medium33669.com

33669.com  时间:2021-05-13  阅读:()
REVIEWARTICLEpublished:31July2014doi:10.
3389/fphys.
2014.
00282MitochondrialandcellularmechanismsformanaginglipidexcessMiguelA.
Aon*,NirajBhattandSoniaC.
CortassaDivisionofCardiology,DepartmentofMedicine,JohnsHopkinsUniversitySchoolofMedicine,Baltimore,MD,USAEditedby:PaoloBernardi,UniversityofPadova,ItalyReviewedby:NinaKaludercic,NationalResearchCouncilofItaly,ItalyChristianFrezza,Hutchison/MRCResearchInstitute,UKPaoloBernardi,UniversityofPadova,Italy*Correspondence:MiguelA.
Aon,DivisionofCardiology,DepartmentofMedicine,JohnsHopkinsUniversitySchoolofMedicine,720RutlandAvenue,RossBldg.
1059,Baltimore,MD21205,USAe-mail:maon1@jhmi.
eduCurrentscienticdebatescenterontheimpactoflipidsandmitochondrialfunctionondiverseaspectsofhumanhealth,nutritionanddisease,amongthemtheassociationoflipotoxicitywiththeonsetofinsulinresistanceinskeletalmuscle,andwithheartdysfunctioninobesityanddiabetes.
Mitochondriaplayafundamentalroleinagingandinprevalentacuteorchronicdiseases.
Lipidsaremainmitochondrialfuelshoweverthesemoleculescanalsobehaveasuncouplersandinhibitorsofoxidativephosphorylation.
Knowledgeaboutthefunctionalcompositionofthesecontradictoryeffectsandtheirimpactonmitochondrial-cellularenergetics/redoxstatusisincomplete.
Cellsstorefattyacids(FAs)astriacylglycerolandpackagethemintocytoplasmiclipiddroplets(LDs).
NewemergingdatashowstheLDasahighlydynamicstoragepoolofFAsthatcanbeusedforenergyreserve.
LipidexcesspackagingintoLDscanbeseenasanadaptiveresponsetofulllingenergysupplywithouthinderingmitochondrialorcellularredoxstatusandkeepinglowconcentrationoflipotoxicintermediates.
Hereinwereviewthemechanismsofactionandutilizationoflipidsbymitochondriareportedinliver,heartandskeletalmuscleunderrelevantphysiologicalsituations,e.
g.
,exercise.
Wereportonperilipins,afamilyofproteinsthatassociatewithLDsinresponsetoloadingofcellswithlipids.
Evidenceshowingthatinadditiontophysicalcontact,mitochondriaandLDsexhibitmetabolicinteractionsispresentedanddiscussed.
Ahypotheticalmodelofchanneledlipidutilizationbymitochondriaisproposed.
Directdeliveryandchanneledprocessingoflipidsinmitochondriacouldrepresentareliableandefcientwaytomaintainreactiveoxygenspecies(ROS)withinlevelscompatiblewithsignalingwhileensuringrobustandreliableenergysupply.
Keywords:palmitoylCoA,lipiddroplet,perilipin,beta-oxidation,redoxenvironment,energetics,reactiveoxygenspeciesDiscoveryconsistsofseeingwhateverybodyhasseenandthinkingwhatnobodyhasthought.
AlbertSzent-GyorgyiINTRODUCTIONTheroleoflipidsinhumanhealth,nutrition,anddiseaseistakingcenterstage.
Severalcircumstancesincludinghotlydebatedissuesconcurtoexplainthisunusualinterest.
Amongthem,pressingsocietalandbiomedicalissuesconcerningtheepidemicpropor-tionsofobesityandrelateddiseasesintheUnitedStatesanditsincreasingprevalenceworldwide.
Higherfoodconsumption,declineinphysicalactivityandaprogressivelyagingpopulationareamongthesocialandbehavioralrootsofthisphenomenon.
Biologically,itadoptstheformofaso-called"metabolicsyn-drome,"asetofcomorbiditiesincludingupperbodyobesity,insulinresistance,dyslipidemia,andhypertensionthatincreasetheriskfordevelopingtype2diabetes,coronaryarterydisease,andstroke(KokandBrindley,2012;SchillingandMann,2012).
Functionalimpairmentsassociatedwithincreasedcirculat-inglevelsoflipidsandtheirinducedmetabolicalterationsinfattyacids(FAs)utilizationandintracellularsignaling,havebeenbroadlytermedlipotoxicity(Wendeetal.
,2012).
Currentscien-ticdebatesconcerntheassociationoflipotoxicitywiththeonsetofinsulinresistanceinskeletalmuscle,andwithheartdysfunctioninobeseanddiabeticpatients.
Mitochondrialfunctioniscloselyassociatedwiththemount-ingattentiononlipids.
Oneobviousreasonisthatmitochondriaarethemainsiteoflipiddegradation.
However,themajordrivingforceunderlyingthisassociationisthefundamentalroleplayedbymitochondrialdysfunctioninagingandacuteorchronicdiseaseconditionssuchasmetabolicdisorders(obesity,diabetes),cancer,inammatorydisorders,neurodegeneration,andcardiovasculardisease(Akaretal.
,2005;Aonetal.
,2009;BuggerandAbel,2010;Camaraetal.
,2011;Martinez-Outschoornetal.
,2012;Wallace,2012;Helgueraetal.
,2013;Cortassaetal.
,2014;RossignolandFrye,2014).
Cellsprotectthemselvesfromlipotoxicityordeath(Bernardietal.
,2002;Penzoetal.
,2002)byeitheroxidizingFAsorseques-teringthemastriacylglycerol(TAG)withinlipiddroplets(LDs)(Greenbergetal.
,2011;WaltherandFarese,2012)(Figure1).
TheabilitytostoreTAGinLDsisevolutionarilyconservedandobservedinyeast,plants,invertebrates,andvertebrateswww.
frontiersin.
orgJuly2014|Volume5|Article282|1Aonetal.
MitochondrialfunctionandlipidexcessFIGURE1|Triglyceridesynthesis,storageinlipiddroplets,andFAoxidationincardiomyocytemitochondria.
AdetailedexplanationoftheprocessesdepictedinthisgurewillbefoundinsectionsLipidDropletsandTAGMetabolismandFattyAcidsandMitochondrialFunctionofthemaintext.
LDscanbeintercalatedwithmitochondriaorsurroundedbythemasshownschematicallyattherightbottom.
WhenmitochondriaandLDinteractinclosecontacttheschemesuggeststhatFAdegradationandactivationoccuratthecontactsitesbetweenbothorganelles.
FAprecursorsofβ-oxidationwillbesubsequentlymetabolicallychanneledtothematrix,andlikelyβ-oxidation,throughknownpathways(seeSectionMetabolicChannelingofLipidUtilizationFromCloseContactsBetweenMitochondriaandLipidDroplets:AHypothetical-QualitativeModelinthetextformoredetails).
(WaltherandFarese,2012).
LDsconstituteahighlydynamicFAstoragepoolthatcanbeusedforenergyreserve.
RecentevidenceshowsthatacuteexercisecantriggerchangesinthedynamicsofLDassembly,morphology,localizationandmobilizationinskele-talmuscle,aprocessregulatedbyabroadgeneticprogramaffect-ingthespatialandmetabolicinteractionbetweenmitochondriaandLDs.
Inthisprocess,theexercise-responsivetranscriptionalcoactivatorPGC-1αappearstoplayakeyroleincoordinatingintramuscularLDprogrammingwithmitochondrialremodeling(Kovesetal.
,2013).
Thereisabundantanecdotalevidencedescribingcloseinterac-tionbetweenmitochondriaandLD.
Earlyobservationsindicatedthatmitochondriaareoftenlocatednearasupplyofsubstrate,oratsitesinthecellknowntorequiretheATPgeneratedbythemitochondrion(Lehninger,1965).
OccasionalcloseassociationsbetweenmitochondriaandLDswerefoundinavarietyoftis-suessuchasmyocardium,liver,pancreas,andbrownadipose.
AsdescribedbyGhadially(1997):".
.
.
Asinglemitochondrionmayappearcloseto,spreadoutover,orfusedtothesurfaceofasmallLD,orseveralmitochondriamaybeseensurroundingalargerLD.
Inotherinstances,theLDmaylieinadeepinvaginationofthemitochondrialenvelope,anditisclearthatinanotherplaneofsectioningsuchadropletcouldeasilybemistakenforalipidinclusioninthemitochondrion.
.
.
,particularlyiftheinvaginatingmembranesarenotvisualized.
"Asearlyas1958,PaladeandSchidlowskisuggestedthatthesecloseassociationsweremeaningfulbecausethey"bringthemitochon-drialenzymesintoclosecontactwiththelipidicsubstrate"(PaladeandSchidlowski,1958,quotedbyGhadially,1997).
Althoughpotentialartifactsfromsamplepreparationcannotberuledout,andthatpathologicallyalteredmitochondriacanhaveaninuence,whendescribinglipidicinclusionsinmitochondria,Ghadially(1997)wrote:".
.
.
lipidicinclusionswerenotedinnormal-lookingmitochon-driawithwell-formedcristae,wherepresumablythelipidhasaphysiologicalrole.
"MorerecentexperimentaldataputsonamoresolidgroundtheideathattherearebothphysicalandmetabolicinteractionsbetweenLDandmitochondria.
TheseinteractionsappeartobeFrontiersinPhysiology|MitochondrialResearchJuly2014|Volume5|Article282|2Aonetal.
Mitochondrialfunctionandlipidexcessmodulatedbyrelevantphysiologicalsituationssuchasfastingandexercisetraining.
AvailableevidencealsoshowsthatproteinslocatedintheLDsurfacecloselyinteractwithenzymesofthelypolyticcascademodulatingFAacidefuxfromthedroplet.
LIPIDDROPLETSANDTAGMETABOLISMTAGisthemajorformofenergystoragethatwithsterolestersserveasreservoirsofmembranelipidcomponents(WaltherandFarese,2009).
IncardiomyocytesTAGsaresynthesizedbyacyltransferasesandphosphatasesatthesarcoplasmicreticu-lumandmitochondrialmembraneandthenpackagedintoLDs(WaltherandFarese,2009;SinghandCuervo,2012;Kienesbergeretal.
,2013).
TAGsynthesisisinitiatedbyglycerol-3-phosphateacyltransferases(GPAT)atthemitochondrialandsarcoplas-micreticulummembraneandthencompletedatthesarcoplas-micreticulumbysn-1-acyl-glycerol-3-phosphateacyltransferase(AGPAT),phosphatidicacidphosphatase(PAP),andsn-1,2-diacylglycerolacyltransferase(DGAT)reactions(Kienesbergeretal.
,2013)(Figure1).
NewlyformedTAGsarepackagedintocytoplasmicLDs.
Thus,lipidsarenotstoredasFAsbutasTAGs(triglycerides)producedbyaseriesofestericationreactionsthatcombinethreeFAmoleculeswithglycerol3-phosphate;forexample,theTAGforpalmitateistripalmitin.
LDsareconsidereddynamiccellularorganellesratherthansimplelipidstoragedepotsthat,relativelyrecently,havebeenimplicatedinmanybiologicalprocesses(WaltherandFarese,2009,2012;GreenbergandColeman,2011;SinghandCuervo,2012).
LDssizevariesfromadiameterof0.
1μminyeasttoover100μminawhiteadipocyte.
LDsconsistofasingleprotein-decoratedphospholipidmonolayerthatdelimitstheirhydropho-biccorefromtherestofthecell(FujimotoandParton,2011).
Thehydrophobiccorecontainsneutrallipids,mostnotablyTAGandsterolesters.
TheadiposetissueLDhasacorepredominantlyformedbyTAGwhereasinmostcellscholesterolandTAGsharethenuclearcoreoftheLD(SinghandCuervo,2012).
LDsareprominentinmanytypesofmammaliancells,withadipocytesbeingthemosthighlyspecializedforlipidandenergystorage.
LDsinteractwiththeendoplasmicreticulumandthemitochondria—thetwoorganellesthathavebeenproposedassitesofformationoftheautophagosomelimitingmembrane(Fujimotoetal.
,2008;Murphyetal.
,2009;SinghandCuervo,2012).
SuchcontactzonesarealsositesofactivelipidsynthesisenrichedinAcylCoA:diacylglycerolacyltransferase2(DGAT2),themajorenzymecatalyzingTAGsynthesis(Casesetal.
,2001;WaltherandFarese,2009).
TAGstoredinLDsiscatabolizedbythesequentialhydroly-sisofesterbondsbetweenFAsandtheglycerolbackbone.
TAGhydrolysisisatightlyregulatedprocessthatinvolvesacomplexinteractionbetweenlipasesandregulatoryproteins(Lassetal.
,2011).
TAGcatabolismisperformedbyacascadeoflipolyticreactionsthatisinitiatedbyadiposetriglyceridelipase(ATGL)producingdiacylglycerol(DAG).
Hormone-sensitivelipase(HSL)andmonoacylglycerollipase(MGL)completethelipolyticcas-cadebysequentiallyhydrolyzingDAGandmonoacylglycerol(MAG),respectively,(Figure1).
MAGlipase(MGL)performsthenalstepinTAGcatabolismbyhydrolyzingMAGstoglycerolandFAs(Kienesbergeretal.
,2013).
TherateoflipolysiscanbedramaticallystimulatedbyadrenergichormonesviaactivationofproteinkinaseA(PKA).
PKAphosphorylatesperilipinandHSLandcausesacomplexsetofeventsleadingtoTAGhydrolysis.
TheFAsreleasedduringTAGcatabolismaremainlyusedforβ-oxidationandsubsequentATPsynthesisviaOxPhosinmito-chondria(Figure1;seebelow:FattyAcidsandMitochondrialFunction).
Inoxidativetissuessuchastheheart,TAG-derivedFAsareutilizedasanenergysource,buttheyalsoserveassignalingmoleculesaswellasbuildingblocksformembranesandcomplexlipids.
Hepatocytes,heartandskeletalmyocytes,adrenocorticalcells,enterocytes,andmacrophagesmayallcontainlargeamountsofLDs.
ExcessiveLDaccumulationisahallmarkofT2DM,obesity,atherosclerosis,hepaticsteatosis,andothermetabolicdiseases.
However,incertainorganslikeskeletalmuscle,intramy-ocellulartriacylglycerol(IMTG)accumulationisnotstrictlyapathologicphenomenon(seebelow:Mitochondria,LipidsandInsulinResistance).
