contributionsgraph

graphsearch  时间:2021-02-11  阅读:()
JournalofMachineLearningResearch21(2020)1-5Submitted3/19;Revised11/19;Published03/20CausalDiscoveryToolbox:UncoveringcausalrelationshipsinPythonDiviyanKalainathandiviyan@fentech.
aiFenTech,TAU,LRI,INRIA,UniversiteParis-Sud20RueRaymondAron,75013Paris,FranceOlivierGoudetolivier.
goudet@univ-angers.
frLERIA,Universited'Angers,2boulevardLavoisier,49045Angers,FranceRitikDuttadutta.
ritik@iitgn.
ac.
inIITGandhinagar,Gandhinagar,Gujarat382355,IndiaEditor:AndreasMuellerAbstractThispaperpresentsanewopensourcePythonframeworkforcausaldiscoveryfromob-servationaldataanddomainbackgroundknowledge,aimedatcausalgraphandcausalmechanismmodeling.
TheCdtpackageimplementsanend-to-endapproach,recover-ingthedirectdependencies(theskeletonofthecausalgraph)andthecausalrelation-shipsbetweenvariables.
Itincludesalgorithmsfromthe'Bnlearn'(Scutari,2018)and'Pcalg'(Kalischetal.
,2018)packages,togetherwithalgorithmsforpairwisecausaldis-coverysuchasANM(Hoyeretal.
,2009).
CdtisavailableundertheMITLicenseathttps://github.
com/FenTechSolutions/CausalDiscoveryToolbox.
Keywords:CausalDiscovery,Graphrecovery,opensource,constraint-basedmethods,score-basedmethods,pairwisecausality,Markovblanket1.
IntroductionCausalmodelingiskeytounderstandphysicalorarticialphenomenaandtoguideinter-ventions.
MostsoftwaresforcausaldiscoveryhavebeendevelopedintheRprogramminglanguage(Kalischetal.
,2018;Scutari,2018),andafewcausaldiscoveryalgorithmsareavailableinPythone.
g.
RCC(Lopez-Pazetal.
,2015),CGNN(Goudetetal.
,2018)andSAM(Kalainathanetal.
,2019),whilePythonsupportsmanycurrentmachinelearningframeworkssuchasPyTorch(Paszkeetal.
,2017).
TheCausalDiscoveryToolbox(Cdt)isanopen-sourcePythonpackageconcernedwithobservationalcausaldiscovery,aimedatlearningboththecausalgraphandtheas-sociatedcausalmechanismsfromsamplesofthejointprobabilitydistributionofthedata.
Cdtincludesmanystate-of-the-artcausalmodelingalgorithms(someofwhichareimportedfromR),thatsupportsGPUhardwareaccelerationandautomatichardwaredetection.
AmaingoalofCdtistoprovidetheuserswithguidancetowardsend-to-endexperiments,.
ThisworkwasdoneduringDiviyanKalainathan'sPhDThesisatUniv.
Paris-Saclayc2020DiviyanKalainathan,OlivierGoudet,RitikDutta.
License:CC-BY4.
0,seehttps://creativecommons.
org/licenses/by/4.
0/.
Attributionrequirementsareprovidedathttp://jmlr.
org/papers/v21/19-187.
html.
Kalainathan,Goudet,Duttabyincludingscoringmetrics,andstandardbenchmarkdatasetssuchasthe"Sachs"dataset(Sachsetal.
,2005).
Comparedtoothercausaldiscoverypackages,Cdtuniespairwiseandscore-basedmulti-variateapproacheswithinasinglepackage,implementinganstep-by-steppipelineapproach(Fig.
1).
Figure1:TheCdtcausalmodelingpackage:GeneralpipelineCdtalsoprovidesanintuitiveapproachforincludingR-basedalgorithms,facilitatingthetaskofextendingthetoolkitwithadditionalRpackages.
Thepackagerevolvesaroundtheusageofnetworkx.
Graphclasses,mainlyforrecovering(un)directedgraphsfromob-servationaldata.
Cdtcurrentlyincludes17algorithmsforgraphskeletonidentication:7methodsbasedonindependencetests,and10methodsaimedatdirectlyrecoveringtheskeletongraph.
Itfurtherincludes20algorithmsaimedatcausaldirectedgraphprediction,including11graphicaland9pairwiseapproaches.
2.
OriginalcontributionsofthepackageThecausalpairwisesettingconsidersapairofvariablesandaimstodeterminethecausalrelationshipbetweenbothvariables.
Thissettingimplicitlyassumesthatbothvari-ablesarealreadyconditionedonothercovariates,orreadjustedwithapropensityscore(RosenbaumandRubin,1983),andthattheremaininglatentcovariateshavelittleornoinuenceandcanbeconsideredas"noise".
