numbers98成人网
98成人网 时间:2021-04-11 阅读:(
)
MoosaeiFixedPointTheoryandApplications2014,2014:98http://www.
fixedpointtheoryandapplications.
com/content/2014/1/98RESEARCHOpenAccessCommonxedpointsforsomegeneralizedcontractionpairsinconvexmetricspacesMohammadMoosaei**Correspondence:m.
moosaei@basu.
ac.
irDepartmentofMathematics,Bu-AliSinaUniversity,Hamedan,IranAbstractThepresentstudyfocusesonprovingtheexistenceofcoincidencepointsforself-mappingssatisfyingageneralizedcontractiveconditionwithintheframeworkofconvexmetricspaces.
Theexistenceofcommonxedpointsforweaklycompatibleself-mappingsaswellasBanachoperatorpairsundercertaingeneralizedcontractionsinaconvexmetricspaceisalsoestablished.
MSC:47H09;47H10;47H19;54H25Keywords:Banachoperatorpairs;coincidencepoints;commonxedpoints;compatiblemappings;convexmetricspaces;xedpoints;weaklycompatiblepair1IntroductionandpreliminariesIn,Takahashi[]introducedthenotionofconvexityinmetricspacesandprovedthatallnormedspacesandtheirconvexsubsetsareconvexmetricspaces.
Healsogavesomeexamplesoftheconvexmetricspaceswhicharenotembeddedinanynormed/Banachspaces.
AfterwardGuay,SinghandWhittield[],BegandAzam[],Beg,Azam,AliandMinhas[],ShimizuandTakahashi[],Ciric[],Beg[,],BegandAbbas[],andmanyotherauthorshavestudiedxedpointtheoremsinconvexmetricspaces.
Inthispaper,weintroduce(α,β,γ,η)-generalizedcontractionpairsandstudytheexis-tenceofacoincidencepointforsuchpairsinaconvexmetricspaceundercertaincondi-tions(seeTheorem.
).
Consequently,weprovetheexistenceofacommonxedpointforweaklycompatiblemappingsandalsoBanachoperatorpairswhichare(α,β,γ,η)-generalizedcontractionpairs(seeTheorem.
andTheorem.
).
Wenowreviewnotationsanddenitionsneeded.
WedenotebyNandRthesetofnaturalnumbersandthesetofrealnumbers,respectively.
WealsodenotebyItheidentitymapping.
Inwhatfollows,(X,d)isametricspace,andCisanonemptysubsetofX.
Denition.
LetSandTbetwoself-mappingsofC.
ApointxofCiscalled(i)axedpointofTifTx=x,(ii)acommonxedpointofthepair(S,T)ifSx=Tx=x,and(iii)acoincidencepointofthepair(S,T)ifSx=Tx.
ThesetofxedpointsofTisdenotedbyF(T).
Thesetofcommonxedpoints(respec-tively,coincidencepoints)ofthepair(S,T)isdenotedbyF(S,T)(respectively,C(S,T)).
NotethatC(I,T)=F(T).
Denition.
LetSandTbetwoself-mappingsofC.
ThemappingTiscalled2014Moosaei;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttribu-tionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
MoosaeiFixedPointTheoryandApplications2014,2014:98Page2of8http://www.
fixedpointtheoryandapplications.
com/content/2014/1/98(i)acontractionifthereexistsk∈[,)suchthatd(Tx,Ty)≤kd(x,y)forallx,y∈C,(ii)anS-contractionifthereexistsk∈[,)suchthatd(Tx,Ty)≤kd(Sx,Sy)forallx,y∈C,(iii)nonexpansiveifd(Tx,Ty)≤d(x,y)forallx,y∈C,and(iv)S-nonexpansiveifd(Tx,Ty)≤d(Sx,Sy)forallx,y∈C.
Denition.
LetSandTbetwoself-mappingsofC.
Thepair(S,T)issaidtobe(i)commutingifSTx=TSxforallx∈C,(ii)R-weaklycommuting[]ifthereexistsR>suchthatd(STx,TSx)≤Rd(Sx,Tx)forallx∈C.