Lipidcontentiselevatedinredcomparedwithwhiteskeletalmusclesandincreasesinresponsetohabit-ualexerciseinbothoxidativeandglycolyticbers.
The"athleteparadox"consistsofIMTGaccumulationobservedinendurance-trainedathletesthatretaininsulinsensitivityirrespectiveofthefactthatinsomecasesIMTGsexceedthosemeasuredinseden-taryobeseorT2DMobesepatients(Goodpasteretal.
,2001;vanLoonetal.
,2003;Shawetal.
,2010;EganandZierath,2013;Kovesetal.
,2013).
Aswithaerobicexercise,bothmuscleglycogenandIMTGcontributetoenergyprovisionduringresistanceexercise(Koopmanetal.
,2006).
MITOCHONDRIAANDPERILIPINSTheproteinfamilyofperilipins(Plin)isassociatedwithLDs.
AsscaffoldingproteinsperilipinsaffectthespatialandmetabolicinteractionsbetweenLDandmitochondria(Figure1).
DevelopmentoftissuelipotoxicityanddysfunctionislinkedtoalterationsinLDbiogenesisandregulationofTAGhydrolysis(WangandSztalryd,2011).
SinceinresponsetolipidloadingofcellsperilipinsassociatewithLDstheroleoftheseproteinsisunderintensescrutiny.
ThePlinproteinfamily,orPATforperilipin/ADRP/TIP47,isconstitutedbyPlin1toPlin5,anddropletsmaycontainvariouscombinationsofthem(Greenbergetal.
,2011).
Plin1isthemostabundantPATproteininadipocytesandPlin2intheliver,whereithasbeenlinkedtohepaticsteatosis.
WhereasPlin1and4arelimitedtoadiposetissue,Plin2and3areubiquitous.
Plin1and2arealwaysfoundinanLD-boundstatewhereasPlin3to5canbeeitherLD-boundorfreeinthecytoplasm.
Geneticmanipulationsaimingatablatingperilipinstoinferabouttheirphysiologicalrolesandimpactonfatdepositionhavebeenperformed.
Plin1-nullmiceareleananddevelopsys-temicinsulinresistanceastheygrowolder.
Plin1-nulladipocytesexhibitedenhancedratesofconstitutive(unstimulated)lipol-ysisandreducedcatecholamine-stimulatedlipolysis(Tanseyetal.
,2001).
Together,thesedatasuggestedthatPlin1proteinenhancescatecholamine-stimulatedlipolysisand,importantly,thatareductioninPlin1proteinexpressionisassociatedwithincreasedconstitutivelipolysis,whichcanpromotesystemicinsulinresistance(Greenbergetal.
,2011).
www.
frontiersin.
orgJuly2014|Volume5|Article282|3Aonetal.
MitochondrialfunctionandlipidexcessPlin5isfoundprimarilyinoxidativetissues,e.
g.
skeletalandheartmuscles,liver(Bickeletal.
,2009).
Plin5knockoutmicelackeddetectableLDsintheheartandhadsignicantlyreducedmyocardialTAGcontent,aneffectthatwasrescuedbylipaseinhi-bition(Kuramotoetal.
,2012).
TheexcessiveTAGcatabolismexhibitedbyPlin5-decientheartswasparalleledbyincreasedFAoxidation(FAO)andenhancedROSlevelsthatledtoanage-dependentdeclineinheartfunction.
Thus,itwassuggestedthatuncontrolledlipolysisanddefectiveTAGstorageimpaircardiacfunctionthroughchronicmitochondrialFAoverload.
Plin5mayregulateLDdegradationandtheuxoflipolysis-derivedFAstomitochondriaforenergyproduction(Figure1)(Kienesbergeretal.
,2013).
Plin5overexpressionincardiacmuscleproducedarobustincreaseinLDsresultingincardiacsteatosisbutwith-outmajorconsequencesforheartfunction.
ThisdataindicatedthatPlin5playsacriticalroleindropletformationandstabiliza-tionviaitsregulatoryroleoflipolysisinvivo(Wangetal.
,2013).
Interestingly,mitochondriainhearttissuefromthePlin5overex-pressorappearedtoalwaysbedistributedintightclustersaroundLDsexhibitingasignicantincreaseinsizewithoutchangesinnumberasrevealedbymorphometricanalysis(Wangetal.
,2013).
Inskeletalmuscle,Plin5overexpressionincreasedIMCLcontentwithouthinderinginsulinmediatedglucoseuptakewhilepro-motingtheexpressionofgenesinvolvedinmitochondrialFAOandfatcatabolism(Bosmaetal.
,2013).
Inliver,down-modulationofPlin2promotesareductioninhepaticsteatosisandincreasesinsulinsensitivity,butareductioninbothPlin2andPlin3causesinsulinresistance(Greenbergetal.
,2011).
Intheheart,Plin2doesnotpromotetheinteractionofmitochondriawithLDs,butincreasedTAGaccumulationassoci-atedwithreducedpresenceofATGLinLDanddecreasedlipolysis(Wangetal.
,2011).
Astherstenzymefromthelipolyticcascade(Zimmermannetal.
,2004),theconstitutiveactivityofATGLispredominantlyresponsibleforbasallevelsoflipolysis(Greenbergetal.
,2011).
ATGLoverexpressioninacardiomyocyte-specicmannerdecreasedmyocardialTAGandlipotoxicintermediatesaccumulationintype1diabeticmice(Pulinilkunniletal.
,2013).
ThisresultedindecreasedrelianceonFAO,andpreservedcontentofrespiratorycomplexesaswellascardiacfunctionduringearlystagesofdiabetes.
Overall,thereporteddataindicatethatreducedexpressionofperilipinsmaypromotebothlipolysisandfatoxidation,result-inginreducedintracellularTAGandadiposemass.
Ontheotherhand,excessivelypolysisanddefectivelipidstoragemaypro-moteinsulinresistanceandimpairedcardiacfunctionthroughchronicmitochondrialFAoverload.
Consequently,lipidstorageandutilizationappearstobeatightlyregulatedcellularprocess.
FATTYACIDSANDMITOCHONDRIALFUNCTIONPreservationoftheintracellularredoxenvironment(RE)iscru-cialforvitalfunctionssuchasdivision,differentiation,contractileworkandsurvivalamongstothers(SchaferandBuettner,2001;Aonetal.
,2007,2009;Brownetal.
,2010;Fisher-WellmanandNeufer,2012;Jeongetal.
,2012;Lloydetal.
,2012;MuoioandNeufer,2012;AggarwalandMakielski,2013).
MitochondriaaremaindriversoftheintracellularRE(Aonetal.
,2010,2012;Stanleyetal.
,2011;Tocchettietal.
,2012;Fisher-Wellmanetal.
,2013;Kembroetal.
,2013)andtogetherwithperoxisomesconsti-tutethemainsubcellularcompartmentswherelipiddegradationoccurs.
Yet,theimpactoflipidsonmitochondrialredoxstatusandROSemission,andtheirlinkstoenergeticsarenotfullyelucidated.
FAsaremainmetabolicfuelsinheartandskeletalmuscle,andβ-oxidationrepresentstheirmaindegradationpathway.
Therateofβ-oxidationisledbydemandsinceanincreaseinworkrateandATPutilizationleadstofasteroxidativephosphorylation(OxPhos)andtricarboxylicacid(TCA)cycleactivity.
Inturn,thedecreaseinNADHandacetyl-CoA(AcCoA)levelsleadstoanincreaseoftheβ-oxidationux(Neelyetal.
,1969;Orametal.
,1973;Eatonetal.
,1996a;Eaton,2002;Lopaschuketal.
,2010).
Lipidsaresuppliedintheformofalbumin-boundFAssecretedfromadiposetissueorbycatabolismofverylowdensitylipoprotein(VLDL)complexbycoronaryvascularendotheliallipoproteinlipases(Figure1).
LongchainFA(LCFA)trans-portrequirescarrierproteinsinthesarcolemma(FATP1,fattyacidtransporterprotein1;FABP,plasmamembrane-associatedfattyacid-bindingprotein;LCFAT,long-chainfattyacidtrans-porter;OCTN2,plasmamembranesodium-dependentcarnitinetransporter;FAT/CD36,fattyacidtranslocaseCD36)andthemitochondria(CPT1,carnitinepalmitoyltransferase1;CACT,carnitine:acylcarnitinetranslocase).
Uponentryintothecell,LCFArstgetsactivatedbyform-ingthioesterswithcoenzymeA(CoA),LCFA-CoA,andiseitheroxidizedinthemitochondriaviaβ-oxidationorformsTAGbyesterication(Figure1).
SubsequentlyTAGscanbestoredintheformofLD.
Long-chainFAsareactivatedonthemitochondrialoutermembranebythelong-chainacyl-CoAsynthetasebutthemitochondrialinnermembraneisnotpermeabletotheseacyl-CoAs.
CPT1catalyzestheconversionoflong-chainacylCoAtolong-chainacylcarnitine,whichissubsequentlyshuttledintothemitochondria(Lopaschuketal.
,2010).
ControlatthelevelofCPT1activityappearstobeimportantinheartandskeletalmus-cleβ-oxidationux(AwanandSaggerson,1993;Lopaschuketal.
,1994;Zammit,1999;Eaton,2002).
AfteritsformationbyCPT1,thelong-chainacylcarnitineistranslocatedacrosstheinnermitochondrialmembranebyCACTthatinvolvestheexchangeofcarnitineforacylcarnitine.
CACThasextremelyhighactivityinmostcelltypeswithactiveβ-oxidation(RamsayandTubbs,1976;Noeletal.
,1985;Eaton,2002).
CACTisacriticalstepinthetranslocationofFAmoietiesintothemitochondria,asevidencedbythedevelopmentofcar-diomyopathiesandirregularheartbeatsinindividualswithCACTdeciencies(Lopaschuketal.
,1994,2010).
Inthematrix,acylcarnitineisconvertedbacktoacylCoAandcatabolizedviaβ-oxidation.
Theβ-oxidationofactivatedFAsoccurswithinthemitochondrialmatrixandiscatalyzedbythesequentialactionoffourenzymefamilies(acyl-CoAdehydroge-nase,enoyl-CoAhydratase,3-hydroxyacyl-CoAdehydrogenase,and3-ketoacyl-CoAthiolase),withacyl-CoAdehydrogenaseexhibitingdifferentsubstratespecicityforshort-,medium-,long-andverylong-chainacyl-CoAs(Kunauetal.
,1995;Eatonetal.
,1996a;KernerandHoppel,2000).
Theendproductofeachcycleofβ-oxidationisAcCoA,shorteningtheLCFAby2car-bons.
AcCoAthenenterstheTCAcycleforcompleteoxidationFrontiersinPhysiology|MitochondrialResearchJuly2014|Volume5|Article282|4Aonetal.
MitochondrialfunctionandlipidexcessrenderingreducingequivalentsintheformoftheelectrondonorsNADHandFADH2leadingtoATPsynthesisviaOxPhosintherespiratorychain(Figure1).
Ultimately,ATPisutilizedbythecontractilemachinerytotransducechemicalenergyintomechan-icalwork.
ROSmayalsoaffectcontractileperformanceviasignal-ingorredoxmodicationofsensitivecysteinesfrom,e.
g.
,myosinheavychain(Cantonetal.
,2011;Steinberg,2013).
Besidestheirmetabolicroleintheprovisionofenergy,long-chainfreeFAsexertdiverseeffectsoncellularmembranesandonthecatalyticactivitiesofmanyenzymes(Loskovichetal.
,2005).
FAsplaythedualroleofuncouplersandinhibitorsofmito-chondrialrespiration(WojtczakandSchonfeld,1993)throughaprotonophoriceffectontheinnermembrane,andaninhibitoryactionontheelectrontransferchain(SchonfeldandReiser,2006;SchonfeldandWojtczak,2007,2008).
Additionally,FAshavethepotentialtodrasticallyaltermitochondrialmembranesper-meabilitythroughopeningofthepermeabilitytransitionpore(Scorranoetal.
,2001;Bernardietal.
,2002;Penzoetal.
,2002,2004).
Excludedfromtheseeffectsaretheacyl-CoAsthatdonotexertprotonophoricactivityanddonotuncoupleOxPhosbecausetheyareunabletocrosstheinnermitochondrialmem-brane(Wojtczak,1976).
FreeFAscanactasspeciccomplexI-directedinhibitors(Loskovichetal.
,2005;SchonfeldandWojtczak,2008),andlong-chainacyl-CoAsareknowninhibitorsofANT(PandeandBlanchaer,1971;Lerneretal.
,1972;Wojtczak,1976).
Theinhibi-tionisofacompetitivecharacter(DuszynskiandWojtczak,1975)andstronglydependsonthecarbonchainlengthofthefattyacylmoiety(Moreletal.
,1974).
FurtherevidencethatFAs,intheiranionicform,canbesubstratesfortransportbyANTwasgivenbytheirinhibitoryeffectonATPandADPexchanges(WojtczakandZaluska,1967;Schonfeldetal.
,1996;Klingenberg,2008).
AccordingtotheFAcyclingmodel(Skulachev,1991)undissoci-atedFAmoleculescanundergoaspontaneousip-opfromtheoutertotheinnerleaetoftheinnermitochondrialmembranewheretheyreleaseprotonsbecauseofthealkalinemilieuofthematrix.
Then,intheformofanions,theyaretransportedbacktotheexternalleaetbyANT;oneprotonistransferredfromtheexternalspacetothematrixcompartmentpermoleculeoftheFApercycle.
Inthismanner,FAscanleadtoenergydissipationthroughaselectiveprotonophoricactionmediatedbycouplingoftransmembranemovementofthefattyacylanion(viatheANT,uncouplingproteins,UCPs,and/orotherinnermembranecarriers).
Theseeventsresultindissipativeprotoncyclingthatdecreasestheprotonmotiveforcetherebyaffectingrespiration,ATPsynthesis,andionhomeostasis.
PalmitoylCoAinhibitstheANTindependentlyfromβ-oxidation,accordingtomorerecentevidenceobtainedinisolatedmitochondriafromratliver(Ciapaiteetal.
,2005)andguineapigheart(AonandCortassa,unpublished)respiringonG/M.
InthecaseoflivermitochondriaitwasshownthattheANTinhi-bitioninducedchangesinintra-andextra-mitochondrialATPconcentrationsandm.
ThisinterferencewiththeANTcarrierincreasedmandthereductionlevelofcoenzymeQ(Bakkeretal.
