numbers98成人网

98成人网  时间:2021-04-11  阅读:()
MoosaeiFixedPointTheoryandApplications2014,2014:98http://www.
fixedpointtheoryandapplications.
com/content/2014/1/98RESEARCHOpenAccessCommonxedpointsforsomegeneralizedcontractionpairsinconvexmetricspacesMohammadMoosaei**Correspondence:m.
moosaei@basu.
ac.
irDepartmentofMathematics,Bu-AliSinaUniversity,Hamedan,IranAbstractThepresentstudyfocusesonprovingtheexistenceofcoincidencepointsforself-mappingssatisfyingageneralizedcontractiveconditionwithintheframeworkofconvexmetricspaces.
Theexistenceofcommonxedpointsforweaklycompatibleself-mappingsaswellasBanachoperatorpairsundercertaingeneralizedcontractionsinaconvexmetricspaceisalsoestablished.
MSC:47H09;47H10;47H19;54H25Keywords:Banachoperatorpairs;coincidencepoints;commonxedpoints;compatiblemappings;convexmetricspaces;xedpoints;weaklycompatiblepair1IntroductionandpreliminariesIn,Takahashi[]introducedthenotionofconvexityinmetricspacesandprovedthatallnormedspacesandtheirconvexsubsetsareconvexmetricspaces.
Healsogavesomeexamplesoftheconvexmetricspaceswhicharenotembeddedinanynormed/Banachspaces.
AfterwardGuay,SinghandWhittield[],BegandAzam[],Beg,Azam,AliandMinhas[],ShimizuandTakahashi[],Ciric[],Beg[,],BegandAbbas[],andmanyotherauthorshavestudiedxedpointtheoremsinconvexmetricspaces.
Inthispaper,weintroduce(α,β,γ,η)-generalizedcontractionpairsandstudytheexis-tenceofacoincidencepointforsuchpairsinaconvexmetricspaceundercertaincondi-tions(seeTheorem.
).
Consequently,weprovetheexistenceofacommonxedpointforweaklycompatiblemappingsandalsoBanachoperatorpairswhichare(α,β,γ,η)-generalizedcontractionpairs(seeTheorem.
andTheorem.
).
Wenowreviewnotationsanddenitionsneeded.
WedenotebyNandRthesetofnaturalnumbersandthesetofrealnumbers,respectively.
WealsodenotebyItheidentitymapping.
Inwhatfollows,(X,d)isametricspace,andCisanonemptysubsetofX.
Denition.
LetSandTbetwoself-mappingsofC.
ApointxofCiscalled(i)axedpointofTifTx=x,(ii)acommonxedpointofthepair(S,T)ifSx=Tx=x,and(iii)acoincidencepointofthepair(S,T)ifSx=Tx.
ThesetofxedpointsofTisdenotedbyF(T).
Thesetofcommonxedpoints(respec-tively,coincidencepoints)ofthepair(S,T)isdenotedbyF(S,T)(respectively,C(S,T)).
NotethatC(I,T)=F(T).
Denition.
LetSandTbetwoself-mappingsofC.
ThemappingTiscalled2014Moosaei;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttribu-tionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
MoosaeiFixedPointTheoryandApplications2014,2014:98Page2of8http://www.
fixedpointtheoryandapplications.
com/content/2014/1/98(i)acontractionifthereexistsk∈[,)suchthatd(Tx,Ty)≤kd(x,y)forallx,y∈C,(ii)anS-contractionifthereexistsk∈[,)suchthatd(Tx,Ty)≤kd(Sx,Sy)forallx,y∈C,(iii)nonexpansiveifd(Tx,Ty)≤d(x,y)forallx,y∈C,and(iv)S-nonexpansiveifd(Tx,Ty)≤d(Sx,Sy)forallx,y∈C.
Denition.
LetSandTbetwoself-mappingsofC.
Thepair(S,T)issaidtobe(i)commutingifSTx=TSxforallx∈C,(ii)R-weaklycommuting[]ifthereexistsR>suchthatd(STx,TSx)≤Rd(Sx,Tx)forallx∈C.
IfR=,thenthemappingsarecalledweaklycommuting[],(iii)compatible[]iflimn→∞d(STxn,TSxn)=,whenever{xn}∞n=isasequenceinCsuchthatlimn→∞Sxn=limn→∞Txn=xforsomex∈C,and(iv)weaklycompatibleiftheycommuteonC(S,T)i.
e.
STx=TSxforallx∈C(S,T)(see[,]formoredetails).
Itiswellknownthatcommutingmappingsareweaklycommuting,andweaklycommut-ingmappingsareR-weaklymappings.
Moreover,R-weaklymappingsarecompatible,andcompatiblemappingsareweaklycompatible.
Thefollowingexampleshowsthattheconversesoftheaboveresultsarenottrueingeneral.