IfR=,thenthemappingsarecalledweaklycommuting[],(iii)compatible[]iflimn→∞d(STxn,TSxn)=,whenever{xn}∞n=isasequenceinCsuchthatlimn→∞Sxn=limn→∞Txn=xforsomex∈C,and(iv)weaklycompatibleiftheycommuteonC(S,T)i.
e.
STx=TSxforallx∈C(S,T)(see[,]formoredetails).
Itiswellknownthatcommutingmappingsareweaklycommuting,andweaklycommut-ingmappingsareR-weaklymappings.
Moreover,R-weaklymappingsarecompatible,andcompatiblemappingsareweaklycompatible.
Thefollowingexampleshowsthattheconversesoftheaboveresultsarenottrueingeneral.
Example.
LetX=Rwiththeusualmetricd(x,y)=|x–y|forallx,y∈X,wehave:()LetC=[,].
LetSx=xandTx=xforallx∈C.
ItistrivialthatSandTareweaklycommutingbutarenotcommuting.
()LetC=[,∞].
ConsiderSx=x–andTx=xforallx∈C.
ThenSandTare-weaklycommutingbutarenotweaklycommuting(see[]).
()LetC=X,Sx=x,Tx=x,x∈C.
ThenSandTarecompatiblebutarenotR-weaklycommuting(see[,,]formoredetails).
()LetC=[,],anddeneself-mappingsSandTofCbyS()=,S(x)=iforηorη,thenηorηorη<α+γholds.
CompetinginterestsTheauthordeclaresthattheyhavenocompetinginterests.
AcknowledgementsTheauthorisgratefultothereviewersfortheirvaluablecommentswhichimprovedthecontentsofthemanuscript.
Received:28November2013Accepted:27March2014Published:16Apr2014MoosaeiFixedPointTheoryandApplications2014,2014:98Page8of8http://www.
fixedpointtheoryandapplications.
com/content/2014/1/98References1.
Takahashi,T:AconvexityinmetricspacesandnonexpansivemappingI.
KodaiMath.
Semin.
Rep.
22,142-149(1970)2.
Guay,MD,Singh,KL,Whiteld,JHM:Fixedpointtheoremsfornonexpansivemappingsinconvexmetricspaces.
In:ProceedingsofConferenceonNonlinearAnalysis.
LectureNotesinPureandAppliedMathematics,vol.
80,pp.
179-189.
Dekker,NewYork(1982)3.
Beg,I,Azam,A:Fixedpointonstar-shapedsubsetsofconvexmetricspaces.
IndianJ.
PureAppl.
Math.
18,594-596(1987)4.
Beg,I,Azam,A,Ali,F,Minhas,T:Somexedpointtheoremsinconvexmetricspaces.
Rend.
Circ.
Mat.
PalermoXL,307-315(1991)5.
Shimizu,T,Takahashi,W:Fixedpointtheoremsincertainconvexmetricspaces.
Math.
Jpn.
37,855-859(1992)6.
Ciric,L:Onsomediscontinuousxedpointtheoremsinconvexmetricspaces.
Czechoslov.
Math.
J.
43(188),319-326(1993)7.
Beg,I:Structureofthesetofxedpointsofnonexpansivemappingsonconvexmetricspaces.
Ann.
Univ.
MariaeCurie-Skodowska,Sect.
ALII,7-14(1998)8.
Beg,I:Inequalitiesinmetricspaceswithapplications.
Topol.
MethodsNonlinearAnal.
17,183-190(2001)9.
Beg,I,Abbas,M:FixedpointsandbestapproximationinMengerconvexmetricspaces.
Arch.
Math.
41,389-397(2005)10.
Pant,RP:Commonxedpointsofnoncommutingmappings.
J.
Math.
Anal.
Appl.
188,436-440(1994)11.
Sessa,S:Onaweakcommutativityconditionofmappingsinxedpointconsiderations.
Publ.
Inst.
Math.
32,149-153(1982)12.
Jungck,G:Compatiblemappingsandcommonxedpoints.
Int.
J.
Math.
Math.
Sci.
9,771-779(1986)13.
Jungck,G,Rhoades,BE:Fixedpointforsetvaluedfunctionswithoutcontinuity.
IndianJ.
PureAppl.
Math.
