contributionsgraph

graphsearch  时间:2021-02-11  阅读:()
JournalofMachineLearningResearch21(2020)1-5Submitted3/19;Revised11/19;Published03/20CausalDiscoveryToolbox:UncoveringcausalrelationshipsinPythonDiviyanKalainathandiviyan@fentech.
aiFenTech,TAU,LRI,INRIA,UniversiteParis-Sud20RueRaymondAron,75013Paris,FranceOlivierGoudetolivier.
goudet@univ-angers.
frLERIA,Universited'Angers,2boulevardLavoisier,49045Angers,FranceRitikDuttadutta.
ritik@iitgn.
ac.
inIITGandhinagar,Gandhinagar,Gujarat382355,IndiaEditor:AndreasMuellerAbstractThispaperpresentsanewopensourcePythonframeworkforcausaldiscoveryfromob-servationaldataanddomainbackgroundknowledge,aimedatcausalgraphandcausalmechanismmodeling.
TheCdtpackageimplementsanend-to-endapproach,recover-ingthedirectdependencies(theskeletonofthecausalgraph)andthecausalrelation-shipsbetweenvariables.
Itincludesalgorithmsfromthe'Bnlearn'(Scutari,2018)and'Pcalg'(Kalischetal.
,2018)packages,togetherwithalgorithmsforpairwisecausaldis-coverysuchasANM(Hoyeretal.
,2009).
CdtisavailableundertheMITLicenseathttps://github.
com/FenTechSolutions/CausalDiscoveryToolbox.
Keywords:CausalDiscovery,Graphrecovery,opensource,constraint-basedmethods,score-basedmethods,pairwisecausality,Markovblanket1.
IntroductionCausalmodelingiskeytounderstandphysicalorarticialphenomenaandtoguideinter-ventions.
MostsoftwaresforcausaldiscoveryhavebeendevelopedintheRprogramminglanguage(Kalischetal.
,2018;Scutari,2018),andafewcausaldiscoveryalgorithmsareavailableinPythone.
g.
RCC(Lopez-Pazetal.
,2015),CGNN(Goudetetal.
,2018)andSAM(Kalainathanetal.
,2019),whilePythonsupportsmanycurrentmachinelearningframeworkssuchasPyTorch(Paszkeetal.
,2017).
TheCausalDiscoveryToolbox(Cdt)isanopen-sourcePythonpackageconcernedwithobservationalcausaldiscovery,aimedatlearningboththecausalgraphandtheas-sociatedcausalmechanismsfromsamplesofthejointprobabilitydistributionofthedata.
Cdtincludesmanystate-of-the-artcausalmodelingalgorithms(someofwhichareimportedfromR),thatsupportsGPUhardwareaccelerationandautomatichardwaredetection.
AmaingoalofCdtistoprovidetheuserswithguidancetowardsend-to-endexperiments,.
ThisworkwasdoneduringDiviyanKalainathan'sPhDThesisatUniv.
Paris-Saclayc2020DiviyanKalainathan,OlivierGoudet,RitikDutta.
License:CC-BY4.
0,seehttps://creativecommons.
org/licenses/by/4.
0/.
Attributionrequirementsareprovidedathttp://jmlr.
org/papers/v21/19-187.
html.
Kalainathan,Goudet,Duttabyincludingscoringmetrics,andstandardbenchmarkdatasetssuchasthe"Sachs"dataset(Sachsetal.
,2005).
Comparedtoothercausaldiscoverypackages,Cdtuniespairwiseandscore-basedmulti-variateapproacheswithinasinglepackage,implementinganstep-by-steppipelineapproach(Fig.
1).
Figure1:TheCdtcausalmodelingpackage:GeneralpipelineCdtalsoprovidesanintuitiveapproachforincludingR-basedalgorithms,facilitatingthetaskofextendingthetoolkitwithadditionalRpackages.
Thepackagerevolvesaroundtheusageofnetworkx.
Graphclasses,mainlyforrecovering(un)directedgraphsfromob-servationaldata.
Cdtcurrentlyincludes17algorithmsforgraphskeletonidentication:7methodsbasedonindependencetests,and10methodsaimedatdirectlyrecoveringtheskeletongraph.
Itfurtherincludes20algorithmsaimedatcausaldirectedgraphprediction,including11graphicaland9pairwiseapproaches.
2.
OriginalcontributionsofthepackageThecausalpairwisesettingconsidersapairofvariablesandaimstodeterminethecausalrelationshipbetweenbothvariables.
Thissettingimplicitlyassumesthatbothvari-ablesarealreadyconditionedonothercovariates,orreadjustedwithapropensityscore(RosenbaumandRubin,1983),andthattheremaininglatentcovariateshavelittleornoinuenceandcanbeconsideredas"noise".
