--精品
2.5.2一元一次方程
一、教学目标
1、理解移项的概念.
2、理解移项的推导过程及依据.
3、掌握移项一定要变号.
4、会用移项的方法解一元一次方程.
二、课时安排 1课时.
三、教学重点会用移项的方法解一元一次方程.
四、教学难点移项一定要变号.
五、教学过程
一导入新课
前面我们学习了一元一次方程怎样求出一元一次方程6x+2=4x-5的解呢
下面我们学习一般的一元一次方程的解法.
二讲授新课
思考
方程6x+2=4x-5与最简方程mx=n(m≠0)(x是未知数)的形式有什么不同怎样利用等式的基本性质把方程6x+2=4x-5化归为最简方程mx=n(m≠0)的形式
我们只需要利用等式的基本性质在方程6x+2=4x-5左、右两边都加上-2化简得6x=4x-7再在方程6x=4x-7的左、右两边都加上-4x化简得2x=-7.这样就把方程6x+2=4x-5化归为最简方程2x=-7了.
三重难点精讲
思考
在将方程6x+2=4x-5化归为最简方程2x=-7的过程中能否得到解方程的一个重要变形
把方程6x=4x-7和方程6x+2=4x-5进行比较应用等式的基本性质1对方程进行变形的过程可以用下面的图示表示
这个变形可以看做是把方程左边的+2改变符号后从方程的左边移到方程的右边.
--精品
--精品
同样把方程6x-4x=-7和方程6x=4x-7进行比较方程变形的过程可以用下面的图示表示
这个变形可以看做是把方程右边的4x改变符号后从方程的右边移到方程的左边.我们把这种变形叫做移项.
典例
解方程 6x+2=4x-5.
解移项得
6x-4x=-5-2.
合并同类项得
2x=-7.
把未知数的系数化为1,得
所以方程6x24x5的解是x.
跟踪训练
解方程 5x-3=-2x+8.
解移项得
5x+2x=8+3.
合并同类项得
7x=11.
把未知数的系数化为1,得
1 1.
所以方程5x32x8的解是x.
四归纳小结
通过这节课的学习你有哪些收获有何感想学会了哪些方法先想一想再分享给大家五随堂检测
1、下列变形属于移项且正确的是( )
--精品
--精品
A 由2x3y50得53y2x0
B 由3x25x1 得3x5x12
C 由2x57x1 得2x7x15
D 由3x53x得3x53x0
2、对方程4x56x73x进行变形正确的是( )
A 4x6x573x B 4x6x3x57
C 4x6x3x57 D 4x6x3x57
3、解方程 3x-2=5x+6.
六、板书设计
七、作业布置课本P100 习题2
八、教学反思
--精品
DMIT.io是成立于2018年的一家国外主机商,提供VPS主机和独立服务器租用,数据中心包括中国香港、美国洛杉矶和日本等,其中日本VPS是新上的节点,基于KVM架构,国际线路,1Gbps带宽,同时提供月付循环8折优惠码,或者年付一次性5折优惠码,优惠后最低每月8.72美元或者首年65.4美元起,支持使用PayPal或者支付宝等付款方式。下面列出部分日本VPS主机配置信息,价格以月付为例。CPU:...
hostkvm怎么样?hostkvm是一家国内老牌主机商家,商家主要销售KVM架构的VPS,目前有美国、日本、韩国、中国香港等地的服务,站长目前还持有他家香港CN2线路的套餐,已经用了一年多了,除了前段时间香港被整段攻击以外,一直非常稳定,是做站的不二选择,目前商家针对香港云地和韩国机房的套餐进行7折优惠,其他套餐为8折,商家支持paypal和支付宝付款。点击进入:hostkvm官方网站地址hos...
profitserver正在对德国vps(法兰克福)、西班牙vps(马德里)、荷兰vps(杜廷赫姆)这3处数据中心内的VPS进行5折优惠促销。所有VPS基于KVM虚拟,纯SSD阵列,自带一个IPv4,不限制流量,在后台支持自定义ISO文件,方便大家折腾!此外还有以下数据中心:俄罗斯(多机房)、捷克、保加利亚、立陶宛、新加坡、美国(洛杉矶、锡考克斯、迈阿密)、瑞士、波兰、乌克兰,VPS和前面的一样性...