Thepairwisesettingisalsorelevanttocompleteapartiallydirectedgraphresultingfromothercausaldiscoverymethods.
Inthe2010s,thepairwisesettingwasinvestigatedbyHoyeretal.
(2009)amongothers,whoproposedtheAdditiveNoiseModel(ANM).
Lateron,Guyon(2013)onCause-Eectpair(CEP)prob-lems;CEPformulatesbivariatecausalidenticationasasupervisedmachinelearningtask,whereaclassieristrainedfromexamples(Ai,Bi,i),wherethevariablepair(Ai,Bi)isrepresentedbysamplesoftheirjointdistributionandlabeliindicatesthetypeofcausalrelationshipbetweenbothvariables(independent,Ai→Bi,Bi→Ai).
Cdtisonethefewpackagestoincludecausalpairwisediscoveryalgorithms.
Thesealgorithms,mostlyimple-mentedusingPythonorMatlabareoftenleftunmaintained.
Therefore,manyalgorithmsthatareknowntobequiteecient(suchasJarfo(Fonollosa,2019),rstandrstinthecause-eectpairschallenges,codedinPython2.
7)areoutdatedandrequireasubstantialamountofworktoxandupdate.
Cdtimplements9pairwisealgorithms,allcodedinPython,5ofthembeingnewimplementations(NCC,GNN,CDS,RECIandabaselinemethodbasedonregressionerror).
Thegraphsetting,extensivelystudiedintheliterature,issupportedbymanypack-ages.
Bayesianapproachesrelyeitheronconditionalindependencetestsnamedconstraint-basedmethods,suchasPCorFCI(Spirtesetal.
,2000;Strobletal.
,2017),oronscore-basedmethods,involvingndingthegraphthatmaximizesalikelihoodscorethrough2CausalDiscoveryToolbox:UncoveringcausalrelationshipsinPythongraphsearchheuristics,likeGES(Chickering,2002)orCAM(B¨uhlmannetal.
,2014).
OtherapproachesleveragetheGenerativeNetworksetting,suchasCGNNorSAM(Goudetetal.
,2018;Kalainathanetal.
,2019).
Graphsettingmethodsoutputeitheradirectedacyclicgraphorapartiallydirectedacyclicgraph.
MostapproachesinthegraphsettingareimportedfromRpackages,withtheexceptionofCGNNandSAM.
3.
ComparisonwithotherpackagesToourbestknowledge,CausalityandPy-CausalaretheonlyalternativestoCdtforcausaldiscoveryinPython.
However,theonlyoverlapwithCdtconcernsthePC-algorithm,commontoPy-CausalandCdt.
AkintoCdt,Py-CausalisawrapperpackagebutaroundtheTetradJavapackage.
Fig.
2comparestheruntimesofthetwoPCimplementationsonsyntheticgraphswithofvaryingsize,connectivity,andnumberofdatapoints,showingaconstantgapinwithrespecttothenumberofdatapointsandconnectivityofthegraph.
Thisgapisduetothecreationofthesubprocessandthedatatransfer,thatarenottakenintoaccountinthePyCausalexecutionruntime.
Thegapwithrespecttothenumberofnodesisduetodierentimplementationsandcomputationalcomplexity.
FurthereortwillbedevotedtoimposingtheeciencyofourPython-NumbaimplementationofPC.
Figure2:RuntimesofimplementationsofPConvariousgraphs4.
ImplementationandutilitiesRintegration.
Assaid,theCdtpackageintegrate10algorithmscodedinRand17codedinPython.
TheCdtpackageintegratesallofthem,usingWrapperfunctionsinPythontoenabletheusertolaunchanyRscriptandtocontrolitsarguments;theRscriptsareexecutedinatemporaryfolderwithasubprocesstoavoidthelimitationsofthePythonGIL.
TheresultsareretrievedthroughoutputlesbackintothemainPythonprocess.
ThewholeprocedureismodularandallowscontributorstoeasilyaddnewRfunctionstothepackage.
Sustainabilityanddeployment.
Inorderforthepackagetobeeasilyextended,foster-ingtheintegrationoffurthercommunitycontributions,specialcareisgiventothequalityoftests.
Specically,aContinuousIntegrationtooladdedtothegitrepository,allowstosequentiallyexecutetestsonnewcommitsandpullrequest:i)Testallfunctionalitiesofthenewversiononthepackageontoydatasets;ii)Builddockerimagesandpushthemtohub.
docker.
com;iii)Pushthenewversiononpypi;iv)Updatethedocumentation3Kalainathan,Goudet,Duttawebsite.