,2000)bothexpectedtopromotetheformationofROS.
StudiesfurthershowedthatthePCoA-elicitedconcentration-dependentH2O2formationcanbeexplainedbyitseffectonmthatinthepresenceof5μMPCoAshoweda13mVincrease(Ciapaiteetal.
,2006).
ThespecicactionofPCoAontheANTintheliver(Ciapaiteetal.
,2006),isincontrastwithanapparentmultitargeteffectintheheart(AonandCortassa,unpublished).
Thesedifferencesmaybegivenbyintrinsicfunctionaldifferencesduetospecies(rat,guineapig)ororganspecicity,e.
g.
,liverandheartmitochondria.
DifferencesmayalsobelinkedtothepresenceofdistinctFAtransporters(FATPsorSLC27As)orFAbindingproteins(FABPs).
MITOCHONDRIA,LIPIDS,ANDINSULINRESISTANCETheshiftfromintermediatevaluesofRE,correspondingtoROSlevelscompatiblewithsignalingfunctions(Aonetal.
,2010;Cortassaetal.
,2014),towardeithermorereducingoroxidizingconditionsisatopicofgreatpotentialimportanceandinterestwithimplicationsforinsulinsignaling.
Indeed,theassociationbetweenlipotoxicityandtheonsetofinsulinresistanceinskele-talmuscleisahotlydebatedsubject(MuoioandNeufer,2012).
OnesidepositsthatitisduetodysfunctionalmitochondriawithintrinsicdecienciesinOxPhosanddecitsinfatoxidation.
TheseimpairmentsimpingeoninsulinsignalingbydivertingFAsawayfromoxidationandtowardproductionofDAGs,ceramideandothertoxiclipidspecies(LowellandShulman,2005;Roden,2005).
Theothersideofthedebatenotesthatthisideaisincom-patiblewiththeprinciplesofbioenergeticsbecausemitochondrialrespirationisgovernedbyenergydemand;intracellularlipidswillaccumulatewheneverFAssupplyexceedstheenergyneedsofthecell.
Consequently,theysuggestthattheetiologyofmuscleinsulinresistanceisgroundedonthefundamentalprinciplesthatgov-erncellularandmitochondrialbioenergeticsandtheredoxstressthatisplacedontherespiratorysystemwhenenergysupplyper-sistentlyoutpacesenergydemand(MuoioandNeufer,2012).
InagreementwiththisideaotherauthorshaveemphasizedthatthematchingbetweenincreasedFAavailabilityandoxidativecapacitydistinguishestheincreaseinIMTGfollowingendurancetrainingfromobesity/diabeticconditions.
Chronicexercisetrainingcanelicithighoxidativecapacityconferredbyhighermitochondrialcontentbutnotmitochondrialfunction.
Undertheseconditions,lipidinfusioninendurance-trainedathletesisabletoreduceinsulinsensitivityonlyby29%ascomparedto63%inuntrainedsubjects(Phielixetal.
,2012).
WhereasinexercisetrainingIMTGreectsanincreasedrelianceonfatsassubstrate,inobesity/diabeteswillimplyaccumulationoflipidmetabolites[longchainfattyacyl-CoA(LCFA-CoA),DAG,andceramide]thatareresponsiblefortheimpairmentininsulinactionratherthantheIMTGpoolcon-tainedinLDs(Schrauwenetal.
,2010;Fisher-WellmanandNeufer,2012).
Apparently,increasedconcentrationsofintramus-cularLCFA-CoAandDAGactivatePKC,whichappearstoinduceimpairmentsininsulinsignalingviaserinephosphorylationoftheinsulinreceptorsubstrate-1.
Inamodelofdiet-inducedobe-sity,accumulationofacylcarnitines,asproductsofincompleteβ-oxidation,wasshowninskeletalmuscle(Kovesetal.
,2008).
Thesendingsledtotheideaofamitochondria-derivedsig-nalthatcouplesincompleteβ-oxidationwithinsulinresistance.
ChronicelevationsofincompleteoxidationintermediatesofFAsandbranched-chainaminoacids(Newgard,2012)mightfosterwww.
frontiersin.
orgJuly2014|Volume5|Article282|5Aonetal.
MitochondrialfunctionandlipidexcessamitochondrialmicroenvironmentthatisconducivetohigherH2O2releasefrommitochondriawithpotentialtomodulateinsulinsignaling(Fisher-WellmanandNeufer,2012;MuoioandNeufer,2012).
Thedebateabouttheroleofmitochondrialandlipidmetabolismattheoriginofinsulinresistanceishighlyrelevantforthediabeticheartbecauseofitsheavydependenceonfatsforfunction(Hollowayetal.
,2009,2011).
Thedebatecenteredonthemitochondrialload-oxidativepotentialinskeletalmuscle,isalsorelevantfortheheartwherefunctionisledbyenergydemand.
Infact,lipidaccumulationintheheartislargelyseenasamis-matchbetweensupplyanddemand,i.
e.
,lipidsamasswhensupplyoutpacesdemand.
Afundamentallyimportantquestionstillheavilydebatediswhetherornotashiftinsubstratepreferencetowardfatoxi-dationlowersdiseaserisk(MuoioandNeufer,2012).
FAsandglucosearethetwomajorfuelsdrivingheartcontraction.
Intype2diabetesandobesityFAOisincreased(Lopaschuk,2002;CarleyandSeverson,2005)butourknowledgeaboutthecom-binedeffectsofhyperglycemia,ahallmarkofdiabetes,andhighFAavailability,onmetabolism,redox/ROSbalanceandtheirimpactonheartfunctionisincomplete.
Althoughthehealthyheartisexibleregardingfuelselection,inthemetabolicallychallengeddiabeticheartbyhighlevelsofglucoseandfat,thefactorscontributingtodysfunctionandwhicharebenecialasenergysourceorredoxdonorsarestillunclear.
Existingcom-pellingevidenceindicatesthatsubstrate-drivenredoxstatusplaysacriticalroleincardiaccontractileperformanceintype2diabeteswherecellular/mitochondrialredoxandenergeticsarealtered(seebelow:Mitochondrial,CellularandOrganMechanismsforManagingLipidAfuence)(Andersonetal.
,2009a;Tocchettietal.
,2012).
Overall,thereisnodisputingthatlipidoxidationcon-fersametabolicadvantageduringstarvationandexercise,buttheroleoffuelselectionperseindefendingagainstmetabolicdiseaseneedsfurtherinvestigation.
MITOCHONDRIAL,CELLULAR,ANDORGANMECHANISMSFORMANAGINGLIPIDAFFLUENCEAsimportantfuelsofcellularfunctionitisverywellknownhowFAsaredegradedbymitochondria.
Yet,themechanismsbywhichmitochondriamanagelipidexcessarelargelyunknown.
Theroleofβ-oxidationperseasanunderlyingcauseofobesity-associatedglucoseintoleranceremainsatopicofactiveresearchanddebate(Fisher-WellmanandNeufer,2012;MuoioandNeufer,2012).
Furthermore,mitochondriaplayacentralroleinthedevelop-mentofdiabetesandobesitycomplications(BuggerandAbel,2010;SivitzandYorek,2010)andtheirenergetic/redoxdysfunc-tionisdirectlyinvolvedintheredoximbalanceexhibitedbytheheart(Tocchettietal.
,2012;Frasieretal.
,2013)andskeletalmuscle(Andersonetal.
,2009a).
MitochondriaandlipidoxidationplayapredominantroleasdriversoftheintracellularRE.
FAsareamajorsourceofcellu-larATPwhich,intheheart,issynthesizeduptotwothirdsviareducingequivalents(e.
g.
,24NADH,8FADH2forpalmitate)derivedfromβ-oxidationinmitochondria.
ThehigherenergeticbudgetprovidedbythesaturatedFApalmitate(threetimeshigherthanfromglucosewhenATP/molsubstrateisconsidered)intheformofreducingpowerprovideselectronstoantioxidantsys-temsandthemitochondriarespiratory/energeticmachinery.
Inagreementwiththeprominentroleoflipidsontheintracellu-larredoxstatus,itwasshownthatPalmdeterminedatransitionfromoxidized-to-reducedcellularredoxstatusincardiomyocytesfromtype-2diabetic(db/db)heartsabatingROSlevelsdrasti-cally(Tocchettietal.
,2012).
ThiseffectwascoupledtoamarkedGSHrisebothinwildtypeanddb/dbmyocytes.
Asaconse-quenceofitsfavorableeffectoncellularredoxbalance,Palmsignicantlyimprovedisoproterenol-inducedcontractilereserveindb/dbcardiomyocytes(Tocchettietal.
,2012).
Keepingapropercellular/mitochondrialREisvitalforoptimalexcitation-contraction(EC)couplingaswellasenergysupplyintheheart(Burgoyneetal.
,2012;ChristiansandBenjamin,2012;Nickeletal.
,2013,2014).
IntracellularredoxbalanceaffectsCa2+handlingbyinterferingwithawiderangeofproteinsimplicatedinECcoupling(Fauconnieretal.
,2007)includingtheSRCa2+releasechannels[theryanodinereceptors],theSRCa2+pumps,andthesarcolemmalNa+/Ca2+exchanger(ZimaandBlatter,2006;DedkovaandBlatter,2008).
Alsounknowniswhetherthemechanismsutilizedbymitochondriatodealwithlipidexcessdifferbetweenorgans.
Importantexamplesaretheskeletalandcardiacmuscleswhereβ-oxidationpredominatesduetotheirlackofdenovolipogenesis(Eaton,2002).
Certainly,theorgan'sfunc-tionalspecicityplaysarole.
Asamatteroffact,skeletalmuscleisthelargestglycogenstorageorgan(4-foldthecapacityoftheliver)thuscriticalforglycemiccontrolasthepredominant(80%)siteofglucosedisposalunderinsulin-stimulatedcon-ditions(DeFronzoetal.
,1981;EganandZierath,2013).
Ontheotherhand,theheartcarriesoutitspumpfunctiontransducingthechemicalenergystoredinFAsandglucoseintomechani-calandelectricalenergy.
Atrest,theheartcyclesabout6kgofATPeverydaywhilebeatingabout100,000times(Neubauer,2007).
MitochondriaprovidethebulkoftheATPneededforcardiacmusclecontraction(abouttwothirds)andsarcolemmalandsarcoplasmiciontransport(onethird),responsiblefortheCa2+transientsandelectricalactivityincardiaccells(SolainiandHarris,2005;Cortassaetal.
,2009;Nickeletal.
,2013).
ThefarhigheramountsofO2processedbytheheartonaspecicbasiswithrespectto,e.
g.
,brainandskeletalmuscle(RolfeandBrown,1997),anditscontinuousactivity,makethisorgansusceptibletooxidativedamage(Burgoyneetal.
,2012;ChristiansandBenjamin,2012).
Asamatteroffact,myocardialfunctionandtheabilityofthehearttotoleratestressdeclinewithage(LakattaandSollott,2002).
Althoughthemechanismscon-tributingtoage-relatedalterationsinmyocardialfunctionarenotfullyunderstood,mitochondrialdysfunction,oxidativestressandtheaccumulationofoxidant-induceddamagearemajorfactors(Fanninetal.
,1999;Suhetal.
,2003;Judgeetal.
,2005).
DefectsinmitochondrialFAβ-oxidationleadtoseveralwell-knownmetabolicdisorders,suchasReyesyndrome,cardiomy-opathyandsuddeninfantdeathsyndrome(RoeandDing,2001;Yangetal.
,2001).
Themaintenanceofhighlevelsofmitochon-drialβ-oxidationcouldreducetheexcessivefataccumulationandstorageleadingtohumanobesity.
LipidoverloadinvolvingTAGaccumulationinnon-adiposetissuescharacterizesdisorderssuchashyperlipidemiaandlipodystrophies,heartdysfunction,liverFrontiersinPhysiology|MitochondrialResearchJuly2014|Volume5|Article282|6Aonetal.
Mitochondrialfunctionandlipidexcessdisease,inbothhumansandinanimalmodelsofobesityanddiabetes.
ItisbecomingincreasinglyclearthatadequateregulationofTAGmetabolismindifferentorgansiscriticalforbothenergymetabolismandfunction.
Liverandheartrespondtothemas-siveinuxoflipidsfrombloodbyupregulatingLDbiogenesis,asamechanismofdefenseagainstthetoxicityofFAs,whichuponestericationgetconvertedintoTAGandstoredintoLD(Lassetal.
,2011).
Failuretodosointheliveroriginatespathogenicconditionssuchassteatosisandsteatohepatitis(Greenbergetal.
,2011).
ThelipidexcesssituationisalsorelevantforheartfunctioninT2DMwhereFAsarepreferredfuels(Lopaschuketal.
,2010).
However,underacute,non-chronic,conditionsFAscanexhibitadvantageousactions,especiallyintheheartunderdiabeticcon-ditions(Tocchettietal.
,2012).
CellularTAGaccumulationinLDsmaybebenecialratherthandetrimentalbecauseitdivertsFAsfrompathwaysleadingtocytotoxicitythusservingasabufferagainstlipotoxicity(Listenbergeretal.
,2003).
Fromtheexamplesandargumentsabove,itisclearthatlipidshaveaconsiderableimpactonmanycellularprocesses,includ-ingmitochondria.
Thisimpactinuencesthefunctionaloutcomeofseveralorganssuchastheliver,skeletalandcardiacmuscles.
Deregulationoflipidmetabolismproducesoverloadthatisattheoriginorasanaggravatingconsequenceofmanydiseases.
Consequently,thefundamentalaswellaspracticalimportanceofunravelingthemechanismsbywhichmitochondriahandlelipidsexcesscannotbeoverstated.
First,atthemostbasiclevel,wedonotknowenoughaboutlipidsactiononmitochondrialener-geticandredoxfunctions.
LipidscanactbothasuncouplersandinhibitorsofOxPhos(WojtczakandSchonfeld,1993;Bernardietal.
,2002),andtheconsequencesofthesecontradictoryeffectsonmitochondrialenergetic,redoxandsignalingfunctionsarejuststartingtobeunraveled(SchonfeldandWojtczak,2008).
Second,besidesbeingthemainsiteoflipiddegradation,mitochondriamaybeactivelymodulatingthebalancebetweenlipidstorageandutilization.
Inthefollowingsectionsweexploresomeofthenewemergingmechanismsoflipidstorageandutilizationbymitochondriaattheorganelle,cellularandorganlevelindifferentphysiologicalsettings.