Thepairwisesettingisalsorelevanttocompleteapartiallydirectedgraphresultingfromothercausaldiscoverymethods.
Inthe2010s,thepairwisesettingwasinvestigatedbyHoyeretal.
(2009)amongothers,whoproposedtheAdditiveNoiseModel(ANM).
Lateron,Guyon(2013)onCause-Eectpair(CEP)prob-lems;CEPformulatesbivariatecausalidenticationasasupervisedmachinelearningtask,whereaclassieristrainedfromexamples(Ai,Bi,i),wherethevariablepair(Ai,Bi)isrepresentedbysamplesoftheirjointdistributionandlabeliindicatesthetypeofcausalrelationshipbetweenbothvariables(independent,Ai→Bi,Bi→Ai).
Cdtisonethefewpackagestoincludecausalpairwisediscoveryalgorithms.
Thesealgorithms,mostlyimple-mentedusingPythonorMatlabareoftenleftunmaintained.
Therefore,manyalgorithmsthatareknowntobequiteecient(suchasJarfo(Fonollosa,2019),rstandrstinthecause-eectpairschallenges,codedinPython2.
7)areoutdatedandrequireasubstantialamountofworktoxandupdate.
Cdtimplements9pairwisealgorithms,allcodedinPython,5ofthembeingnewimplementations(NCC,GNN,CDS,RECIandabaselinemethodbasedonregressionerror).
Thegraphsetting,extensivelystudiedintheliterature,issupportedbymanypack-ages.
Bayesianapproachesrelyeitheronconditionalindependencetestsnamedconstraint-basedmethods,suchasPCorFCI(Spirtesetal.
,2000;Strobletal.
,2017),oronscore-basedmethods,involvingndingthegraphthatmaximizesalikelihoodscorethrough2CausalDiscoveryToolbox:UncoveringcausalrelationshipsinPythongraphsearchheuristics,likeGES(Chickering,2002)orCAM(B¨uhlmannetal.
,2014).
OtherapproachesleveragetheGenerativeNetworksetting,suchasCGNNorSAM(Goudetetal.
,2018;Kalainathanetal.
,2019).
Graphsettingmethodsoutputeitheradirectedacyclicgraphorapartiallydirectedacyclicgraph.
MostapproachesinthegraphsettingareimportedfromRpackages,withtheexceptionofCGNNandSAM.
3.
ComparisonwithotherpackagesToourbestknowledge,CausalityandPy-CausalaretheonlyalternativestoCdtforcausaldiscoveryinPython.
However,theonlyoverlapwithCdtconcernsthePC-algorithm,commontoPy-CausalandCdt.
AkintoCdt,Py-CausalisawrapperpackagebutaroundtheTetradJavapackage.
Fig.
2comparestheruntimesofthetwoPCimplementationsonsyntheticgraphswithofvaryingsize,connectivity,andnumberofdatapoints,showingaconstantgapinwithrespecttothenumberofdatapointsandconnectivityofthegraph.
Thisgapisduetothecreationofthesubprocessandthedatatransfer,thatarenottakenintoaccountinthePyCausalexecutionruntime.
Thegapwithrespecttothenumberofnodesisduetodierentimplementationsandcomputationalcomplexity.
FurthereortwillbedevotedtoimposingtheeciencyofourPython-NumbaimplementationofPC.
Figure2:RuntimesofimplementationsofPConvariousgraphs4.
ImplementationandutilitiesRintegration.
Assaid,theCdtpackageintegrate10algorithmscodedinRand17codedinPython.
TheCdtpackageintegratesallofthem,usingWrapperfunctionsinPythontoenabletheusertolaunchanyRscriptandtocontrolitsarguments;theRscriptsareexecutedinatemporaryfolderwithasubprocesstoavoidthelimitationsofthePythonGIL.
TheresultsareretrievedthroughoutputlesbackintothemainPythonprocess.
ThewholeprocedureismodularandallowscontributorstoeasilyaddnewRfunctionstothepackage.
Sustainabilityanddeployment.
Inorderforthepackagetobeeasilyextended,foster-ingtheintegrationoffurthercommunitycontributions,specialcareisgiventothequalityoftests.
Specically,aContinuousIntegrationtooladdedtothegitrepository,allowstosequentiallyexecutetestsonnewcommitsandpullrequest:i)Testallfunctionalitiesofthenewversiononthepackageontoydatasets;ii)Builddockerimagesandpushthemtohub.
docker.
com;iii)Pushthenewversiononpypi;iv)Updatethedocumentation3Kalainathan,Goudet,Duttawebsite.
