
Bear,DynamicsofFluidsinPorousMedia(DoverPublica-tions,Mineola,2013).
[4]S.
Torquato,Appl.
Mech.
Rev.
44,37(1991).
[5]C.
H.
Arns,M.
A.
Knackstedt,andK.
R.
Mecke,Phys.
Rev.
Lett.
91,215506(2003).
043023-10DIRECTRELATIONSBETWEENMORPHOLOGYAND.
.
.
PHYSICALREVIEWE92,043023(2015)[6]K.
MeckeandC.
H.
Arns,J.
Phys.
:Condens.
Matter17,S503(2005).
[7]C.
Scholz,F.
Wirner,J.
G¨otz,U.
R¨ude,G.
E.
Schr¨oder-Turk,K.
Mecke,andC.
Bechinger,Phys.
Rev.
Lett.
109,264504(2012).
[8]P.
Lehmann,M.
Berchtold,B.
Ahrenholz,J.
T¨olke,A.
K¨astner,M.
Krafczyk,H.
Fl¨uhler,andH.
K¨unsch,Adv.
WaterResour.
31,1188(2008).
[9]S.
Yang,M.
Liang,B.
Yu,andM.
Zou,Microuid.
Nanouid.
18,1085(2015).
[10]J.
Kozeny,Sitzber.
Akad.
Wiss.
Wien,Math-naturw136,Abt.
IIa,p.
271(1927).
[11]A.
J.
KatzandA.
H.
Thompson,Phys.
Rev.
B34,8179(1986).
[12]P.
N.
Sen,J.
N.
Roberts,andB.
I.
Halperin,Phys.
Rev.
B32,3306(1985).
[13]A.
Bunde,H.
Harder,andS.
Havlin,Phys.
Rev.
B34,3540(1986).
[14]M.
Octavio,A.
Octavio,J.
Aponte,R.
Medina,andC.
J.
Lobb,Phys.
Rev.
B37,9292(1988).
[15]N.
MartysandE.
J.
Garboczi,Phys.
Rev.
B46,6080(1992).
[16]C.
H.
Arns,M.
A.
Knackstedt,andN.
S.
Martys,Phys.
Rev.
E72,046304(2005).
[17]J.
R.
Quispe,R.
E.
Rozas,andP.
G.
Toledo,Chem.
Eng.
J.
111,225(2005).
[18]L.
Andersson,A.
C.
Jones,M.
A.
Knackstedt,andL.
Bergstr¨om,ActaMater.
59,1239(2011).
[19]Y.
-B.
YiandA.
M.
Sastry,Phys.
Rev.
E66,066130(2002).
[20]J.
A.
QuintanillaandR.
M.
Ziff,Phys.
Rev.
E76,051115(2007).
[21]S.
Kirkpatrick,Rev.
Mod.
Phys.
45,574(1973).
[22]M.
Sahimi,B.
D.
Hughes,L.
E.
Scriven,andH.
T.
Davis,J.
Phys.
C16,L521(1983).
[23]J.
Tobochnik,D.
Laing,andG.
Wilson,Phys.
Rev.
A41,3052(1990).
[24]P.
Grassberger,Phys.
A(Amsterdam,Neth.
)262,251(1999).
[25]D.
StaufferandA.
Aharony,Introductiontopercolationtheory(CRCPress,BocaRaton,1994).
[26]K.
ChristensenandN.
R.
Moloney,Complexityandcriticality,Vol.
1(ImperialCollegePress,London,2005).
[27]S.
R.
QuakeandA.
Scherer,Science290,1536(2000).
[28]G.
WhitesidesandA.
Stroock,Phys.
Today54(6),42(2001).
[29]J.
C.
CrockerandD.
G.
Grier,J.
ColloidInterfaceSci.
179,298(1996).
[30]J.
G.
Santiago,S.
T.
Wereley,C.
D.
Meinhart,D.
J.
Beebe,andR.
J.
Adrian,Exp.
Fluids25,316(1998).
[31]R.
Lindken,M.
Rossi,S.
Groe,andJ.
Westerweel,LabChip9,2551(2009).
[32]M.
AusetandA.
A.
Keller,WaterResour.
Res.
40,W03503(2004).
[33]M.
AusetandA.
A.
Keller,WaterResour.
Res.
42,W12S02(2006).
[34]C.
Scholz,F.
Wirner,Y.
Li,andC.
Bechinger,Exp.
Fluids53,1327(2012).
[35]D.
Frenkel,Phys.
A(Amsterdam,Neth.
)313,1(2002).
[36]M.
E.
Staben,A.
Z.
Zinchenko,andR.
H.
Davis,Phys.
Fluids15,1711(2003).
[37]C.
Pozrikidis,J.
FluidMech.
261,199(1994).
[38]H.
Bruus,TheoreticalMicrouidics(OxfordUniversityPress,Oxford,2007).
[39]S.
N.
Chiu,D.
Stoyan,W.
S.
Kendall,andJ.
Mecke,Stochasticgeometryanditsapplications(Wiley,NewYork,2013).
[40]M.
Spanner,S.
K.
Schnyder,F.
H¨oing,T.
Voigtmann,andT.
Franosch,SoftMatter9,1604(2013).
[41]S.
K.
Schnyder,M.
Spanner,F.
H¨oing,T.
Franosch,andJ.
Horbach,SoftMatter11,701(2015).
[42]K.
MeckeandH.
Wagner,J.
Stat.
Phys.
64,843(1991).
[43]K.
Mecke,T.
Buchert,andH.
Wagner,Astron.
Astrophys.
288,697(1994).
[44]D.
A.
KlainandG.
-C.
Rota,Introductiontogeometricproba-bility,1sted.
(CambridgeUniversityPress,Cambridge,1997),pp.
XIV,178S.
[45]H.
Mantz,K.
Jacobs,andK.
Mecke,J.
Stat.
Mech.
:TheoryExp.
(2008)P12015.
[46]G.
E.
Schr¨oder-Turk,W.
Mickel,S.
C.
Kapfer,M.
A.
Klatt,F.
M.
Schaller,M.
J.
F.
Hoffmann,N.
Kleppmann,P.
Armstrong,A.
Inayat,D.
Hugetal.
,Adv.
Mater.
23,2535(2011).
[47]G.
E.
Schr¨oder-Turk,W.
Mickel,S.
C.
Kapfer,F.
M.
Schaller,B.
Breidenbach,D.
Hug,andK.
Mecke,NewJ.
Phys.
15,083028(2013).
[48]M.
HilpertandC.
T.
Miller,Adv.
WaterResour.
24,243(2001).
[49]W.
Mickel,S.
M¨unster,L.
M.
Jawerth,D.
A.
Vader,D.
A.
Weitz,A.
P.
Sheppard,K.
Mecke,B.
Fabry,andG.
Schr¨oder-Turk,Biophys.
J.
95,6072(2008).
[50]J.
S.
Andrade,Jr.
,M.
P.
Almeida,J.
MendesFilho,S.
Havlin,B.
Suki,andH.
E.
Stanley,Phys.
Rev.
Lett.
79,3901(1997).
[51]W.
XiaandM.
F.
Thorpe,Phys.
Rev.
A38,2650(1988).
[52]K.
R.
Mecke,inStatisticalPhysicsandSpatialStatistics(Springer,Berlin,2000),pp.
111–184.
[53]P.
Sch¨onh¨oferandK.
Mecke,inFractalGeometryandStochas-ticsV(Springer,Berlin,2015),pp.
39–52.
[54]G.
G.
Pereira,P.
M.
Dupuy,P.
W.
Cleary,andG.
W.
Delaney,Prog.
Comput.
FluidDy.
12,176(2012).
043023-11