CLOSECONTACTMITOCHONDRIA-LIPIDDROPLETRegularexerciseandphysicalactivityareconsideredcornerstonesintheprevention,management,andtreatmentofnumerouschronicconditions,includinghypertension,coronaryheartdis-ease,obesity,T2DM,andage-relatedmusclewasting(sarcopenia)(Haskelletal.
,2007;Colbergetal.
,2010;EganandZierath,2013).
Exercisetrainingenhancesmitochondrialbiogenesisandper-formanceinskeletalmuscle(Irrcheretal.
,2003),butnotintheheart(Lietal.
,2011).
WhetherthesameistrueinT2DMheartsisunclear.
InelectronmicrographsLDscanbeeasilydetectedintype2diabetic(db/db)(Boudinaetal.
,2007)orob/ob(Geetal.
,2012)butnotinWTmicehearts.
IncellsLDscanbereadilyvisu-alizedusingtheuorescentFAanalog(dodecanoicacid)BODIPYthatlabelsneutrallipidsincytoplasmicdroplets(WaltherandFarese,2012).
TheoccurrenceofclosecontactbetweenmitochondriaandLDintheheartisremarkablebecauseofitsdependenceonmito-chondrialenergeticspreferentiallyfueledbyFAs.
Morenotewor-thythoughisthefactthattheseclosecontactsoccurintheT2DMheart,wherethedependenceonfatfuelingisevenmorepromi-nent(Lopaschuk,2002;BuggerandAbel,2010).
Interestingly,Plin5overexpressioninhearttissuerenderedtightmitochondrialclustersaroundLDswithmitochondriasignicantlylargerbutnothigherinnumber(Wangetal.
,2013).
Thesameauthorspro-posedthatPlin5couldplayaregulatoryroleintheFAuxfromLDstomitochondriaunderconditionsofincreasedcellularFAinux(WangandSztalryd,2011).
ThesedataalsosuggestthatPlin5withitsroleoffavoringLDaccumulationmayacttokeeptheintracellularlevelsofFAmetabolites(e.
g.
,DAG,ceramide)belowlipotoxicamounts(seebelow:MetabolicChannelingofLipidUtilizationFromCloseContactsBetweenMitochondriaandLipidDroplets:AHypothetical-QualitativeModel).
InskeletalmuscleIMTGaccumulatesandisactivelyutilizedduringexercise(Shawetal.
,2010;EganandZierath,2013;Kovesetal.
,2013).
Enduranceexercisetrainingincreasesmitochon-drialcontent(bysizenotnumbers)formenandwomenbuthealthyactivewomenhavehigherIMTGaccumulationcom-paredwithmenduetogreaternumberratherthansizeofLDs(Tarnopolskyetal.
,2007).
Interestingly,thisstudyalsoreportedanincreaseinthephysicalcontactbetweenmitochondriaandIMTGsfollowingenduranceexercisetraining.
RatesofwholebodyfatoxidationandIMTGutilizationaredeterminedbyfac-torssuchasdiet,intensityanddurationofexercise,andtness.
Duringacuteexercise,thecontributionofvariousmetabolicpathwaystoenergyprovisionisdeterminedbytherelativeinten-sityandabsolutepoweroutputoftheexercisebout(EganandZierath,2013).
TherateofATPdemandandenergyexpendi-tureisdeterminedbytheabsolutepoweroutputwhereastherelativeexerciseintensityinuencestherelativecontributionsofcarbohydrateoxidationandlipidsources,andcirculating(extra-muscular)andintramuscularfuelstores,toenergyprovision.
Asexerciseintensityincreases,muscleutilizationofcirculatingfreeFAsslightlydeclines,whereasutilizationofcirculatingglucoseincreasesprogressivelyuptonear-maximalintensities(vanLoonetal.
,2001).
IMTGbreakdownoccursprimarilyviaHSLandATGL(WattandSpriet,2010).
AlthoughIMTGsconstituteonlyasmallfraction(1–2%)ofwhole-bodylipidstorestheyrepresentanimportantfuelsourceduringprolonged(>90min)butmoder-ateintensityexercise.
IMTGscanprovide25%oftotalenergyhowevertheircontributiondecreasesateitherhigherorlowerintensitiesofexercise(Romijnetal.
,1993;vanLoonetal.
,2001).
Maximalratesoffatoxidationoccuratmoderateexer-ciseintensities(60%VO2max)(Shawetal.
,2010;EganandZierath,2013).
Atlow-to-moderateexerciseintensity,thepri-marysubstratesfuelingskeletalmuscleareglucose,derivedfromhepaticglycogenolysis(orgluconeogenesis)ororalingestion,andfreeFAsreleasedbyadiposetissuelipolysis.
Prolongedexercise(>60min)ataxedintensityincreasestheenergycontributionfromlipidoxidation(EganandZierath,2013).
IMTGstorescanbereducedby60%followingexercise,pre-dominantlyintypeImusclebers(vanLoonetal.
,2003;www.
frontiersin.
orgJuly2014|Volume5|Article282|7Aonetal.
MitochondrialfunctionandlipidexcessStellingwerffetal.
,2007;Shawetal.
,2010;EganandZierath,2013).
Lipophagy,i.
e.
,theturnoverofLDsbyautophagy,mayoccurduetorandomsequestrationofcytosolicmaterialby"inbulk"autophagy.
However,whenlipophagyisactivatedinresponsetoalipidchallengeorprolongedstarvation,aswitchtowardthepref-erentialsequestrationofLDseemstohappen,supportingsomelevelofselectivityinthisprocess(Singhetal.
,2009).
Wesuggestthatthismayalsobethecaseforclosecontactsmitochondria-LD,andthatenergydemandmaybeamainelicitoroftheinterac-tionbetweenthesetwoorganelles.
Consonantwiththisidea,ithasbeenproposedthatLDsassemblyinskeletalmuscleunderexercisetrainingwouldimprovethemanagementofhighFAinuxenablingamorepreciselyregulatedtrafckingofsubstratetoandfromIMTGthuscontributingtooptimalmitochondrialperformanceandmetabolicexibility(Kovesetal.
,2013).
LIPOTOXICITYANDLDACCUMULATIONDYNAMICSInpathologicstateslipotoxicitymayoccurovertime,despiteTAGaccumulation,wheneitherthecellularcapacityforTAGstorageisexceededorwhentriglyceridepoolsarehydrolyzed,resultinginincreasedcellularfreeFAlevels.
Thus,thedurationandextentoflipidoverloadmaydetermineifacellisprotectedordamaged.
Whethermitochondrialenergy/redoxstatuscanalterthebalanceLDformationandutilizationintheshort-termisaquestionthathasnotbeenhithertoaddressed.
Studiesperformedwithnon-invasivespectroscopictechniqueshaveshownelevatedIMCLtriglyceridecontentintheleftventri-cle(i.
e.
,LVsteatosis)ofobeseandT2DMpatients(McGavocketal.
,2007;Rijzewijketal.
,2008)butitsassociationwithearlydiastolicdysfunctionleadingtosubsequentsystolicdysfunctionremainscontroversial(Andersonetal.
,2009b;Lopaschuketal.
,2010).
Again,lipidsthroughaccumulationoftriglyceridesareatthecenterofthecontroversy.
Inskeletal(Liuetal.
,2007)andcar-diac(Ussheretal.
,2009)muscle,IMCLaccumulationasaresultofdiet-inducedobesityisnotatallpathogenic,butmayevenbeprotectiveagainstobesity-associatedmaladies.
PreviousreportshavelinkedROS-mediatedmitochondrialdysfunctiontoDAGandceramide,twomainproductsoflipiddegradation(CoenandGoodpaster,2012).
Lipidchannelingtomitochondriamayrepresentamechanismbywhichconcentra-tionbuild-upoftheseintermediariesisavoided,especiallyunderhighenergydemand.
Basedonthesepremises,wesuggestthattemporarylipidstorageinLDsdoesnotnecessarilyrepresentpathophysiologicalbehavior.
Onthecontrary,itmayembodyanadaptiveresponse,atleastintheshort-termthusrepresentinganadaptivestrategyoflipidsutilizationensuringenergysup-plywithoutaffectingneithermitochondrialnorcellularredoxstatus.
REDOXOPTIMIZEDROSBALANCEANDMITOCHONDRIALREDOXANDENERGETICSLipidmetabolitescandamagetherespiratorychainleadingtoimpairedenergetictransitioninmitochondriathroughtheirdualeffectasuncouplersandinhibitors(WojtczakandSchonfeld,1993).
Impairmentofthekeystate4→3energetictransitioncanoccurviainhibitionofANTorATPsynthasetherebyproducingacontinuousreleaseofROSirrespectiveofADPaddition(Tocchettietal.
,2012).
MitochondriaareamainsourceofROSbutcanalsobetheirtarget.
TheREisamajordrivingforceofthecrucialenergy-redoxlinkofmitochondrialfunction(Cortassaetal.
,2014).
ThemitochondrialREdependsontheintrinsicredoxpotentialandinstantaneousreducingcapacityofthisorganelleaswellasitsresponsetothecytoplasmicredoxstatus(Aonetal.
,2010;Kembroetal.
,2013).
Inthiscontext,Redox-OptimizedROSBalance(R-ORB)providesausefulconceptualframeworktorationalizemanyresultsdescribedinthepresentreview.
OneofthemainR-ORBpostulatesisthatROSefuxfrommitochon-driawillattainaminimumatintermediatevaluesofRE,whenVO2reachesamaximumfollowingADPstimulation(Figure2)(Cortassaetal.
,2014).
Understate3respiration,glutathioneandthioredoxinsystemsareessentialforminimizingROSreleasefrommitochondria(Aonetal.
,2010,2012;Stanleyetal.
,2011;Kudinetal.
,2012;Cortassaetal.
,2014).
Inexcess,lipidprecur-sorsofβ-oxidationcanpromotemitochondrialuncouplingandoxidizedredoxstatus(AonandCortassa,unpublished).
InmoreoxidizedRE,awayfromtheoptimum(intermediate)REcompati-blewithminimalROS,antioxidantsystemsbecomeoverwhelmedleadingtopathologicalROSoverow(Aonetal.
,2010;Cortassaetal.
,2014).
Mitochondriafunctioninmoreoxidativeenvironmentsinchronicdiseases(Tocchettietal.
,2012).
Thus,itbecomesfunda-mentaltounderstandhowoxidativestressinuencesthedepen-denceofROSemissiononrespiration(Cortassaetal.
,2014).
Whenoxidantchallenged,mitochondriadisplayedH2O2emis-sionlevels2-foldhigherthancontrols,andexhibitedlowerres-piration(Figure2).
OxidativestressshiftedredoxbalancetowardthemoreoxidizedrangewherethesensitivityoftheROSefuxtotheREdecreasesmoredrasticallyinstate4thaninstate3respiration.
A50%decreaseinreducedglutathione(GSH)wasmainlyresponsiblefortheshiftoftheREtoamoreoxidizedstate(Cortassaetal.
,2014).
METABOLICCHANNELINGOFLIPIDUTILIZATIONFROMCLOSECONTACTSBETWEENMITOCHONDRIAANDLIPIDDROPLETS:AHYPOTHETICAL-QUALITATIVEMODELRecentevidencesupportsphysicalandmetabolicinteractionsbetweenLDsandmitochondriamediatedbythescaffoldingproteinPlin5(WangandSztalryd,2011;Wangetal.
,2011;Kovesetal.
,2013).
WangandcollaboratorsobservedthatPlin5-overexpressingcellsshowdecreasedLDhydrolysisandpalmitateβ-oxidationwhencomparedwithcontrols.
Instead,palmitateincreasinglyincorporatedintoTAGsunderbasalconditionswhereasinproteinkinaseA-stimulatedstateLDhydrolysisinhibi-tionwasremovedandFAsreleasedforβ-oxidation.
TheseresultssuggestedthatPlin5regulatesLDhydrolysisandcontrolslocalFAuxtoprotectmitochondriaagainstexcessiveexposuretoFA(WangandSztalryd,2011).
Alltheseobservationsareinagree-mentwiththerelativelyrecentrealizationthattheLDproteomeishighlydynamicandmorecomplexthanpreviouslythought.
TheLDproteomecontainskeycomponentsofthefatmobilizationsystemandproteinsthatsuggestLDinteractionswithavarietyofcellorganelles,includingthemitochondria(Belleretal.
,2010).
FrontiersinPhysiology|MitochondrialResearchJuly2014|Volume5|Article282|8Aonetal.
MitochondrialfunctionandlipidexcessFIGURE2|Redox-OptimizedROSBalanceandtheeffectofoxidativestressonmitochondrialrespiration,H2O2emission,andtheRE.
R-ORBpostulatesthatROSlevels(asthenetresultofproductionandscavenging)dependontheintra-cellularand-mitochondrialredoxenvironment(RE).
ItalsoproposesthatthereisaminimumlevelofROSemissionwhenmitochondriamaximizetheirenergeticoutput.
Underhighenergydemand,anddespitelargerespiratoryrates,ROSemissionlevelswillbekepttoaminimumbyROSscavengingsystems(Stanleyetal.
,2011;Aonetal.
,2012).
OxidativestresscanhappenateitherextremeofRE,eitherhighlyreducedorhighlyoxidized,butgovernedbydifferentmechanisms(Aonetal.
,2010;Kembroetal.
,2014).
Theplotdisplaysschematicallythesummaryoftheresponseofrespiration(blacktraces)andROSemissioninstressedmitochondria(graytraces)plusfurtheradditionoftheuncouplerFCCP(dashed-dottedline).
Continuouslinescorrespondtotheabsenceofstresswhereasdashedlinesbelongtomitochondriaunderstressedconditions(Cortassaetal.
,2014).
BlackarrowsindicatethedirectionofchangeinVO2andROSelicitedbystress.
NoticetheshifttowardmoreoxidizedREinthecurvescorrespondingtostressfulconditions.
Thethickgrayarrowpointingtotheleftdenotespathologicalconditionsarising,e.
g.
,fromchronicdiseases,whereseverestresswillaffectbothenergetic(e.
g.
,m,ADPconsumption)andredox[e.
g.
,NAD(P)H,GSH,Trx]functionsthusincreasedmitochondrialROSemissionandhighercytoplasmicROSlevels.
ReprintedfromCortassaetal.
(2014).
BasedonthepremiseofmetaboliclinksextendingbeyondphysicalcontactbetweenmitochondriaandLDs,weproposeamodelofmetabolicchannelingforlipidutilizationbymitochon-dria.