Thisprocedurealsoallowstotesttheproperfunctioningofthepackagewithitsdependencies.
5.
ConclusionandfuturedevelopmentsTheCausalDiscoveryToolbox(Cdt)packageallowsPythonuserstoapplymanycausaldiscoveryorgraphmodelingalgorithmsonobservationaldata.
Itisalreadyusedinresearchprojects,suchas(Yaleetal.
,2018;Kalainathanetal.
,2019).
Astheoutputgraphsarenetworkx.
Graphclasses,theseareeasilyexportableintovariousformatsforvisualizationsoftwares,usinge.
g.
GraphvizorGephi.
Atthepackageimport,testsarerealizedtopinpointthecongurationoftheuser:availabilityofGPUsandRpackagesandnumberofCPUsonthehostmachine.
Thepackagepromotesanend-to-end,step-by-stepapproach:theundirectedgraph(bi-variatedependencies)isrstidentied,beforeapplyingcausaldiscoveryalgorithms;thelatterareconstrainedfromtheundirectedgraph,withsignicantcomputationalgains.
Futureextensionsofthepackageinclude:i)reimplementingtheRalgorithmsinPython-NumbaandreimplementthePytorchalgorithmsinChainertodropallheavydependenciesandtointegrateCdtinthePythoncommunitywithaNumpy-API;ii)developingGPU-compliantimplementationofnewalgorithms;iii)handlinginterventionaldataandtime-seriesdata(e.
g.
forneuroimagingandweatherforecast).
Inthelongerterm,ourpriorityistoprovidetheuserwithteststowhetherthestandardassumptions(e.
g.
causalsuciencyassumption)holdandassesstheriskofapplyingmethodsoutoftheirintendedscope.
ReferencesPeterB¨uhlmann,JonasPeters,JanErnest,etal.
CAM:Causaladditivemodels,high-dimensionalordersearchandpenalizedregression.
TheAnnalsofStatistics,2014.
DavidMaxwellChickering.
Optimalstructureidenticationwithgreedysearch.
Journalofmachinelearningresearch,3(Nov):507–554,2002.
JoseA.
R.
Fonollosa.
Conditionaldistributionvariabilitymeasuresforcausalitydetection.
CauseEectPairsinMachineLearning,2019.
OlivierGoudet,DiviyanKalainathan,PhilippeCaillou,IsabelleGuyon,DavidLopez-Paz,andMicheleSebag.
Learningfunctionalcausalmodelswithgenerativeneuralnetworks.
ExplainableandInterpretableModelsinComputerVisionandMachineLearning,2018.
IsabelleGuyon.
Chalearncauseeectpairschallenge,2013.
URLhttp://www.
causality.
inf.
ethz.
ch/cause-effect.
php.
PatrikO.
Hoyer,DominikJanzing,JorisM.
Mooij,JonasPeters,andBernhardSch¨olkopf.
Nonlinearcausaldiscoverywithadditivenoisemodels.
InNeuralInformationProcessingSystems(NIPS),pages689–696,2009.
DiviyanKalainathan,OlivierGoudet,IsabelleGuyon,DavidLopez-Paz,andMich`eleSebag.
Structuralagnosticmodeling:Adversariallearningofcausalgraphs.
ArXiv,2019.
4CausalDiscoveryToolbox:UncoveringcausalrelationshipsinPythonMarkusKalisch,AlainHauser,etal.
Package'pcalg'.
2018.
URLhttps://cran.
r-project.
org/web/packages/pcalg/index.
html.
DavidLopez-Paz,KrikamolMuandet,BernhardSch¨olkopf,andIlyaOTolstikhin.
Towardsalearningtheoryofcause-eectinference.
InICML,pages1452–1461,2015.
AdamPaszke,SamGross,SoumithChintala,etal.
AutomaticdierentiationinPyTorch.
2017.
URLhttps://pytorch.
org/.
PaulRRosenbaumandDonaldBRubin.
Thecentralroleofthepropensityscoreinobservationalstudiesforcausaleects.
Biometrika,70(1):41–55,1983.
KarenSachs,OmarPerez,DanaPe'er,DouglasALauenburger,andGarryPNolan.
Causalprotein-signalingnetworksderivedfrommultiparametersingle-celldata.
Science,308(5721):523–529,2005.
MarcoScutari.
Package'bnlearn',2018.
URLhttp://www.
bnlearn.
com/.
PeterSpirtes,ClarkNGlymour,andRichardScheines.
Causation,prediction,andsearch.
MITpress,2000.
EricVStrobl,KunZhang,andShyamVisweswaran.
Approximatekernel-basedconditionalindependencetestsforfastnon-parametriccausaldiscovery.
2017.
AndrewYale,SaloniDash,RitikDutta,IsabelleGuyon,AdrienPavao,andKristinBennett.
Privacypreservingsynthetichealthdata.
ESANN,2018.
5