29(3),227-238(1998)14.
Chugh,R,Kumar,S:Commonxedpointsforweaklycompatiblemaps.
Proc.
IndianAcad.
Sci.
Math.
Sci.
111,241-247(2001)15.
Jungck,G:Commonxedpointsforcommutingandcompatiblemapsoncompacta.
Proc.
Am.
Math.
Soc.
103,978-983(1988)16.
Jungck,G:CommonxedpointtheoremsforcompatibleselfmapsofHausdortopologicalspaces.
FixedPointTheoryAppl.
3,355-363(2005)17.
Chen,J,Li,Z:Commonxed-pointsforBanachoperatorpairsinbestapproximation.
J.
Math.
Anal.
Appl.
336,1466-1475(2007)18.
Hussain,N:CommonxedpointsinbestapproximationforBanachoperatorpairswithCirictypeI-contractions.
J.
Math.
Anal.
Appl.
338,1351-1363(2008)19.
Agarwal,RP,O'Regan,D,Sahu,DR:FixedPointTheoryforLipschitzian-TypeMappingswithApplications.
Springer,Heidelberg(2009)20.
Hussain,N,Abbas,M,Kim,JK:CommonxedpointandinvariantapproximationinMengerconvexmetricspaces.
Bull.
KoreanMath.
Soc.
48,671-680(2008)21.
Moosaei,M:Fixedpointtheoremsinconvexmetricspaces.
FixedPointTheoryAppl.
2012,ArticleID164(2012).
doi:10.
1186/1687-1812-2012-16410.
1186/1687-1812-2014-98Citethisarticleas:Moosaei:Commonxedpointsforsomegeneralizedcontractionpairsinconvexmetricspaces.
FixedPointTheoryandApplications2014,2014:98
sharktech怎么样?sharktech鲨鱼机房(Sharktech)我们也叫它SK机房,是一家成立于2003年的老牌国外主机商,提供的产品包括独立服务器租用、VPS主机等,自营机房在美国洛杉矶、丹佛、芝加哥和荷兰阿姆斯特丹等,主打高防产品,独立服务器免费提供60Gbps/48Mpps攻击防御。机房提供1-10Gbps带宽不限流量服务器,最低丹佛/荷兰机房每月49美元起,洛杉矶机房最低59美元...
PIGYun发布了九月份及中秋节特惠活动,提供8折优惠码,本月商家主推中国香港和韩国机房,优惠后最低韩国每月14元/中国香港每月19元起。这是一家成立于2019年的国人商家,提供中国香港、韩国和美国等地区机房VPS主机,基于KVM架构,采用SSD硬盘,CN2+BGP线路(美国为CUVIP-AS9929、GIA等)。下面列出两款主机配置信息。机房:中国香港CPU:1core内存:1GB硬盘:10GB...
bgpto怎么样?bgp.to日本机房、新加坡机房的独立服务器在搞特价促销,日本独立服务器低至6.5折优惠,新加坡独立服务器低至7.5折优惠,所有优惠都是循环的,终身不涨价。服务器不限制流量,支持升级带宽,免费支持Linux和Windows server中文版(还包括Windows 10). 特色:自动部署,无需人工干预,用户可以在后台自己重装系统、重启、关机等操作!bgpto主打日本(东京、大阪...
98成人网为你推荐
三星支付宝新闻联播网易yeah企业cms最好是开源的企业cmshttp404未找到HTTP 404 - 未找到文件,怎么解决啊flashfxp注册码谁知道 FlashFXP.rar的注册码?客服电话各银行的客服电话是多少?刚刚网刚刚在网上认识了一个女孩子,不是很了解她,就跟她表白了。中国保健养猪网中央7台致富经养猪免费代理加盟免费加盟代销怎么回事,能具体介绍下么如何发帖子手机百度贴吧怎么发帖子?
vps虚拟服务器 京东云擎 云主机51web 2017年万圣节 南昌服务器托管 台湾谷歌网址 52测评网 怎么测试下载速度 北京双线 电信虚拟主机 卡巴斯基免费试用 天翼云盘 Updog www789 太原联通测速 东莞服务器托管 存储服务器 贵州电信 碳云 windowsserver2012r2 更多