Accordingtoourmodel,metabolicchannelingrepresentsawaymitochondriacanmanagelipidafuenceinanenergeticallyandredox-controlledfashion.
Qualitatively,thelipidutilizationchannelingmodelpostulatesthatafterTAGdegradation,lipidsaredirectlydeliveredforactivation,transportandβ-oxidationfromtheLDtothemitochondrionatthecontactsite(Figure1).
Themodelalsoproposesthatβ-oxidationmayalsohappenmetabolicallychanneledthroughtheenzymaticcomponentsofthelipiddegradationpathwayorganizedasamultienzymecom-plex(Eaton,2002).
Fromastructuralstandpoint,themodelisbasedondirectandclosecontactbetweenLDsandmitochondriainvolvingtheirrecruitmentandsurroundingoftheLD.
Themodelalsopostulatesmembranefusion-mediatedreorganizationofintra-mitochondrialmembraneandmolecularcomponents(WaltherandFarese,2009)aswellaslipidssegregationwithinthedroplet(FujimotoandParton,2011).
Biochemically,thepathwayoflong-chainFAOtoAcCoAisoneofthelongestunbranchedpathwaysinmetabolism,contain-ing27intermediatesbetweenpalmitoyl-CoAandAcCoA(Eaton,2002).
Thattheenzymesofβ-oxidationmaybeorganizedintoamultienzymecomplexwassuggestedlongago.
Inthesebiomolec-ularassemblies,sequentialcatalyticreactionsproceedviatransferoftheintermediatesbetweenindividualcomponentenzymes,precludingtheirdiffusionintothebulkaqueousmedium,thus"metabolicallychanneled"(Welch,1977;Sumegietal.
,1991).
Anearlierproposalofmetabolicchannelinginβ-oxidationwasbasedonthedetectionoflowconcentrationsofintermedi-ates(Garlandetal.
,1965)andtheobservationthatβ-oxidationintermediatesthataccumulatebehavedmorelikeproductsthanintermediates(Stewartetal.
,1973;StanleyandTubbs,1974,1975;Eatonetal.
,1994,1996a,b,1999).
Thisledtothe"leakyhosepipe"modelforthecontrolofβ-oxidationux(Stewartetal.
,1973;StanleyandTubbs,1974,1975)inwhichchannelingofasmall,quicklyturning-overpoolofintermediateswasimplied(seeEaton,2002forareview).
Someaspectsofthestructuralbasisforachannelingmecha-nisminβ-oxidationhavebeendescribed(Ishikawaetal.
,2004).
EvidenceinsupportofamultifunctionalFAOcomplexwithinmitochondria,physicallyassociatedwithrespiratorychainsuper-complexesthatfavormetabolicchanneling,hasbeenrecentlyreported(Wangetal.
,2010).
Functionally,thedirectdeliveryoflipidsatcontactsites,andtheirchanneledprocessingwillavoidelevationoftheirconcentration,thusrulingoutthepotentialinhibitoryaswellasuncouplingactionofFAs(WojtczakandSchonfeld,1993).
Thelatterwillensureareliableandefcientenergysupply.
CONCLUDINGREMARKSMitochondria,cellsandorganshavedevelopedmechanismsthatallowmanagingheavyinuxofFAswithinfunctionallyreliablelimits.
TheLDasadynamicstorageofFAscanalsobeseenasaprotectivemechanismemployedbycellstoavoidexcessiveintracellularconcentrationofFAsthushinderingtheirpoten-tialdeleteriouseffectsonmitochondrialfunction.
Thetightandreciprocalregulationoflipidstorageandutilizationisevi-dencedbygeneticmanipulationofperilipinsindicatingthattheirreducedexpressionleadstoincreasedlipidoxidationandreducedaccumulationofintracellularfatandadiposemass.
Ontheotherhand,however,excessivelipolysisanddefectivelipidstoragepro-motesinsulinresistancethroughmitochondrialFAoverloadandROSoverow.
PreservationoftheintracellularREiscrucialforvitalfunc-tions.
Mitochondriaplayadecisiveroleastheorganellethatspecicallyhandlesthehighestamountsofoxygenprocessedbytheorganismthuspronenotonlytobethesourcebutalsothetargetofoxidativestress.
Mitochondrialfunctionneedstosus-tainenergysupplyreliablywhilereleasingROSlevelscompatiblewithsignaling.
However,lipidscanderailbothofthesecriticalfunctions.
Consequently,thehypotheticallipidutilizationchan-nelingmodelweareproposinghereinsatisesthefundamentalswww.
frontiersin.
orgJuly2014|Volume5|Article282|9Aonetal.
Mitochondrialfunctionandlipidexcessofcellularandmitochondrialenergeticsandredox.
Inprinciple,diversionofexcesslipidstoLDscanbeaneffectivecytoplasmicmechanismfor"sequestering"FAstherebyhelpingtokeeplowconcentrationoflipotoxicintermediatesresultingfromlipidoxi-dation.
Functionally,directdeliveryandchanneledprocessingoflipidsinmitochondriacouldrepresentareliableandefcientwaytoensureenergysupplyandredoxcontrol.
Suchamechanismwouldavoidexceedingthelipidstoragecapacitythusbecomingcrucialforskeletalmuscleorheartsubjectedtohighworkload,andtherefore,heavyinuxofFAs.
ACKNOWLEDGMENTSThisworkwassupportedbyNationalInstitutesofHealthgrantsR01-HL091923(MiguelA.
Aon)andR21HL106054(SoniaC.
Cortassa).
REFERENCESAggarwal,N.
T.
,andMakielski,J.
C.
(2013).
Redoxcontrolofcardiacexcitability.
Antioxid.
RedoxSignal.
18,432–468.
doi:10.
1089/ars.
2011.
4234Akar,F.
G.
,Aon,M.
A.
,Tomaselli,G.
F.
,andO'Rourke,B.
(2005).
Themitochon-drialoriginofpostischemicarrhythmias.
J.
Clin.
Invest.
115,3527–3535.
doi:10.
1172/JCI25371Anderson,E.
J.
,Kypson,A.
P.
,Rodriguez,E.
,Anderson,C.
A.
,Lehr,E.
J.
,andNeufer,P.
D.
(2009b).
Substrate-specicderangementsinmitochondrialmetabolismandredoxbalanceintheatriumofthetype2diabetichumanheart.
J.
Am.
Coll.
Cardiol.
54,1891–1898.
doi:10.
1016/j.
jacc.
2009.
07.
031Anderson,E.
J.
,Lustig,M.
E.
,Boyle,K.
E.
,Woodlief,T.
L.
,Kane,D.
A.
,Lin,C.
T.
,etal.
(2009a).
MitochondrialH2O2emissionandcellularredoxstatelinkexcessfatintaketoinsulinresistanceinbothrodentsandhumans.
J.
Clin.
Invest.
119,573–581.
doi:10.
1172/JCI37048Aon,M.
A.
,Cortassa,S.
,Akar,F.
G.
,Brown,D.
A.
,Zhou,L.
,andO'Rourke,B.
(2009).
Frommitochondrialdynamicstoarrhythmias.
Int.
J.
Biochem.
CellBiol.
41,1940–1948.
doi:10.
1016/j.
biocel.
2009.
02.
016Aon,M.
A.
,Cortassa,S.
,Maack,C.
,andO'Rourke,B.
(2007).
Sequentialopeningofmitochondrialionchannelsasafunctionofglutathioneredoxthiolstatus.
J.
Biol.
Chem.
282,21889–21900.
doi:10.
1074/jbc.
M702841200Aon,M.
A.
,Cortassa,S.
,andO'Rourke,B.
(2010).
Redox-optimizedROSbalance:aunifyinghypothesis.
Biochim.
Biophys.
Acta1797,865–877.
doi:10.
1016/j.
bbabio.
2010.
02.
016Aon,M.
A.
,Stanley,B.
A.
,Sivakumaran,V.
,Kembro,J.
M.
,O'Rourke,B.
,Paolocci,N.
,etal.
(2012).
Glutathione/thioredoxinsystemsmodulatemitochondrialH2O2emission:anexperimental-computationalstudy.
J.
Gen.
Physiol.
139,479–491.
doi:10.
1085/jgp.
201210772Awan,M.
M.
,andSaggerson,E.
D.
(1993).
Malonyl-CoAmetabolismincardiacmyocytesanditsrelevancetothecontroloffattyacidoxidation.
Biochem.
J.
295(pt1),61–66.
Bakker,S.
J.
,IJzerman,R.
G.
,Teerlink,T.
,Westerhoff,H.
V.
,Gans,R.
O.
,andHeine,R.
J.
(2000).
Cytosolictriglyceridesandoxidativestressincentralobe-sity:themissinglinkbetweenexcessiveatherosclerosis,endothelialdysfunction,andbeta-cellfailureAtherosclerosis148,17–21.
doi:10.
1016/S0021-9150(99)00329-9Beller,M.
,Thiel,K.
,Thul,P.
J.
,andJackle,H.
(2010).
Lipiddroplets:adynamicorganellemovesintofocus.
FEBSLett.
584,2176–2182.
doi:10.
1016/j.
febslet.
2010.
03.
022Bernardi,P.
,Penzo,D.
,andWojtczak,L.
(2002).
Mitochondrialenergydissipationbyfattyacids.
Mechanismsandimplicationsforcelldeath.
Vitam.
Horm.
65,97–126.
doi:10.
1016/S0083-6729(02)65061-7Bickel,P.
E.
,Tansey,J.
T.
,andWelte,M.
A.
(2009).
PATproteins,anancientfamilyoflipiddropletproteinsthatregulatecellularlipidstores.
Biochim.
Biophys.
Acta1791,419–440.
doi:10.
1016/j.
bbalip.
2009.
04.
002Bosma,M.
,Sparks,L.
M.
,Hooiveld,G.
J.
,Jorgensen,J.
A.
,Houten,S.
M.
,Schrauwen,P.
,etal.
(2013).
OverexpressionofPLIN5inskeletalmusclepro-motesoxidativegeneexpressionandintramyocellularlipidcontentwithoutcompromisinginsulinsensitivity.
Biochim.
Biophys.
Acta1831,844–852.
doi:10.
1016/j.
bbalip.
2013.
01.
007Boudina,S.
,Sena,S.
,Theobald,H.
,Sheng,X.
,Wright,J.
J.
,Hu,X.
X.
,etal.
(2007).
Mitochondrialenergeticsintheheartinobesity-relateddiabetes:directevidenceforincreaseduncoupledrespirationandactivationofuncouplingproteins.
Diabetes56,2457–2466.
doi:10.
2337/db07-0481Brown,D.
A.
,Aon,M.
A.
,Frasier,C.
R.
,Sloan,R.
C.
,Maloney,A.
H.
,Anderson,E.
J.
,etal.
(2010).
Cardiacarrhythmiasinducedbyglutathioneoxidationcanbeinhibitedbypreventingmitochondrialdepolarization.
J.
Mol.
Cell.
Cardiol.
48,673–679.
doi:10.
1016/j.
yjmcc.
2009.
11.
011Bugger,H.
,andAbel,E.
D.
(2010).
Mitochondriainthediabeticheart.
Cardiovasc.
Res.
88,229–240.
doi:10.
1093/cvr/cvq239Burgoyne,J.
R.
,Mongue-Din,H.
,Eaton,P.
,andShah,A.
M.
(2012).
Redoxsignal-ingincardiacphysiologyandpathology.
Circ.
Res.
111,1091–1106.
doi:10.
1161/CIRCRESAHA.
111.
255216Camara,A.
K.
,Bienengraeber,M.
,andStowe,D.
F.
(2011).
Mitochondrialapproachestoprotectagainstcardiacischemiaandreperfusioninjury.
Front.
Physiol.
2:13.
doi:10.
3389/fphys.
2011.
00013Canton,M.
,Menazza,S.
,Sheeran,F.
L.
,PolverinodeLaureto,P.
,DiLisa,F.
,andPepe,S.
(2011).
Oxidationofmyobrillarproteinsinhumanheartfailure.
J.
Am.
Coll.
Cardiol.
57,300–309.
doi:10.
1016/j.
jacc.
2010.
06.
058Carley,A.
N.
,andSeverson,D.
L.
(2005).
Fattyacidmetabolismisenhancedintype2diabetichearts.
Biochim.
Biophys.
Acta1734,112–126.
doi:10.
1016/j.
bbalip.
2005.
03.
005Cases,S.
,Stone,S.
J.
,Zhou,P.
,Yen,E.
,Tow,B.
,Lardizabal,K.
D.
,etal.
(2001).
CloningofDGAT2,asecondmammaliandiacylglycerolacyltransferase,andrelatedfamilymembers.
J.
Biol.
Chem.
276,38870–38876.
doi:10.
1074/jbc.
M106219200Christians,E.
S.
,andBenjamin,I.
J.
(2012).
ProteostasisandREDOXstateintheheart.
Am.
J.
Physiol.
HeartCirc.
Physiol.
302,H24–H37.
doi:10.
1152/ajp-heart.
00903.
2011Ciapaite,J.
,Bakker,S.
J.
,Diamant,M.
,vanEikenhorst,G.
,Heine,R.
J.
,Westerhoff,H.
V.
,etal.
(2006).
Metaboliccontrolofmitochondrialpropertiesbyadeninenucleotidetranslocatordeterminespalmitoyl-CoAeffects.
Implicationsforamechanismlinkingobesityandtype2diabetes.
FEBSJ.
273,5288–5302.
doi:10.
1111/j.
1742-4658.
2006.
05523.
xCiapaite,J.
,VanEikenhorst,G.
,Bakker,S.
J.
,Diamant,M.
,Heine,R.
J.
,Wagner,M.
J.
,etal.
(2005).
Modularkineticanalysisoftheadeninenucleotidetranslocator-mediatedeffectsofpalmitoyl-CoAontheoxidativephosphorylationiniso-latedratlivermitochondria.
Diabetes54,944–951.
doi:10.
2337/diabetes.
54.
4.
944Coen,P.
M.
,andGoodpaster,B.
H.
(2012).
Roleofintramyocelluarlipidsinhumanhealth.
TrendsEndocrinol.
Metab.
23,391–398.
doi:10.
1016/j.
tem.
2012.
05.
009Colberg,S.
R.
,Albright,A.
L.
,Blissmer,B.
J.
,Braun,B.
,Chasan-Taber,L.
,Fernhall,B.
,etal.
(2010).