酷番云-618云上秒杀,香港1核2M 29/月,高防服务器20M 147/月 50M 450/月,续费同价!

官方网站:点击访问酷番云官网活动方案:优惠方案一(限时秒杀专场)有需要海外的可以看看,比较划算29月,建议年付划算,月付续费不同价,这个专区。国内节点可以看看,性能高IO为主, 比较少见。平常一般就100IO 左右。优惠方案二(高防专场)高防专区主要以高防为主,节点有宿迁,绍兴,成都,宁波等,节点挺多,都支持防火墙自助控制。续费同价以下专场。 优惠方案三(精选物理机)西南地区节点比较划算,赠送5...

Virmach款低价VPS可选可以选择多个机房,新增多款低价便宜VPS主机7.2美元起

Virmach商家我们是不是比较熟悉?速度一般,但是人家价格低,而且机房是比较多的。早年的时候有帮助一个有做外贸也许需要多个机房且便宜服务商的时候接触到这个商家,有曾经帮助够买过上百台这样的低价机器。这里需要提醒的,便宜但是速度一般,尤其是中文业务速度确实不快,如果是外贸业务,那肯定是没有问题。这几天,我们有看到Virmach推出了夏季优惠促销,VPS首年8折,最低年付仅7.2美元,多机房可选,如...

德阳电信高防物理机 16核16G 50M 260元/月 达州创梦网络

达州创梦网络怎么样,达州创梦网络公司位于四川省达州市,属于四川本地企业,资质齐全,IDC/ISP均有,从创梦网络这边租的服务器均可以备案,属于一手资源,高防机柜、大带宽、高防IP业务,一手整C IP段,四川电信,一手四川托管服务商,成都优化线路,机柜租用、服务器云服务器租用,适合建站做游戏,不须要在套CDN,全国访问快,直连省骨干,大网封UDP,无视UDP攻击,机房集群高达1.2TB,单机可提供1...

openeuler为你推荐
vc组合维生素C和维生素E混合胶囊有用吗,还是分开的好?急救知识纳入考试应急救护知识应该由哪个部门培训特朗普取消访问丹麦特朗普出国访问什么飞机护送?硬盘工作原理硬盘是如何工作的access数据库什么是ACCESS数据库baqizi.cc誰知道,最近有什麼好看的電視劇dadi.tv海信电视机上出现英文tvservice是什么意思?www4399com4399网站是什么xvideos..comxvideos 怎么下载朴容熙这个女的叫什么?
国外域名 江西服务器租用 域名查询工具 香港主机租用 亚洲大于500m 重庆服务器托管 网站保姆 服务器cpu性能排行 河南移动邮件系统 新天域互联 web服务器的架设 徐正曦 购买国外空间 服务器硬件防火墙 银盘服务是什么 帽子云排名 主机返佣 国外网页代理 攻击服务器 乐视会员免费领取 更多