numbers98成人网

98成人网  时间:2021-04-11  阅读:()
MoosaeiFixedPointTheoryandApplications2014,2014:98http://www.
fixedpointtheoryandapplications.
com/content/2014/1/98RESEARCHOpenAccessCommonxedpointsforsomegeneralizedcontractionpairsinconvexmetricspacesMohammadMoosaei**Correspondence:m.
moosaei@basu.
ac.
irDepartmentofMathematics,Bu-AliSinaUniversity,Hamedan,IranAbstractThepresentstudyfocusesonprovingtheexistenceofcoincidencepointsforself-mappingssatisfyingageneralizedcontractiveconditionwithintheframeworkofconvexmetricspaces.
Theexistenceofcommonxedpointsforweaklycompatibleself-mappingsaswellasBanachoperatorpairsundercertaingeneralizedcontractionsinaconvexmetricspaceisalsoestablished.
MSC:47H09;47H10;47H19;54H25Keywords:Banachoperatorpairs;coincidencepoints;commonxedpoints;compatiblemappings;convexmetricspaces;xedpoints;weaklycompatiblepair1IntroductionandpreliminariesIn,Takahashi[]introducedthenotionofconvexityinmetricspacesandprovedthatallnormedspacesandtheirconvexsubsetsareconvexmetricspaces.
Healsogavesomeexamplesoftheconvexmetricspaceswhicharenotembeddedinanynormed/Banachspaces.
AfterwardGuay,SinghandWhittield[],BegandAzam[],Beg,Azam,AliandMinhas[],ShimizuandTakahashi[],Ciric[],Beg[,],BegandAbbas[],andmanyotherauthorshavestudiedxedpointtheoremsinconvexmetricspaces.
Inthispaper,weintroduce(α,β,γ,η)-generalizedcontractionpairsandstudytheexis-tenceofacoincidencepointforsuchpairsinaconvexmetricspaceundercertaincondi-tions(seeTheorem.
).
Consequently,weprovetheexistenceofacommonxedpointforweaklycompatiblemappingsandalsoBanachoperatorpairswhichare(α,β,γ,η)-generalizedcontractionpairs(seeTheorem.
andTheorem.
).
Wenowreviewnotationsanddenitionsneeded.
WedenotebyNandRthesetofnaturalnumbersandthesetofrealnumbers,respectively.
WealsodenotebyItheidentitymapping.
Inwhatfollows,(X,d)isametricspace,andCisanonemptysubsetofX.
Denition.
LetSandTbetwoself-mappingsofC.
ApointxofCiscalled(i)axedpointofTifTx=x,(ii)acommonxedpointofthepair(S,T)ifSx=Tx=x,and(iii)acoincidencepointofthepair(S,T)ifSx=Tx.
ThesetofxedpointsofTisdenotedbyF(T).
Thesetofcommonxedpoints(respec-tively,coincidencepoints)ofthepair(S,T)isdenotedbyF(S,T)(respectively,C(S,T)).
NotethatC(I,T)=F(T).
Denition.
LetSandTbetwoself-mappingsofC.
ThemappingTiscalled2014Moosaei;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttribu-tionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
MoosaeiFixedPointTheoryandApplications2014,2014:98Page2of8http://www.
fixedpointtheoryandapplications.
com/content/2014/1/98(i)acontractionifthereexistsk∈[,)suchthatd(Tx,Ty)≤kd(x,y)forallx,y∈C,(ii)anS-contractionifthereexistsk∈[,)suchthatd(Tx,Ty)≤kd(Sx,Sy)forallx,y∈C,(iii)nonexpansiveifd(Tx,Ty)≤d(x,y)forallx,y∈C,and(iv)S-nonexpansiveifd(Tx,Ty)≤d(Sx,Sy)forallx,y∈C.
Denition.
LetSandTbetwoself-mappingsofC.
Thepair(S,T)issaidtobe(i)commutingifSTx=TSxforallx∈C,(ii)R-weaklycommuting[]ifthereexistsR>suchthatd(STx,TSx)≤Rd(Sx,Tx)forallx∈C.
IfR=,thenthemappingsarecalledweaklycommuting[],(iii)compatible[]iflimn→∞d(STxn,TSxn)=,whenever{xn}∞n=isasequenceinCsuchthatlimn→∞Sxn=limn→∞Txn=xforsomex∈C,and(iv)weaklycompatibleiftheycommuteonC(S,T)i.
e.
STx=TSxforallx∈C(S,T)(see[,]formoredetails).
Itiswellknownthatcommutingmappingsareweaklycommuting,andweaklycommut-ingmappingsareR-weaklymappings.
Moreover,R-weaklymappingsarecompatible,andcompatiblemappingsareweaklycompatible.
Thefollowingexampleshowsthattheconversesoftheaboveresultsarenottrueingeneral.
Example.