Exerciseandtype2diabetes:AmericanCollegeofSportsMedicineandtheAmericanDiabetesAssociation:jointpositionstatement.
Exerciseandtype2diabetes.
Med.
Sci.
SportsExerc.
42,2282–2303.
doi:10.
1249/MSS.
0b013e3181eeb61cCortassa,S.
,O'Rourke,B.
,andAon,M.
A.
(2014).
Redox-OptimizedROSBalanceandtherelationshipbetweenmitochondrialrespirationandROS.
Biochim.
Biophys.
Acta1837,287–295.
doi:10.
1016/j.
bbabio.
2013.
11.
007Cortassa,S.
,O'Rourke,B.
,Winslow,R.
L.
,andAon,M.
A.
(2009).
Controlandregulationofmitochondrialenergeticsinanintegratedmodelofcardiomyocytefunction.
Biophys.
J.
96,2466–2478.
doi:10.
1016/j.
bpj.
2008.
12.
3893Dedkova,E.
N.
,andBlatter,L.
A.
(2008).
MitochondrialCa2+andtheheart.
CellCalcium44,77–91.
doi:10.
1016/j.
ceca.
2007.
11.
002DeFronzo,R.
A.
,Jacot,E.
,Jequier,E.
,Maeder,E.
,Wahren,J.
,andFelber,J.
P.
(1981).
Theeffectofinsulinonthedisposalofintravenousglucose.
Resultsfromindi-rectcalorimetryandhepaticandfemoralvenouscatheterization.
Diabetes30,1000–1007.
doi:10.
2337/diab.
30.
12.
1000Duszynski,J.
,andWojtczak,L.
(1975).
Effectofmetalcationsontheinhibitionofadeninenucleotidetranslocationbyacyl-CoA.
FEBSLett.
50,74–78.
doi:10.
1016/0014-5793(75)81044-1Eaton,S.
(2002).
Controlofmitochondrialbeta-oxidationux.
Prog.
LipidRes.
41,197–239.
doi:10.
1016/S0163-7827(01)00024-8Eaton,S.
,Bartlett,K.
,andPourfarzam,M.
(1996a).
Mammalianmitochondrialbeta-oxidation.
Biochem.
J.
320(pt2),345–357.
Eaton,S.
,Bartlett,K.
,andPourfarzam,M.
(1999).
Intermediatesofmyocar-dialmitochondrialbeta-oxidation:possiblechannellingofNADHandofCoAesters.
Biochim.
Biophys.
Acta1437,402–408.
doi:10.
1016/S1388-1981(99)00027-XFrontiersinPhysiology|MitochondrialResearchJuly2014|Volume5|Article282|10Aonetal.
MitochondrialfunctionandlipidexcessEaton,S.
,Pourfarzam,M.
,andBartlett,K.
(1996b).
Theeffectofrespiratorychainimpairmentofbeta-oxidationinratheartmitochondria.
Biochem.
J.
319(pt2),633–640.
Eaton,S.
,Turnbull,D.
M.
,andBartlett,K.
(1994).
Redoxcontrolofbeta-oxidationinratlivermitochondria.
Eur.
J.
Biochem.
220,671–681.
doi:10.
1111/j.
1432-1033.
1994.
tb18668.
xEgan,B.
,andZierath,J.
R.
(2013).
Exercisemetabolismandthemolecu-larregulationofskeletalmuscleadaptation.
CellMetab.
17,162–184.
doi:10.
1016/j.
cmet.
2012.
12.
012Fannin,S.
W.
,Lesnefsky,E.
J.
,Slabe,T.
J.
,Hassan,M.
O.
,andHoppel,C.
L.
(1999).
Agingselectivelydecreasesoxidativecapacityinratheartinterbrillarmito-chondria.
Arch.
Biochem.
Biophys.
372,399–407.
doi:10.
1006/abbi.
1999.
1508Fauconnier,J.
,Andersson,D.
C.
,Zhang,S.
J.
,Lanner,J.
T.
,Wibom,R.
,Katz,A.
,etal.
(2007).
EffectsofpalmitateonCa(2+)handlinginadultcontrolandob/obcardiomyocytes:impactofmitochondrialreactiveoxygenspecies.
Diabetes56,1136–1142.
doi:10.
2337/db06-0739Fisher-Wellman,K.
H.
,Mattox,T.
A.
,Thayne,K.
,Katunga,L.
A.
,LaFavor,J.
D.
,Neufer,P.
D.
,etal.
(2013).
Novelroleforthioredoxinreductase-2inmitochon-drialredoxadaptationstoobesogenicdietandexerciseinheartandskeletalmuscle.
J.
Physiol.
591,3471–3486.
doi:10.
1113/jphysiol.
2013.
254193Fisher-Wellman,K.
H.
,andNeufer,P.
D.
(2012).
Linkingmitochondrialbioen-ergeticstoinsulinresistanceviaredoxbiology.
TrendsEndocrinol.
Metab.
23,142–153.
doi:10.
1016/j.
tem.
2011.
12.
008Frasier,C.
R.
,Moukdar,F.
,Patel,H.
D.
,Sloan,R.
C.
,Stewart,L.
M.
,Alleman,R.
J.
,etal.
(2013).
Redox-dependentincreasesinglutathionereductaseandexercisepreconditioning:roleofNADPHoxidaseandmitochondria.
Cardiovasc.
Res.
98,47–55.
doi:10.
1093/cvr/cvt009Fujimoto,T.
,Ohsaki,Y.
,Cheng,J.
,Suzuki,M.
,andShinohara,Y.
(2008).
Lipiddroplets:aclassicorganellewithnewoutts.
Histochem.
CellBiol.
130,263–279.
doi:10.
1007/s00418-008-0449-0Fujimoto,T.
,andParton,R.
G.
(2011).
Notjustfat:thestructureandfunctionofthelipiddroplet.
ColdSpringHarb.
Perspect.
Biol.
3,1–17.
doi:10.
1101/cshper-spect.
a004838Garland,P.
B.
,Shepherd,D.
,andYates,D.
W.
(1965).
Steady-stateconcentrationsofcoenzymeA,acetyl-coenzymeAandlong-chainfattyacyl-coenzymeAinrat-livermitochondriaoxidizingpalmitate.
Biochem.
J.
97,587–594.
Ge,F.
,Hu,C.
,Hyodo,E.
,Arai,K.
,Zhou,S.
,Lobdell,H.
4th.
,etal.
(2012).
Cardiomyocytetriglycerideaccumulationandreducedventricularfunctioninmicewithobesityreectincreasedlongchainfattyaciduptakeanddenovofattyacidsynthesis.
J.
Obes.
2012:205648.
doi:10.
1155/2012/205648Ghadially,F.
N.
(1997).
UltrastructuralPathologyoftheCellandMatrix.
Boston,MA:Butterworth-Heinemann.
Goodpaster,B.
H.
,He,J.
,Watkins,S.
,andKelley,D.
E.
(2001).
Skeletalmusclelipidcontentandinsulinresistance:evidenceforaparadoxinendurance-trainedathletes.
J.
Clin.
Endocrinol.
Metab.
86,5755–5761.
doi:10.
1210/jcem.
86.
12.
8075Greenberg,A.
S.
,andColeman,R.
A.
(2011).
Expandingrolesforlipiddroplets.
TrendsEndocrinol.
Metab.
22,195–196.
doi:10.
1016/j.
tem.
2011.
04.
002Greenberg,A.
S.
,Coleman,R.
A.
,Kraemer,F.
B.
,McManaman,J.
L.
,Obin,M.
S.
,Puri,V.
,etal.
(2011).
Theroleoflipiddropletsinmetabolicdiseaseinrodentsandhumans.
J.
Clin.
Invest.
121,2102–2110.
doi:10.
1172/JCI46069Haskell,W.
L.
,Lee,I.
M.
,Pate,R.
R.
,Powell,K.
E.
,Blair,S.
N.
,Franklin,B.
A.
,etal.
(2007).
Physicalactivityandpublichealth:updatedrecommendationforadultsfromtheAmericanCollegeofSportsMedicineandtheAmericanHeartAssociation.
Med.
Sci.
SportsExerc.
39,1423–1434.
doi:10.
1249/mss.
0b013e3180616b27Helguera,P.
,Seiglie,J.
,Rodriguez,J.
,Hanna,M.
,Helguera,G.
,andBusciglio,J.
(2013).
Adaptivedownregulationofmitochondrialfunctionindownsyndrome.
CellMetab.
17,132–140.
doi:10.
1016/j.
cmet.
2012.
12.
005Holloway,G.
P.
,Benton,C.
R.
,Mullen,K.
L.
,Yoshida,Y.
,Snook,L.
A.
,Han,X.
X.
,etal.
(2009).
Inobeseratmuscletransportofpalmitateisincreasedandischanneledtotriacylglycerolstoragedespiteanincreaseinmitochondrialpalmitateoxidation.
Am.
J.
Physiol.
Endocrinol.
Metab.
296,E738–E747.
doi:10.
1152/ajpendo.
90896.
2008Holloway,G.
P.
,Snook,L.
A.
,Harris,R.
J.
,Glatz,J.
F.
,Luiken,J.
J.
,andBonen,A.
(2011).
InobeseZuckerrats,lipidsaccumulateintheheartdespitenor-malmitochondrialcontent,morphologyandlong-chainfattyacidoxidation.
J.
Physiol.
589,169–180.
doi:10.
1113/jphysiol.
2010.
198663Irrcher,I.
,Adhihetty,P.
J.
,Joseph,A.
M.
,Ljubicic,V.
,andHood,D.
A.
(2003).
Regulationofmitochondrialbiogenesisinmusclebyenduranceexercise.
SportsMed.
33,783–793.
doi:10.
2165/00007256-200333110-00001Ishikawa,M.
,Tsuchiya,D.
,Oyama,T.
,Tsunaka,Y.
,andMorikawa,K.
(2004).
Structuralbasisforchannellingmechanismofafattyacidbeta-oxidationmultienzymecomplex.
EMBOJ.
23,2745–2754.
doi:10.
1038/sj.
emboj.
7600298Jeong,E.
M.
,Liu,M.
,Sturdy,M.
,Gao,G.
,Varghese,S.
T.
,Sovari,A.
A.
,etal.
(2012).
Metabolicstress,reactiveoxygenspecies,andarrhythmia.
J.
Mol.
Cell.
Cardiol.
52,454–463.
doi:10.
1016/j.
yjmcc.
2011.
09.
018Judge,S.
,Jang,Y.
M.
,Smith,A.
,Hagen,T.
,andLeeuwenburgh,C.
(2005).
Age-associatedincreasesinoxidativestressandantioxidantenzymeactivitiesincardiacinterbrillarmitochondria:implicationsforthemitochondrialtheoryofaging.
FASEBJ.
19,419–421.
doi:10.
1096/fj.
04-2622fjeKembro,J.
M.
,Aon,M.
A.
,Winslow,R.
L.
,O'Rourke,B.
,andCortassa,S.
(2013).
Integratingmitochondrialenergetics,redoxandROSmetabolicnetworks:atwo-compartmentmodel.
Biophys.
J.
104,332–343.
doi:10.
1016/j.
bpj.
2012.
11.
3808Kembro,J.
M.
,Cortassa,S.
,andAon,M.
A.
(2014).
"Mitochondrialreactiveoxygenspeciesandarrhythmias,"inSystemsBiologyofFreeRadicalsandAntioxidants,edI.
Laher(Berlin-Heidelberg:Springer-Verlag),1047–1076.
Kerner,J.
,andHoppel,C.
(2000).
Fattyacidimportintomitochondria.
Biochim.
Biophys.
Acta1486,1–17.
doi:10.
1016/S1388-1981(00)00044-5Kienesberger,P.
C.
,Pulinilkunnil,T.
,Nagendran,J.
,andDyck,J.
R.
(2013).
Myocardialtriacylglycerolmetabolism.
J.
Mol.
Cell.
Cardiol.
55,101–110.
doi:10.
1016/j.
yjmcc.
2012.
06.
018Klingenberg,M.
(2008).
TheADPandATPtransportinmitochondriaanditscarrier.
Biochim.
Biophys.
Acta1778,1978–2021.
doi:10.
1016/j.
bbamem.
2008.
04.
011Kok,B.
P.
,andBrindley,D.
N.
(2012).
Myocardialfattyacidmetabolismandlipo-toxicityinthesettingofinsulinresistance.
HeartFail.
Clin.
8,643–661.
doi:10.
1016/j.
hfc.
2012.
06.
008Koopman,R.
,Manders,R.
J.
,Jonkers,R.
A.
,Hul,G.
B.
,Kuipers,H.
,andvanLoon,L.
J.
(2006).
Intramyocellularlipidandglycogencontentarereducedfollowingresistanceexerciseinuntrainedhealthymales.
Eur.
J.
Appl.
Physiol.
96,525–534.
doi:10.
1007/s00421-005-0118-0Koves,T.
R.
,Sparks,L.
M.
,Kovalik,J.
P.
,Mosedale,M.
,Arumugam,R.
,DeBalsi,K.
L.
,etal.
(2013).
PPARgammacoactivator-1alphacontributestoexercise-inducedregulationofintramuscularlipiddropletprogramminginmiceandhumans.
J.
LipidRes.
54,522–534.
doi:10.
1194/jlr.
P028910Koves,T.
R.
,Ussher,J.
R.
,Noland,R.
C.
,Slentz,D.
,Mosedale,M.
,Ilkayeva,O.
,etal.
(2008).
Mitochondrialoverloadandincompletefattyacidoxida-tioncontributetoskeletalmuscleinsulinresistance.
CellMetab.
7,45–56.
doi:10.
1016/j.
cmet.
2007.
10.
013Kudin,A.
P.
,Augustynek,B.
,Lehmann,A.
K.
,Kovacs,R.
,andKunz,W.
S.
(2012).
Thecontributionofthioredoxin-2reductaseandglutathioneperoxidasetoH(2)O(2)detoxicationofratbrainmitochondria.
Biochim.
Biophys.
Acta1817,1901–1906.
doi:10.
1016/j.
bbabio.
2012.
02.
023Kunau,W.
H.
,Dommes,V.
,andSchulz,H.
(1995).
beta-oxidationoffattyacidsinmitochondria,peroxisomes,andbacteria:acenturyofcontinuedprogress.
Prog.
LipidRes.
34,267–342.
doi:10.
1016/0163-7827(95)00011-9Kuramoto,K.
,Okamura,T.
,Yamaguchi,T.
,Nakamura,T.
