实数的定义实数的定义

实数的定义  时间:2021-08-02  阅读:()

常数、有理数、无理数、实数、的概念是什么?

1、常数 常数是指固定不变的数值。

如圆的周长和直径的比π﹑铁的膨胀系数为0.000012等。

常数是具有一定含义的名称,用于代替数字或字符串,其值从不改变。

数学上常用大写的"C"来表示某一个常数。

2、有理数 有理数为整数(正整数、0、负整数)和分数的统称。

正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。

因而有理数集的数可分为正有理数、负有理数和零。

由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。

3、无理数 无理数,也称为无限不循环小数,不能写作两整数之比。

见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。

4、实数 实数,是有理数和无理数的总称。

数学上,实数定义为与数轴上的实数,点相对应的数。

实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。

但仅仅以列举的方式不能描述实数的整体。

实数和虚数共同构成复数。

实数可以分为有理数和无理数两类,或代数数和超越数两类。

实数集通常用黑正体字母?R?表示。

R表示n维实数空间。

实数是不可数的。

实数是实数理论的核心研究对象。

扩展资料 实数的发展历史 在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。

直到17世纪,实数才在欧洲被广泛接受。

18世纪,微积分学在实数的基础上发展起来。

1871年,德国数学家康托尔第一次提出了实数的严格定义。

根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。

古希腊毕达哥拉斯学派的数学家发现,只使用有理数无法完全精确地表示这条对角线的长度,这彻底地打击了他们的数学理念,他们原以为:任何两条线段(的长度)的比,可以用自然数的比来表示。

正因如此,毕达哥拉斯本人甚至有“万物皆数”的信念,这里的数是指自然数(1 , 2 , 3 ,...),而由自然数的比就得到所有正有理数,而有理数集存在“缝隙”这一事实,对当时很多数学家来说可谓极大的打击(见第一次数学危机)。

从古希腊一直到17世纪,数学家们才慢慢接受无理数的存在,并把它和有理数平等地看作数;后来有虚数概念的引入,为加以区别而称作“实数”,意即“实在的数”。

参考资料来源:搜狗百科-实数 参考资料来源:搜狗百科-无理数 参考资料来源:搜狗百科-有理数 参考资料来源:搜狗百科-常数

什么是实数?实数的定义是什么?

实数,是有理数和无理数的总称。

数学上,实数定义为与数轴上的点相对应的数。

实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。

但仅仅以列举的方式不能描述实数的整体。

实数的概念

包括有理数和无理数。

其中无理数就是无限不循环小数,有理数就包括整数和分数。

数学上,实数直观地定义为和数轴上的点一一对应的数。

本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。

实数的定义

实数,是有理数和无理数的总称。

数学上,实数定义为与数轴上的实数,点相对应的数。

实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。

但仅仅以列举的方式不能描述实数的整体。

实数可以用来测量连续的量。

理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。

在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。

扩展资料 实数的基本定理: 1、上(下)确界原理:非空有上(下)界数集必有上(下)确界。

2、单调有界定理:单调有界数列必有极限。

具体来说:单调增(减)有上(下)界数列必收敛。

3、闭区间套定理(柯西-康托尔定理):对于任何闭区间套,必存在属于所有闭区间的公共点。

若区间长度趋于零,则该点是唯一公共点。

4、有限覆盖定理(博雷尔-勒贝格定理,海涅-波雷尔定理):闭区间上的任意开覆盖,必有有限子覆盖。

或者说:闭区间上的任意一个开覆盖,必可从中取出有限个开区间来覆盖这个闭区间。

5、极限点定理(波尔查诺-魏尔斯特拉斯定理、聚点定理):有界无限点集必有聚点。

或者说:每个无穷有界集至少有一个极限点。

6、有界闭区间的序列紧性(致密性定理):有界数列必有收敛子列。

7、完备性(柯西收敛准则):数列收敛的充要条件是其为柯西列。

或者说:柯西列必收敛,收敛数列必为柯西列。

参考资料来源:搜狗百科-实数

火数云-618限时活动,国内云服务器大连3折,限量50台,九江7折 限量30台!

官方网站:点击访问火数云活动官网活动方案:CPU内存硬盘带宽流量架构IP机房价格购买地址4核4G50G 高效云盘20Mbps独享不限openstack1个九江287元/月立即抢购4核8G50G 高效云盘20Mbps独享不限openstack1个九江329元/月立即抢购2核2G50G 高效云盘5Mbps独享不限openstack1个大连15.9元/月立即抢购2核4G50G 高效云盘5Mbps独享不限...

ZJI:香港物理服务器,2*E5-2630L/32G/480G SSD/30Mbps/2IP/香港BGP,月付520元

zji怎么样?zji是一家老牌国人主机商家,公司开办在香港,这个平台主要销售独立服务器业务,和hostkvm是同一样,两个平台销售的产品类别不一平,商家的技术非常不错,机器非常稳定。昨天收到商家的优惠推送,目前针对香港邦联四型推出了65折优惠BGP线路服务器,性价比非常不错,有需要香港独立服务器的朋友可以入手,非常适合做站。zji优惠码:月付/年付优惠码:zji 物理服务器/VDS/虚拟主机空间订...

HostSailor:罗马尼亚机房,内容宽松;罗马尼亚VPS七折优惠,罗马尼亚服务器95折

hostsailor怎么样?hostsailor成立多年,是一家罗马尼亚主机商家,机房就设在罗马尼亚,具说商家对内容管理的还是比较宽松的,商家提供虚拟主机、VPS及独立服务器,今天收到商家推送的八月优惠,针对所有的产品都有相应的优惠,商家的VPS产品分为KVM和OpenVZ两种架构,OVZ的比较便宜,有这方面需要的朋友可以看看。点击进入:hostsailor商家官方网站HostSailor优惠活动...

实数的定义为你推荐
笛卡尔乘积笛卡尔乘积的运算性质we7俗称杨铁鹞子这种植物的学名色温图一张色温准确的照片的基本标准是什么?vrrp配置INTERNET协议属性里面的备用配置有什么用?印度it印度IT业与中国IT业的差异?深度剖析!没有nvidia控制面板没有nvidia控制面板怎么切换显卡平均数计算器这样的计算器怎么算平均值?rar分卷压缩什么叫压缩分卷啊?怎么进入dos如何进入DOS系统神经网络设计设计神经网络时为什么趋向于选择更深的网络结构
jsp虚拟主机 美国vps推荐 主机测评 西安服务器 新世界机房 国外主机 香港服务器99idc gomezpeer 正版win8.1升级win10 http500内部服务器错误 debian6 合肥鹏博士 e蜗 刀片服务器是什么 股票老左 域名评估 华为云服务登录 网页提速 789 美国凤凰城 更多