实数的定义实数的定义

实数的定义  时间:2021-08-02  阅读:()

常数、有理数、无理数、实数、的概念是什么?

1、常数 常数是指固定不变的数值。

如圆的周长和直径的比π﹑铁的膨胀系数为0.000012等。

常数是具有一定含义的名称,用于代替数字或字符串,其值从不改变。

数学上常用大写的"C"来表示某一个常数。

2、有理数 有理数为整数(正整数、0、负整数)和分数的统称。

正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。

因而有理数集的数可分为正有理数、负有理数和零。

由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。

3、无理数 无理数,也称为无限不循环小数,不能写作两整数之比。

见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。

4、实数 实数,是有理数和无理数的总称。

数学上,实数定义为与数轴上的实数,点相对应的数。

实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。

但仅仅以列举的方式不能描述实数的整体。

实数和虚数共同构成复数。

实数可以分为有理数和无理数两类,或代数数和超越数两类。

实数集通常用黑正体字母?R?表示。

R表示n维实数空间。

实数是不可数的。

实数是实数理论的核心研究对象。

扩展资料 实数的发展历史 在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。

直到17世纪,实数才在欧洲被广泛接受。

18世纪,微积分学在实数的基础上发展起来。

1871年,德国数学家康托尔第一次提出了实数的严格定义。

根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。

古希腊毕达哥拉斯学派的数学家发现,只使用有理数无法完全精确地表示这条对角线的长度,这彻底地打击了他们的数学理念,他们原以为:任何两条线段(的长度)的比,可以用自然数的比来表示。

正因如此,毕达哥拉斯本人甚至有“万物皆数”的信念,这里的数是指自然数(1 , 2 , 3 ,...),而由自然数的比就得到所有正有理数,而有理数集存在“缝隙”这一事实,对当时很多数学家来说可谓极大的打击(见第一次数学危机)。

从古希腊一直到17世纪,数学家们才慢慢接受无理数的存在,并把它和有理数平等地看作数;后来有虚数概念的引入,为加以区别而称作“实数”,意即“实在的数”。

参考资料来源:搜狗百科-实数 参考资料来源:搜狗百科-无理数 参考资料来源:搜狗百科-有理数 参考资料来源:搜狗百科-常数

什么是实数?实数的定义是什么?

实数,是有理数和无理数的总称。

数学上,实数定义为与数轴上的点相对应的数。

实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。

但仅仅以列举的方式不能描述实数的整体。

实数的概念

包括有理数和无理数。

其中无理数就是无限不循环小数,有理数就包括整数和分数。

数学上,实数直观地定义为和数轴上的点一一对应的数。

本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。

实数的定义

实数,是有理数和无理数的总称。

数学上,实数定义为与数轴上的实数,点相对应的数。

实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。

但仅仅以列举的方式不能描述实数的整体。

实数可以用来测量连续的量。

理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。

在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。

扩展资料 实数的基本定理: 1、上(下)确界原理:非空有上(下)界数集必有上(下)确界。

2、单调有界定理:单调有界数列必有极限。

具体来说:单调增(减)有上(下)界数列必收敛。

3、闭区间套定理(柯西-康托尔定理):对于任何闭区间套,必存在属于所有闭区间的公共点。

若区间长度趋于零,则该点是唯一公共点。

4、有限覆盖定理(博雷尔-勒贝格定理,海涅-波雷尔定理):闭区间上的任意开覆盖,必有有限子覆盖。

或者说:闭区间上的任意一个开覆盖,必可从中取出有限个开区间来覆盖这个闭区间。

5、极限点定理(波尔查诺-魏尔斯特拉斯定理、聚点定理):有界无限点集必有聚点。

或者说:每个无穷有界集至少有一个极限点。

6、有界闭区间的序列紧性(致密性定理):有界数列必有收敛子列。

7、完备性(柯西收敛准则):数列收敛的充要条件是其为柯西列。

或者说:柯西列必收敛,收敛数列必为柯西列。

参考资料来源:搜狗百科-实数

Hostodo商家提供两年大流量美国VPS主机 可选拉斯维加斯和迈阿密

Hostodo商家算是一个比较小众且运营比较久的服务商,而且还是率先硬盘更换成NVMe阵列的,目前有提供拉斯维加斯和迈阿密两个机房。看到商家这两年的促销套餐方案变化还是比较大的,每个月一般有这么两次的促销方案推送,可见商家也在想着提高一些客户量。毕竟即便再老的服务商,你不走出来让大家知道,迟早会落寞。目前,Hostodo有提供两款大流量的VPS主机促销,机房可选拉斯维加斯和迈阿密两个数据中心,且都...

无忧云:洛阳BGP云服务器低至38.4元/月起;雅安高防云服务器/高防物理机优惠

无忧云怎么样?无忧云,无忧云是一家成立于2017年的老牌商家旗下的服务器销售品牌,现由深圳市云上无忧网络科技有限公司运营,是正规持证IDC/ISP/IRCS商家,主要销售国内、中国香港、国外服务器产品,线路有腾讯云国外线路、自营香港CN2线路等,都是中国大陆直连线路,非常适合免备案建站业务需求和各种负载较高的项目,同时国内服务器也有多个BGP以及高防节点。一、无忧云官网点击此处进入无忧云官方网站二...

raksmart:全新cloud云服务器系列测评,告诉你raksmart新产品效果好不好

2021年6月底,raksmart开发出来的新产品“cloud-云服务器”正式上线对外售卖,当前只有美国硅谷机房(或许以后会有其他数据中心加入)可供选择。或许你会问raksmart云服务器怎么样啊、raksm云服务器好不好、网络速度快不好之类的废话(不实测的话),本着主机测评趟雷、大家受益的原则,先开一个给大家测评一下!官方网站:https://www.raksmart.com云服务器的说明:底层...

实数的定义为你推荐
微指数新浪微博微指数主要包括哪些内容?微指数微指数的新浪微博官方应用-微指数oracle11g下载如何安装oracle11g客户端超市管理系统精诚超市管理系统(普及版)——要怎么使用?provisionedwindows server 2012 R2系统中,哪种方法可以增加thin provisioned磁盘大小?电视蚂蚁电视蚂蚁是不是不能用了?我在国外该怎样看奥运?软件群发我是做微商的需要经常群发一些图片给很多个群,有什么群发软件吗?免杀远控求最新的免杀远控 收费没关系 主要是实用 键盘记录 屏幕控制 功能多得 骗子别来找骂wifi快速破解器电脑版无线密码破解器wifi快速破解器电脑版wifi万能钥匙电脑版怎么破解密码
广州服务器租用 域名服务器的作用 中文域名申请 联通c套餐 鲨鱼机 godaddy续费优惠码 特价空间 美国php主机 阿里云代金券 windows2003iso 骨干网络 宁波服务器 seednet 中国电信测速网 微软服务器操作系统 上海服务器 789电视剧网 双十二促销 googlevoice ncp是什么 更多