Y.
,Wakabayashi,S.
,Morinaga,H.
,etal.
(2012).
Perilipin5,alipiddroplet-bindingprotein,protectsheartfromoxidativeburdenbysequesteringfattyacidfromexcessiveoxidation.
J.
Biol.
Chem.
287,23852–23863.
doi:10.
1074/jbc.
M111.
328708Lakatta,E.
G.
,andSollott,S.
J.
(2002).
Perspectivesonmammaliancardiovascularaging:humanstomolecules.
Comp.
Biochem.
Physiol.
AMol.
Integr.
Physiol.
132,699–721.
doi:10.
1016/S1095-6433(02)00124-1Lass,A.
,Zimmermann,R.
,Oberer,M.
,andZechner,R.
(2011).
Lipolysis—ahighlyregulatedmulti-enzymecomplexmediatesthecatabolismofcellularfatstores.
Prog.
LipidRes.
50,14–27.
doi:10.
1016/j.
plipres.
2010.
10.
004Lehninger,A.
L.
(1965).
TheMitochondrion.
MolecularBasisofStructureandFunction.
NewYork,NY:W.
A.
Benjamin.
Lerner,E.
,Shug,A.
L.
,Elson,C.
,andShrago,E.
(1972).
ReversibleinhibitionofadeninenucleotidetranslocationbylongchainfattyacylcoenzymeAestersinlivermitochondriaofdiabeticandhibernatinganimals.
J.
Biol.
Chem.
247,1513–1519.
Li,L.
,Muhlfeld,C.
,Niemann,B.
,Pan,R.
,Li,R.
,Hilker-Kleiner,D.
,etal.
(2011).
MitochondrialbiogenesisandPGC-1alphadeacetylationbychronictreadmillexercise:differentialresponseincardiacandskeletalmuscle.
BasicRes.
Cardiol.
106,1221–1234.
doi:10.
1007/s00395-011-0213-9Listenberger,L.
L.
,Han,X.
,Lewis,S.
E.
,Cases,S.
,Farese,R.
V.
Jr.
,Ory,D.
S.
,etal.
(2003).
Triglycerideaccumulationprotectsagainstfattyacid-inducedwww.
frontiersin.
orgJuly2014|Volume5|Article282|11Aonetal.
Mitochondrialfunctionandlipidexcesslipotoxicity.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
100,3077–3082.
doi:10.
1073/pnas.
0630588100Liu,L.
,Zhang,Y.
,Chen,N.
,Shi,X.
,Tsang,B.
,andYu,Y.
H.
(2007).
UpregulationofmyocellularDGAT1augmentstriglyceridesynthesisinskeletalmuscleandprotectsagainstfat-inducedinsulinresistance.
J.
Clin.
Invest.
117,1679–1689.
doi:10.
1172/JCI30565Lloyd,D.
,Cortassa,S.
,O'Rourke,B.
,andAon,M.
A.
(2012).
Whatyeastandcardiomyocytesshare:ultradianoscillatoryredoxmechanismsofcel-lularcoherenceandsurvival.
Integr.
Biol.
(Camb.
)4,65–74.
doi:10.
1039/c1ib00124hLopaschuk,G.
D.
(2002).
Metabolicabnormalitiesinthediabeticheart.
HeartFail.
Rev.
7,149–159.
doi:10.
1023/A:1015328625394Lopaschuk,G.
D.
,Belke,D.
D.
,Gamble,J.
,Itoi,T.
,andSchonekess,B.
O.
(1994).
Regulationoffattyacidoxidationinthemammalianheartinhealthanddisease.
Biochim.
Biophys.
Acta1213,263–276.
doi:10.
1016/0005-2760(94)00082-4Lopaschuk,G.
D.
,Ussher,J.
R.
,Folmes,C.
D.
,Jaswal,J.
S.
,andStanley,W.
C.
(2010).
Myocardialfattyacidmetabolisminhealthanddisease.
Physiol.
Rev.
90,207–258.
doi:10.
1152/physrev.
00015.
2009Loskovich,M.
V.
,Grivennikova,V.
G.
,Cecchini,G.
,andVinogradov,A.
D.
(2005).
InhibitoryeffectofpalmitateonthemitochondrialNADH:ubiquinoneoxi-doreductase(complexI)asrelatedtotheactive-de-activeenzymetransition.
Biochem.
J.
387,677–683.
doi:10.
1042/BJ20041703Lowell,B.
B.
,andShulman,G.
I.
(2005).
Mitochondrialdysfunctionandtype2diabetes.
Science307,384–387.
doi:10.
1126/science.
1104343Martinez-Outschoorn,U.
E.
,Sotgia,F.
,andLisanti,M.
P.
(2012).
Powersurge:supportingcells"fuel"cancercellmitochondria.
CellMetab.
15,4–5.
doi:10.
1016/j.
cmet.
2011.
12.
011McGavock,J.
M.
,Lingvay,I.
,Zib,I.
,Tillery,T.
,Salas,N.
,Unger,R.
,etal.
(2007).
Cardiacsteatosisindiabetesmellitus:a1H-magneticresonancespec-troscopystudy.
Circulation116,1170–1175.
doi:10.
1161/CIRCULATIONAHA.
106.
645614Morel,F.
,Lauquin,G.
,Lunardi,J.
,Duszynski,J.
,andVignais,P.
V.
(1974).
Anappraisalofthefunctionalsignicanceoftheinhibitoryeffectoflongchainacyl-CoAsonmitochondrialtransports.
FEBSLett.
39,133–138.
doi:10.
1016/0014-5793(74)80035-9Muoio,D.
M.
,andNeufer,P.
D.
(2012).
Lipid-inducedmitochondrialstressandinsulinactioninmuscle.
CellMetab.
15,595–605.
doi:10.
1016/j.
cmet.
2012.
04.
010Murphy,S.
,Martin,S.
,andParton,R.
G.
(2009).
Lipiddroplet-organelleinter-actions;sharingthefats.
Biochim.
Biophys.
Acta1791,441–447.
doi:10.
1016/j.
bbalip.
2008.
07.
004Neely,J.
R.
,Bowman,R.
H.
,andMorgan,H.
E.
(1969).
Effectsofventricularpressuredevelopmentandpalmitateonglucosetransport.
Am.
J.
Physiol.
216,804–811.
Neubauer,S.
(2007).
Thefailingheart–anengineoutoffuel.
N.
Engl.
J.
Med.
356,1140–1151.
doi:10.
1056/NEJMra063052Newgard,C.
B.
(2012).
Interplaybetweenlipidsandbranched-chainaminoacidsindevelopmentofinsulinresistance.
CellMetab.
15,606–614.
doi:10.
1016/j.
cmet.
2012.
01.
024Nickel,A.
,Kohlhaas,M.
,andMaack,C.
(2014).
Mitochondrialreactiveoxy-genspeciesproductionandelimination.
J.
Mol.
Cell.
Cardiol.
73,26–33.
doi:10.
1016/j.
yjmcc.
2014.
03.
011Nickel,A.
,Lofer,J.
,andMaack,C.
(2013).
Myocardialenergeticsinheartfailure.
BasicRes.
Cardiol.
108:358.
doi:10.
1007/s00395-013-0358-9Noel,H.
,Goswami,T.
,andPande,S.
V.
(1985).
Solubilizationandreconstitutionofratlivermitochondrialcarnitineacylcarnitinetranslocase.
Biochemistry24,4504–4509.
doi:10.
1021/bi00338a003Oram,J.
F.
,Bennetch,S.
L.
,andNeely,J.
R.
(1973).
Regulationoffattyacidutilizationinisolatedperfusedrathearts.
J.
Biol.
Chem.
248,5299–5309.
Palade,G.
E.
,andSchidlowski,G.
(1958).
Functionalassociationofmitochondriaandlipidinclusions.
Anat.
Rec.
130:352.
Pande,S.
V.
,andBlanchaer,M.
C.
(1971).
ReversibleinhibitionofmitochondrialadenosinediphosphatephosphorylationbylongchainacylcoenzymeAesters.
J.
Biol.
Chem.
246,402–411.
Penzo,D.
,Petronilli,V.
,Angelin,A.
,Cusan,C.
,Colonna,R.
,Scorrano,L.
,etal.
(2004).
ArachidonicacidreleasedbyphospholipaseA2activationtriggersCa2+-dependentapoptosisthroughthemitochondrialpathway.
J.
Biol.
Chem.
279,25219–25225.
doi:10.
1074/jbc.
M310381200Penzo,D.
,Tagliapietra,C.
,Colonna,R.
,Petronilli,V.
,andBernardi,P.
(2002).
Effectsoffattyacidsonmitochondria:implicationsforcelldeath.
Biochim.
Biophys.
Acta1555,160–165.
doi:10.
1016/S0005-2728(02)00272-4Phielix,E.
,Meex,R.
,Ouwens,D.
M.
,Sparks,L.
,Hoeks,J.
,Schaart,G.
,etal.
(2012).
Highoxidativecapacityduetochronicexercisetrainingattenuateslipid-inducedinsulinresistance.
Diabetes61,2472–2478.
doi:10.
2337/db11-1832Pulinilkunnil,T.
,Kienesberger,P.
C.
,Nagendran,J.
,Waller,T.
J.
,Young,M.
E.
,Kershaw,E.
E.
,etal.
(2013).
Myocardialadiposetriglyceridelipaseoverexpres-sionprotectsdiabeticmicefromthedevelopmentoflipotoxiccardiomyopathy.
Diabetes62,1464–1477.
doi:10.
2337/db12-0927Ramsay,R.
R.
,andTubbs,P.
K.
(1976).
Theeffectsoftemperatureandsomeinhibitorsonthecarnitineexchangesystemofheartmitochondria.
Eur.
J.
Biochem.
69,299–303.
doi:10.
1111/j.
1432-1033.
1976.
tb10886.
xRijzewijk,L.
J.
,vanderMeer,R.
W.
,Smit,J.
W.
,Diamant,M.
,Bax,J.
J.
,Hammer,S.
,etal.
(2008).
Myocardialsteatosisisanindependentpredictorofdiastolicdysfunctionintype2diabetesmellitus.
J.
Am.
Coll.
Cardiol.
52,1793–1799.
doi:10.
1016/j.
jacc.
2008.
07.
062Roden,M.
(2005).
Muscletriglyceridesandmitochondrialfunction:possiblemechanismsforthedevelopmentoftype2diabetes.
Int.
J.
Obes.
(Lond.
)29(Suppl.
2),S111–S115.
doi:10.
1038/sj.
ijo.
0803102Roe,C.
R.
,andDing,J.
H.
(2001).
"Mitochondrialfattyacidoxidationdisorders,"inTheMetabolicandMolecularBasesofInheritedDisease,edsC.
R.
Scriver,A.
L.
Beaudet,W.
S.
Sly,andD.
Valle(NewYork,NY:McGraw-Hill),2297–2326.
Rolfe,D.
F.
,andBrown,G.
C.
(1997).
Cellularenergyutilizationandmolec-ularoriginofstandardmetabolicrateinmammals.
Physiol.
Rev.
77,731–758.
Romijn,J.
A.
,Coyle,E.
F.
,Sidossis,L.
S.
,Gastaldelli,A.
,Horowitz,J.
F.
,Endert,E.
,etal.
(1993).
Regulationofendogenousfatandcarbohydratemetabolisminrelationtoexerciseintensityandduration.
Am.
J.
Physiol.
265,E380–E391.
Rossignol,D.
A.
,andFrye,R.
E.
(2014).
Evidencelinkingoxidativestress,mito-chondrialdysfunction,andinammationinthebrainofindividualswithautism.
Front.
Physiol.
5:150.
doi:10.
3389/fphys.
2014.
00150Schafer,F.
Q.
,andBuettner,G.
R.
(2001).
Redoxenvironmentofthecellasviewedthroughtheredoxstateoftheglutathionedisulde/glutathionecouple.
FreeRadic.
Biol.
Med.
30,1191–1212.
doi:10.
1016/S0891-5849(01)00480-4Schilling,J.
D.
,andMann,D.
L.
(2012).
Diabeticcardiomyopathy:benchtobedside.
HeartFail.
Clin.
8,619–631.
doi:10.
1016/j.
hfc.
2012.
06.
007Schonfeld,P.
,andReiser,G.
(2006).
Rotenone-likeactionofthebranched-chainphytanicacidinducesoxidativestressinmitochondria.
J.
Biol.
Chem.
281,7136–7142.
doi:10.
1074/jbc.
M513198200Schonfeld,P.
,Schild,L.
,andBohnensack,R.
(1996).
ExpressionoftheADP/ATPcarrierandexpansionofthemitochondrial(ATP+ADP)poolcontributetopostnatalmaturationoftheratheart.
Eur.
J.
Biochem.
241,895–900.
doi:10.
1111/j.
1432-1033.
1996.
00895.
xSchonfeld,P.
,andWojtczak,L.
(2007).
Fattyacidsdecreasemitochondrialgener-ationofreactiveoxygenspeciesatthereverseelectrontransportbutincreaseitattheforwardtransport.
Biochim.
Biophys.
Acta1767,1032–1040.
doi:10.
1016/j.
bbabio.
2007.
04.
005Schonfeld,P.
,andWojtczak,L.
(2008).
Fattyacidsasmodulatorsofthecellularproductionofreactiveoxygenspecies.
FreeRadic.
Biol.
Med.
45,231–241.
doi:10.
1016/j.
freeradbiomed.
2008.
04.
029Schrauwen,P.
,Schrauwen-Hinderling,V.
,Hoeks,J.
,andHesselink,M.
K.
(2010).
Mitochondrialdysfunctionandlipotoxicity.
Biochim.
Biophys.
Acta1801,266–271.
doi:10.
1016/j.
bbalip.
2009.
09.
011Scorrano,L.
,Penzo,D.
,Petronilli,V.
,Pagano,F.
,andBernardi,P.
(2001).
Arachidonicacidcausescelldeaththroughthemitochondrialpermeabilitytransition.
Implicationsfortumornecrosisfactor-alphaapoptoticsignaling.
J.
Biol.
Chem.
276,12035–12040.
doi:10.
1074/jbc.
M010603200Shaw,C.
S.
,Clark,J.
,andWagenmakers,A.
J.
(2010).
Theeffectofexerciseandnutritiononintramuscularfatmetabolismandinsulinsensitivity.
Annu.
Rev.
Nutr.
30,13–34.
doi:10.
1146/annurev.
nutr.
012809.
104817Singh,R.