Thisprocedurealsoallowstotesttheproperfunctioningofthepackagewithitsdependencies.
5.
ConclusionandfuturedevelopmentsTheCausalDiscoveryToolbox(Cdt)packageallowsPythonuserstoapplymanycausaldiscoveryorgraphmodelingalgorithmsonobservationaldata.
Itisalreadyusedinresearchprojects,suchas(Yaleetal.
,2018;Kalainathanetal.
,2019).
Astheoutputgraphsarenetworkx.
Graphclasses,theseareeasilyexportableintovariousformatsforvisualizationsoftwares,usinge.
g.
GraphvizorGephi.
Atthepackageimport,testsarerealizedtopinpointthecongurationoftheuser:availabilityofGPUsandRpackagesandnumberofCPUsonthehostmachine.
Thepackagepromotesanend-to-end,step-by-stepapproach:theundirectedgraph(bi-variatedependencies)isrstidentied,beforeapplyingcausaldiscoveryalgorithms;thelatterareconstrainedfromtheundirectedgraph,withsignicantcomputationalgains.
Futureextensionsofthepackageinclude:i)reimplementingtheRalgorithmsinPython-NumbaandreimplementthePytorchalgorithmsinChainertodropallheavydependenciesandtointegrateCdtinthePythoncommunitywithaNumpy-API;ii)developingGPU-compliantimplementationofnewalgorithms;iii)handlinginterventionaldataandtime-seriesdata(e.
g.
forneuroimagingandweatherforecast).
Inthelongerterm,ourpriorityistoprovidetheuserwithteststowhetherthestandardassumptions(e.
g.
causalsuciencyassumption)holdandassesstheriskofapplyingmethodsoutoftheirintendedscope.
ReferencesPeterB¨uhlmann,JonasPeters,JanErnest,etal.
CAM:Causaladditivemodels,high-dimensionalordersearchandpenalizedregression.
TheAnnalsofStatistics,2014.
DavidMaxwellChickering.
Optimalstructureidenticationwithgreedysearch.
Journalofmachinelearningresearch,3(Nov):507–554,2002.
JoseA.
R.
Fonollosa.
Conditionaldistributionvariabilitymeasuresforcausalitydetection.
CauseEectPairsinMachineLearning,2019.
OlivierGoudet,DiviyanKalainathan,PhilippeCaillou,IsabelleGuyon,DavidLopez-Paz,andMicheleSebag.
Learningfunctionalcausalmodelswithgenerativeneuralnetworks.
ExplainableandInterpretableModelsinComputerVisionandMachineLearning,2018.
IsabelleGuyon.
Chalearncauseeectpairschallenge,2013.
URLhttp://www.
causality.
inf.
ethz.
ch/cause-effect.
php.
PatrikO.
Hoyer,DominikJanzing,JorisM.
Mooij,JonasPeters,andBernhardSch¨olkopf.
Nonlinearcausaldiscoverywithadditivenoisemodels.
InNeuralInformationProcessingSystems(NIPS),pages689–696,2009.
DiviyanKalainathan,OlivierGoudet,IsabelleGuyon,DavidLopez-Paz,andMich`eleSebag.
Structuralagnosticmodeling:Adversariallearningofcausalgraphs.
ArXiv,2019.
4CausalDiscoveryToolbox:UncoveringcausalrelationshipsinPythonMarkusKalisch,AlainHauser,etal.
Package'pcalg'.
2018.
URLhttps://cran.
r-project.
org/web/packages/pcalg/index.
html.
DavidLopez-Paz,KrikamolMuandet,BernhardSch¨olkopf,andIlyaOTolstikhin.
Towardsalearningtheoryofcause-eectinference.
InICML,pages1452–1461,2015.
AdamPaszke,SamGross,SoumithChintala,etal.
AutomaticdierentiationinPyTorch.
2017.
URLhttps://pytorch.
org/.
PaulRRosenbaumandDonaldBRubin.
Thecentralroleofthepropensityscoreinobservationalstudiesforcausaleects.
Biometrika,70(1):41–55,1983.
KarenSachs,OmarPerez,DanaPe'er,DouglasALauenburger,andGarryPNolan.
Causalprotein-signalingnetworksderivedfrommultiparametersingle-celldata.
Science,308(5721):523–529,2005.
MarcoScutari.
Package'bnlearn',2018.
URLhttp://www.
bnlearn.
com/.
PeterSpirtes,ClarkNGlymour,andRichardScheines.
Causation,prediction,andsearch.
MITpress,2000.
EricVStrobl,KunZhang,andShyamVisweswaran.
Approximatekernel-basedconditionalindependencetestsforfastnon-parametriccausaldiscovery.
2017.
AndrewYale,SaloniDash,RitikDutta,IsabelleGuyon,AdrienPavao,andKristinBennett.
Privacypreservingsynthetichealthdata.
ESANN,2018.
5