LetX=Rwiththeusualmetricd(x,y)=|x–y|forallx,y∈X,wehave:()LetC=[,].
LetSx=xandTx=xforallx∈C.
ItistrivialthatSandTareweaklycommutingbutarenotcommuting.
()LetC=[,∞].
ConsiderSx=x–andTx=xforallx∈C.
ThenSandTare-weaklycommutingbutarenotweaklycommuting(see[]).
()LetC=X,Sx=x,Tx=x,x∈C.
ThenSandTarecompatiblebutarenotR-weaklycommuting(see[,,]formoredetails).
()LetC=[,],anddeneself-mappingsSandTofCbyS()=,S(x)=iforηorη,thenηorηorη<α+γholds.
CompetinginterestsTheauthordeclaresthattheyhavenocompetinginterests.
AcknowledgementsTheauthorisgratefultothereviewersfortheirvaluablecommentswhichimprovedthecontentsofthemanuscript.
Received:28November2013Accepted:27March2014Published:16Apr2014MoosaeiFixedPointTheoryandApplications2014,2014:98Page8of8http://www.
fixedpointtheoryandapplications.
com/content/2014/1/98References1.
Takahashi,T:AconvexityinmetricspacesandnonexpansivemappingI.
KodaiMath.
Semin.
Rep.
22,142-149(1970)2.
Guay,MD,Singh,KL,Whiteld,JHM:Fixedpointtheoremsfornonexpansivemappingsinconvexmetricspaces.
In:ProceedingsofConferenceonNonlinearAnalysis.
LectureNotesinPureandAppliedMathematics,vol.
80,pp.
179-189.
Dekker,NewYork(1982)3.
Beg,I,Azam,A:Fixedpointonstar-shapedsubsetsofconvexmetricspaces.
IndianJ.
PureAppl.
Math.
18,594-596(1987)4.
Beg,I,Azam,A,Ali,F,Minhas,T:Somexedpointtheoremsinconvexmetricspaces.
Rend.
Circ.
Mat.
PalermoXL,307-315(1991)5.
Shimizu,T,Takahashi,W:Fixedpointtheoremsincertainconvexmetricspaces.
Math.
Jpn.
37,855-859(1992)6.
Ciric,L:Onsomediscontinuousxedpointtheoremsinconvexmetricspaces.
Czechoslov.
Math.
J.
43(188),319-326(1993)7.
Beg,I:Structureofthesetofxedpointsofnonexpansivemappingsonconvexmetricspaces.
Ann.
Univ.
MariaeCurie-Skodowska,Sect.
ALII,7-14(1998)8.
Beg,I:Inequalitiesinmetricspaceswithapplications.
Topol.
MethodsNonlinearAnal.
17,183-190(2001)9.
Beg,I,Abbas,M:FixedpointsandbestapproximationinMengerconvexmetricspaces.
Arch.
Math.
41,389-397(2005)10.
Pant,RP:Commonxedpointsofnoncommutingmappings.
J.
Math.
Anal.
Appl.
188,436-440(1994)11.
Sessa,S:Onaweakcommutativityconditionofmappingsinxedpointconsiderations.
Publ.
Inst.
Math.
32,149-153(1982)12.
Jungck,G:Compatiblemappingsandcommonxedpoints.
Int.
J.
Math.
Math.
Sci.
9,771-779(1986)13.
Jungck,G,Rhoades,BE:Fixedpointforsetvaluedfunctionswithoutcontinuity.
IndianJ.
PureAppl.
Math.
29(3),227-238(1998)14.
Chugh,R,Kumar,S:Commonxedpointsforweaklycompatiblemaps.
Proc.
IndianAcad.
Sci.
Math.
Sci.
111,241-247(2001)15.
Jungck,G:Commonxedpointsforcommutingandcompatiblemapsoncompacta.
Proc.
Am.
Math.
Soc.
103,978-983(1988)16.
Jungck,G:CommonxedpointtheoremsforcompatibleselfmapsofHausdortopologicalspaces.
FixedPointTheoryAppl.
3,355-363(2005)17.
Chen,J,Li,Z:Commonxed-pointsforBanachoperatorpairsinbestapproximation.
J.
Math.
Anal.
Appl.
336,1466-1475(2007)18.
Hussain,N:CommonxedpointsinbestapproximationforBanachoperatorpairswithCirictypeI-contractions.
J.
Math.
Anal.
Appl.
338,1351-1363(2008)19.
Agarwal,RP,O'Regan,D,Sahu,DR:FixedPointTheoryforLipschitzian-TypeMappingswithApplications.
Springer,Heidelberg(2009)20.
Hussain,N,Abbas,M,Kim,JK:CommonxedpointandinvariantapproximationinMengerconvexmetricspaces.
Bull.
KoreanMath.
Soc.
48,671-680(2008)21.
Moosaei,M:Fixedpointtheoremsinconvexmetricspaces.
FixedPointTheoryAppl.
2012,ArticleID164(2012).
doi:10.
1186/1687-1812-2012-16410.
1186/1687-1812-2014-98Citethisarticleas:Moosaei:Commonxedpointsforsomegeneralizedcontractionpairsinconvexmetricspaces.
FixedPointTheoryandApplications2014,2014:98