,andCuervo,A.
M.
(2012).
Lipophagy:connectingautophagyandlipidmetabolism.
Int.
J.
CellBiol.
2012:282041.
doi:10.
1155/2012/282041Singh,R.
,Kaushik,S.
,Wang,Y.
,Xiang,Y.
,Novak,I.
,Komatsu,M.
,etal.
(2009).
Autophagyregulateslipidmetabolism.
Nature458,1131–1135.
doi:10.
1038/nature07976Sivitz,W.
I.
,andYorek,M.
A.
(2010).
Mitochondrialdysfunctionindiabetes:frommolecularmechanismstofunctionalsignicanceandtherapeuticopportuni-ties.
Antioxid.
RedoxSignal.
12,537–577.
doi:10.
1089/ars.
2009.
2531FrontiersinPhysiology|MitochondrialResearchJuly2014|Volume5|Article282|12Aonetal.
MitochondrialfunctionandlipidexcessSkulachev,V.
P.
(1991).
Fattyacidcircuitasaphysiologicalmechanismofuncou-plingofoxidativephosphorylation.
FEBSLett.
294,158–162.
doi:10.
1016/0014-5793(91)80658-PSolaini,G.
,andHarris,D.
A.
(2005).
Biochemicaldysfunctioninheartmito-chondriaexposedtoischaemiaandreperfusion.
Biochem.
J.
390,377–394.
doi:10.
1042/BJ20042006Stanley,B.
A.
,Sivakumaran,V.
,Shi,S.
,McDonald,I.
,Lloyd,D.
,Watson,W.
H.
,etal.
(2011).
Thioredoxinreductase-2isessentialforkeepinglowlevelsofH(2)O(2)emissionfromisolatedheartmitochondria.
J.
Biol.
Chem.
286,33669–33677.
doi:10.
1074/jbc.
M111.
284612Stanley,K.
K.
,andTubbs,P.
K.
(1974).
Theoccurrenceofintermediatesinmitochondrialfattyacidoxidation.
FEBSLett.
39,325–328.
doi:10.
1016/0014-5793(74)80141-9Stanley,K.
K.
,andTubbs,P.
K.
(1975).
Theroleofintermediatesinmitochondrialfattyacidoxidation.
Biochem.
J.
150,77–88.
Steinberg,S.
F.
(2013).
Oxidativestressandsarcomericproteins.
Circ.
Res.
112,393–405.
doi:10.
1161/CIRCRESAHA.
111.
300496Stellingwerff,T.
,Boon,H.
,Jonkers,R.
A.
,Senden,J.
M.
,Spriet,L.
L.
,Koopman,R.
,etal.
(2007).
Signicantintramyocellularlipiduseduringprolongedcyclinginendurance-trainedmalesasassessedbythreediffer-entmethodologies.
Am.
J.
Physiol.
Endocrinol.
Metab.
292,E1715–E1723.
doi:10.
1152/ajpendo.
00678.
2006Stewart,H.
B.
,Tubbs,P.
K.
,andStanley,K.
K.
(1973).
Intermediatesinfattyacidoxidation.
Biochem.
J.
132,61–76.
Suh,J.
H.
,Heath,S.
H.
,andHagen,T.
M.
(2003).
Twosubpopulationsofmito-chondriaintheagingratheartdisplayheterogenouslevelsofoxidativestress.
FreeRadic.
Biol.
Med.
35,1064–1072.
doi:10.
1016/S0891-5849(03)00468-4Sumegi,B.
,Sherry,A.
D.
,Malloy,C.
R.
,Evans,C.
,andSrere,P.
A.
(1991).
IstheretightchannellinginthetricarboxylicacidcyclemetabolonBiochem.
Soc.
Trans.
19,1002–1005.
Tansey,J.
T.
,Sztalryd,C.
,Gruia-Gray,J.
,Roush,D.
L.
,Zee,J.
V.
,Gavrilova,O.
,etal.
(2001).
Perilipinablationresultsinaleanmousewithaber-rantadipocytelipolysis,enhancedleptinproduction,andresistancetodiet-inducedobesity.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
98,6494–6499.
doi:10.
1073/pnas.
101042998Tarnopolsky,M.
A.
,Rennie,C.
D.
,Robertshaw,H.
A.
,Fedak-Tarnopolsky,S.
N.
,Devries,M.
C.
,andHamadeh,M.
J.
(2007).
Inuenceofenduranceexercisetrainingandsexonintramyocellularlipidandmitochondrialultrastructure,substrateuse,andmitochondrialenzymeactivity.
Am.
J.
Physiol.
Regul.
Integr.
Comp.
Physiol.
292,R1271–R1278.
doi:10.
1152/ajpregu.
00472.
2006Tocchetti,C.
G.
,Caceres,V.
,Stanley,B.
A.
,Xie,C.
,Shi,S.
,Watson,W.
H.
,etal.
(2012).
GSHorpalmitatepreservesmitochondrialenergetic/redoxbalance,pre-ventingmechanicaldysfunctioninmetabolicallychallengedmyocytes/heartsfromtype2diabeticmice.
Diabetes61,3094–3105.
doi:10.
2337/db12-0072Ussher,J.
R.
,Koves,T.
R.
,Jaswal,J.
S.
,Zhang,L.
,Ilkayeva,O.
,Dyck,J.
R.
,etal.
(2009).
Insulin-stimulatedcardiacglucoseoxidationisincreasedinhigh-fatdiet-inducedobesemicelackingmalonylCoAdecarboxylase.
Diabetes58,1766–1775.
doi:10.
2337/db09-0011vanLoon,L.
J.
,Greenhaff,P.
L.
,Constantin-Teodosiu,D.
,Saris,W.
H.
,andWagenmakers,A.
J.
(2001).
Theeffectsofincreasingexerciseintensityonmusclefuelutilisationinhumans.
J.
Physiol.
536,295–304.
doi:10.
1111/j.
1469-7793.
2001.
00295.
xvanLoon,L.
J.
,Koopman,R.
,Stegen,J.
H.
,Wagenmakers,A.
J.
,Keizer,H.
A.
,andSaris,W.
H.
(2003).
Intramyocellularlipidsformanimportantsubstratesourceduringmoderateintensityexerciseinendurance-trainedmalesinafastedstate.
J.
Physiol.
553,611–625.
doi:10.
1113/jphysiol.
2003.
052431Wallace,D.
C.
(2012).
Mitochondriaandcancer.
Nat.
Rev.
Cancer12,685–698.
doi:10.
1038/nrc3365Walther,T.
C.
,andFarese,R.
V.
Jr.
(2009).
Thelifeoflipiddroplets.
Biochim.
Biophys.
Acta1791,459–466.
doi:10.
1016/j.
bbalip.
2008.
10.
009Walther,T.
C.
,andFarese,R.
V.
Jr.
(2012).
Lipiddropletsandcellularlipidmetabolism.
Annu.
Rev.
Biochem.
81,687–714.
doi:10.
1146/annurev-biochem-061009-102430Wang,H.
,Sreenevasan,U.
,Hu,H.
,Saladino,A.
,Polster,B.
M.
,Lund,L.
M.
,etal.
(2011).
Perilipin5,alipiddroplet-associatedprotein,providesphysicalandmetaboliclinkagetomitochondria.
J.
LipidRes.
52,2159–2168.
doi:10.
1194/jlr.
M017939Wang,H.
,Sreenivasan,U.
,Gong,D.
W.
,O'Connell,K.
A.
,Dabkowski,E.
R.
,Hecker,P.
A.
,etal.
(2013).
Cardiomyocyte-specicperilipin5overexpressionleadstomyocardialsteatosisandmodestcardiacdysfunction.
J.
LipidRes.
54,953–965.
doi:10.
1194/jlr.
M032466Wang,H.
,andSztalryd,C.
(2011).
Oxidativetissue:perilipin5linksstoragewiththefurnace.
TrendsEndocrinol.
Metab.
22,197–203.
doi:10.
1016/j.
tem.
2011.
03.
008Wang,Y.
,Mohsen,A.
W.
,Mihalik,S.
J.
,Goetzman,E.
S.
,andVockley,J.
(2010).
Evidenceforphysicalassociationofmitochondrialfattyacidoxidationandoxidativephosphorylationcomplexes.
J.
Biol.
Chem.
285,29834–29841.
doi:10.
1074/jbc.
M110.
139493Watt,M.
J.
,andSpriet,L.
L.
(2010).
Triacylglycerollipasesandmetaboliccon-trol:implicationsforhealthanddisease.
Am.
J.
Physiol.
Endocrinol.
Metab.
299,E162–E168.
doi:10.
1152/ajpendo.
00698.
2009Welch,G.
R.
(1977).
Ontheroleoforganizedmultienzymesystemsincellularmetabolism:ageneralsynthesis.
Prog.
Biophys.
Mol.
Biol.
32,103–191.
doi:10.
1016/0079-6107(78)90019-6Wende,A.
R.
,Symons,J.
D.
,andAbel,E.
D.
(2012).
Mechanismsoflipotoxicityinthecardiovascularsystem.
Curr.
Hypertens.
Rep.
14,517–531.
doi:10.
1007/s11906-012-0307-2Wojtczak,L.
(1976).
Effectoflong-chainfattyacidsandacyl-CoAonmitochondrialpermeability,transport,andenergy-couplingprocesses.
J.
Bioenerg.
Biomembr.
8,293–311.
Wojtczak,L.
,andSchonfeld,P.
(1993).
Effectoffattyacidsonenergycouplingpro-cessesinmitochondria.
Biochim.
Biophys.
Acta1183,41–57.
doi:10.
1016/0005-2728(93)90004-YWojtczak,L.
,andZaluska,H.
(1967).
Theinhibitionoftranslocationofadeninenucleotidesthroughmitochondrialmembranesbyoleate.
Biochem.
Biophys.
Res.
Commun.
28,76–81.
doi:10.
1016/0006-291X(67)90409-3Yang,B.
Z.
,Mallory,J.
M.
,Roe,D.
S.
,Brivet,M.
,Strobel,G.
D.
,Jones,K.
M.
,etal.
(2001).
Carnitine/acylcarnitinetranslocasedeciency(neonatalpheno-type):successfulprenatalandpostmortemdiagnosisassociatedwithanovelmutationinasinglefamily.
Mol.
Genet.
Metab.
73,64–70.
doi:10.
1006/mgme.
2001.
3162Zammit,V.
A.
(1999).
Carnitineacyltransferases:functionalsignicanceofsubcel-lulardistributionandmembranetopology.
Prog.
LipidRes.
38,199–224.
doi:10.
1016/S0163-7827(99)00002-8Zima,A.
V.
,andBlatter,L.
A.
(2006).
Redoxregulationofcardiaccalciumchannelsandtransporters.
Cardiovasc.
Res.
71,310–321.
doi:10.
1016/j.
cardiores.
2006.
02.
019Zimmermann,R.
,Strauss,J.
G.
,Haemmerle,G.
,Schoiswohl,G.
,Birner-Gruenberger,R.
,Riederer,M.
,etal.
(2004).
Fatmobilizationinadiposetissueispromotedbyadiposetriglyceridelipase.
Science306,1383–1386.
doi:10.
1126/science.
1100747ConictofInterestStatement:Theauthorsdeclarethattheresearchwascon-ductedintheabsenceofanycommercialornancialrelationshipsthatcouldbeconstruedasapotentialconictofinterest.
Received:07April2014;accepted:10July2014;publishedonline:31July2014.
Citation:AonMA,BhattNandCortassaSC(2014)Mitochondrialandcellularmechanismsformanaginglipidexcess.
Front.
Physiol.
5:282.
doi:10.
3389/fphys.
2014.
00282ThisarticlewassubmittedtoMitochondrialResearch,asectionofthejournalFrontiersinPhysiology.
Copyright2014Aon,BhattandCortassa.
Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).
Theuse,dis-tributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)orlicensorarecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.
Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms.
www.
frontiersin.
orgJuly2014|Volume5|Article282|13

哪个好Vultr搬瓦工和Vultr97%,搬瓦工和Vultr全方位比较!

搬瓦工和Vultr哪个好?搬瓦工和Vultr都是非常火爆的国外VPS,可以说是国内网友买的最多的两家,那么搬瓦工和Vultr哪个好?如果要选择VPS,首先我们要考虑成本、服务器质量以及产品的售后服务。老玩家都知道目前在国内最受欢迎的国外VPS服务商vultr和搬瓦工口碑都很不错。搬瓦工和Vultr哪个稳定?搬瓦工和Vultr哪个速度快?为了回答这些问题,本文从线路、速度、功能、售后等多方面对比这两...

特网云(1050元),IP数5 个可用 IP (/29) ,美国高防御服务器 无视攻击

特网云特网云为您提供高速、稳定、安全、弹性的云计算服务计算、存储、监控、安全,完善的云产品满足您的一切所需,深耕云计算领域10余年;我们拥有前沿的核心技术,始终致力于为政府机构、企业组织和个人开发者提供稳定、安全、可靠、高性价比的云计算产品与服务。官方网站:https://www.56dr.com/ 10年老品牌 值得信赖 有需要的请联系======================特网云美国高防御...

CloudCone(1.99美元),可以额外选择Voxility高防IP

CloudCone 商家也是比较有特点的,和我们熟悉的DO、Vultr、Linode商家均是可以随时删除机器开通的小时计费模式。这个对于有需要短租服务器的来说是比较有性价比的。但是,他们还有一个缺点就是机房比较少,不同于上面几个小时计费服务商可以有多机房可选,如果有这个多机房方案的话,应该更有特点。这次我们可以看到CloudCone闪购活动提供洛杉矶三个促销方案,低至月付1.99美元。商家也可以随...

33669.com为你推荐
徐州发布官方微信participants37平板ipad奶粉ios8photoshop技术photoshop技术对哪些工作有用?win10关闭445端口如何进入注册表修改关闭445端口css下拉菜单如何使用HTML和CSS制作下拉菜单127.0.0.1传奇服务器非法网关连接: 127.0.0.1ms17-010win10pybaen.10.的硬币是哪国的再中国至多少钱chrome18chrome的加速功能怎么开启呢?
网站空间申请 买域名 域名查询软件 raksmart 搬瓦工官网 godaddy续费优惠码 国外空间服务商 论坛空间 申请个人网页 亚洲小于500m howfile 国外免费全能空间 七夕促销 169邮箱 域名dns 德讯 supercache 免费网络空间 cdn服务 服务器托管价格 更多