新版本Apache HTTP Server 2.4.51发布更新(有安全漏洞建议升级)

今天中午的时候看到群里网友在讨论新版本的Apache HTTP Server 2.4.51发布且建议更新升级,如果有服务器在使用较早版本的话可能需要升级安全,这次的版本中涉及到安全漏洞的问题。Apache HTTP 中2.4.50的修复补丁CVE-2021-41773 修复不完整,导致新的漏洞CVE-2021-42013。攻击者可以使用由类似别名的指令配置将URL映射到目录外的文件的遍历攻击。这里...

快快云:香港沙田CN2/美国Cera大宽带/日本CN2,三网直连CN2 GIA云服务器和独立服务器

快快云怎么样?快快云是一家成立于2021年的主机服务商,致力于为用户提供高性价比稳定快速的主机托管服务,快快云目前提供有香港云服务器、美国云服务器、日本云服务器、香港独立服务器、美国独立服务器,日本独立服务器。快快云专注为个人开发者用户,中小型,大型企业用户提供一站式核心网络云端服务部署,促使用户云端部署化简为零,轻松快捷运用云计算!多年云计算领域服务经验,遍布亚太地区的海量节点为业务推进提供强大...

UCloud云服务器香港临时补货,(Intel)CN2 GIA优化线路,上车绝佳时机

至今为止介绍了很多UCLOUD云服务器的促销活动,UCLOUD业者以前看不到我们的个人用户,即使有促销活动,续费也很少。现在新用户的折扣力很大,包括旧用户在内也有一部分折扣。结果,我们的用户是他们的生存动力。没有共享他们的信息的理由是比较受欢迎的香港云服务器CN2GIA线路产品缺货。这不是刚才看到邮件注意和刘先生的通知,而是补充UCLOUD香港云服务器、INTELCPU配置的服务器。如果我们需要他...

graphsearch为你推荐
ipad连不上wifiiPad mini WiFi开关成灰色无法连接,怎么办tcpip上的netbios网络连接详细信息上的netbios over tcpip是什么意思?phpecho为什么在PHP中使用echo FALSE;什么也输出不了?应该如何输出FALSE?谢谢!css选择器CSS中的选择器分几种?ipad上不了网平板电脑 能连接网络不能上网迅雷雷鸟啊啊,想下载《看门狗》可13GB的大小,我每秒才450KB,我该怎么样才能大幅度地免费提高电脑下载迅雷雷鸟迅雷app没有ios版本的吗?怎么回事phpemptyPHP~~什么时候用isset 什么时候用emptymorphvoxpro怎么用Morphvox pro 变声器 怎么用? 怎么在录音的时候有歌曲的曲子?winrar5.0winrar压缩3种格式分别有什么区别
shopex虚拟主机 黑龙江域名注册 vps教程 namecheap wordpress技巧 12306抢票助手 免费活动 qq云端 电信主机 爱奇艺会员免费试用 cloudlink 宏讯 中国linux iki 成都主机托管 网站加速 深圳主机托管 hdroad hosting24 超低价 更多