hostodo:美国大流量VPS,低至$3,8T流量/月-1.5G内存/1核/25gNVMe/拉斯维加斯+迈阿密

hostodo从2014年年底运作至今一直都是走低价促销侧率运作VPS,在市场上一直都是那种不温不火的品牌知名度,好在坚持了7年都还运作得好好的,站长觉得hostodo还是值得大家在买VPS的时候作为一个候选考虑项的。当前,hostodo有拉斯维加斯和迈阿密两个数据中心的VPS在促销,专门列出了2款VPS给8T流量/月,基于KVM虚拟+NVMe整列,年付送DirectAdmin授权(发ticket...

HostYun 新增美国三网CN2 GIA VPS主机 采用美国原生IP低至月15元

在之前几个月中也有陆续提到两次HostYun主机商,这个商家前身是我们可能有些网友熟悉的主机分享团队的,后来改名称的。目前这个品牌主营低价便宜VPS主机,这次有可以看到推出廉价版本的美国CN2 GIA VPS主机,月费地址15元,适合有需要入门级且需要便宜的用户。第一、廉价版美国CN2 GIA VPS主机方案我们可看到这个类型的VPS目前三网都走CN2 GIA网络,而且是原生IP。根据信息可能后续...

NameCheap新注册.COM域名$5.98

随着自媒体和短视频的发展,确实对于传统的PC独立网站影响比较大的。我们可以看到云服务器商家的各种促销折扣活动,我们也看到传统域名商的轮番新注册和转入的促销,到现在这个状态已经不能说这些商家的为用户考虑,而是在不断的抢夺同行的客户。我们看到Namecheap商家新注册域名和转入活动一个接一个。如果我们有需要新注册.COM域名的,只需要5.98美元。优惠码:NEWCOM598。同时有赠送2个月免费域名...

98成人网为你推荐
Preprocessorsto小企业如何做品牌中小企业如何建立品牌效应,提升品牌效应 ?重庆400年老树穿楼生长重庆的树为什么都长胡须?重庆网站制作请问重庆那一家网站制作公司资信度比较好?技术实力雄厚呢?温州商标注册温州商标注册?即时通民生银行即时通是什么?什么是seoseo怎么学呢?账号通谁知道帐号通怎么解 我的号被盗号的帮了顽固木马专杀工具腾讯顽固木马专杀怎么授权localsettingss盘什么里的Local Settings这个文件是什么
租用虚拟主机 动态域名解析软件 怎么申请域名 新网域名管理 希网动态域名 namecheap 表格样式 天猫双十一抢红包 新站长网 卡巴斯基永久免费版 创梦 架设服务器 赞助 linux使用教程 web服务器搭建 网页提速 美国盐湖城 酸酸乳 卡巴斯基试用版下载 七牛云存储 更多