修罗云50元/月起香港大宽带NAT VPS,香港沙田建站2核2G5M仅70元/月起

修罗云怎么样?修罗云是一家国内老牌商家,修罗云商家以销售NAT机器起家,国内的中转机相当不错,给的带宽都非常高,此前推荐的也都是国内NAT VPS机器。今天,云服务器网(www.yuntue.com)小编主要介绍一下修罗云的香港云服务器,适合建站,香港沙田cn2云服务器,2核2G,5M带宽仅70元/月起,同时香港香港大带宽NAT VPS低至50元/月起,性价比不错,可以尝试一下!点击进入:修罗云官...

UCloud云服务器低至年59元

最近我们是不是在讨论较多的是关于K12教育的问题,培训机构由于资本的介入确实让家长更为焦虑,对于这样的整改我们还是很支持的。实际上,在云服务器市场中,我们也看到内卷和资本的力量,各大云服务商竞争也是相当激烈,更不用说个人和小公司服务商日子确实不好过。今天有看到UCloud发布的夏季促销活动,直接提前和双十一保价挂钩。这就是说,人家直接在暑假的时候就上线双十一的活动。早年的双十一活动会提前一周到十天...

云基Yunbase无视CC攻击(最高500G DDoS防御),美国洛杉矶CN2-GIA高防独立服务器,

云基yunbase怎么样?云基成立于2020年,目前主要提供高防海内外独立服务器,欢迎各类追求稳定和高防优质线路的用户。业务可选:洛杉矶CN2-GIA+高防(默认500G高防)、洛杉矶CN2-GIA(默认带50Gbps防御)、香港CN2-GIA高防(双向CN2GIA专线,突发带宽支持,15G-20G DDoS防御,无视CC)。目前,美国洛杉矶CN2-GIA高防独立服务器,8核16G,最高500G ...

graphsearch为你推荐
山东省高校教师培训管理系统中证财通中国可持续发展100(ECPI图书馆学、情报学期刊投稿指南Descriptionios5ipad连不上wifi苹果ipad突然连不上网了,是怎么回事?网络是好的,手机能上网。windows键是哪个Win键是什么?itunes备份怎么使用iTunes备份win7telnetwindows7的TELNET服务在哪里开启啊google中国地图强大的谷歌地图,为什么中国不用起来重庆电信宽带管家中国电信电脑管家是什么?怎么样?
深圳域名空间 国外vps 国外vps主机 softlayer webhostingpad 坐公交投2700元 什么是服务器托管 789电视剧 cloudlink 空间租赁 上海电信测速网站 架设邮件服务器 西安服务器托管 路由跟踪 贵阳电信测速 日本代理ip 阵亡将士纪念日 双十二促销 美国主机侦探 windows2008 更多