Example.
LetX=Rwiththeusualmetricd(x,y)=|x–y|forallx,y∈X,wehave:()LetC=[,].
LetSx=xandTx=xforallx∈C.
ItistrivialthatSandTareweaklycommutingbutarenotcommuting.
()LetC=[,∞].
ConsiderSx=x–andTx=xforallx∈C.
ThenSandTare-weaklycommutingbutarenotweaklycommuting(see[]).
()LetC=X,Sx=x,Tx=x,x∈C.
ThenSandTarecompatiblebutarenotR-weaklycommuting(see[,,]formoredetails).
()LetC=[,],anddeneself-mappingsSandTofCbyS()=,S(x)=iforηorη,thenηorηorη<α+γholds.
CompetinginterestsTheauthordeclaresthattheyhavenocompetinginterests.
AcknowledgementsTheauthorisgratefultothereviewersfortheirvaluablecommentswhichimprovedthecontentsofthemanuscript.
Received:28November2013Accepted:27March2014Published:16Apr2014MoosaeiFixedPointTheoryandApplications2014,2014:98Page8of8http://www.
fixedpointtheoryandapplications.
com/content/2014/1/98References1.
Takahashi,T:AconvexityinmetricspacesandnonexpansivemappingI.
KodaiMath.
Semin.
Rep.
22,142-149(1970)2.
Guay,MD,Singh,KL,Whiteld,JHM:Fixedpointtheoremsfornonexpansivemappingsinconvexmetricspaces.
In:ProceedingsofConferenceonNonlinearAnalysis.
LectureNotesinPureandAppliedMathematics,vol.
80,pp.
179-189.
Dekker,NewYork(1982)3.
Beg,I,Azam,A:Fixedpointonstar-shapedsubsetsofconvexmetricspaces.
IndianJ.
PureAppl.
Math.
18,594-596(1987)4.
Beg,I,Azam,A,Ali,F,Minhas,T:Somexedpointtheoremsinconvexmetricspaces.
Rend.
Circ.
Mat.
PalermoXL,307-315(1991)5.
Shimizu,T,Takahashi,W:Fixedpointtheoremsincertainconvexmetricspaces.
Math.
Jpn.
37,855-859(1992)6.
Ciric,L:Onsomediscontinuousxedpointtheoremsinconvexmetricspaces.
Czechoslov.
Math.
J.
43(188),319-326(1993)7.
Beg,I:Structureofthesetofxedpointsofnonexpansivemappingsonconvexmetricspaces.
Ann.
Univ.
MariaeCurie-Skodowska,Sect.
ALII,7-14(1998)8.
Beg,I:Inequalitiesinmetricspaceswithapplications.
Topol.
MethodsNonlinearAnal.
17,183-190(2001)9.
Beg,I,Abbas,M:FixedpointsandbestapproximationinMengerconvexmetricspaces.
Arch.
Math.
41,389-397(2005)10.
Pant,RP:Commonxedpointsofnoncommutingmappings.
J.
Math.
Anal.
Appl.
188,436-440(1994)11.
Sessa,S:Onaweakcommutativityconditionofmappingsinxedpointconsiderations.
Publ.
Inst.
Math.
32,149-153(1982)12.
Jungck,G:Compatiblemappingsandcommonxedpoints.
Int.
J.
Math.
Math.
Sci.
9,771-779(1986)13.
Jungck,G,Rhoades,BE:Fixedpointforsetvaluedfunctionswithoutcontinuity.
IndianJ.
PureAppl.
Math.
29(3),227-238(1998)14.
Chugh,R,Kumar,S:Commonxedpointsforweaklycompatiblemaps.
Proc.
IndianAcad.
Sci.
Math.
Sci.
111,241-247(2001)15.
Jungck,G:Commonxedpointsforcommutingandcompatiblemapsoncompacta.
Proc.
Am.
Math.
Soc.
103,978-983(1988)16.
Jungck,G:CommonxedpointtheoremsforcompatibleselfmapsofHausdortopologicalspaces.
FixedPointTheoryAppl.
3,355-363(2005)17.
Chen,J,Li,Z:Commonxed-pointsforBanachoperatorpairsinbestapproximation.
J.
Math.
Anal.
Appl.
336,1466-1475(2007)18.
Hussain,N:CommonxedpointsinbestapproximationforBanachoperatorpairswithCirictypeI-contractions.
J.
Math.
Anal.
Appl.
338,1351-1363(2008)19.
Agarwal,RP,O'Regan,D,Sahu,DR:FixedPointTheoryforLipschitzian-TypeMappingswithApplications.
Springer,Heidelberg(2009)20.
Hussain,N,Abbas,M,Kim,JK:CommonxedpointandinvariantapproximationinMengerconvexmetricspaces.
Bull.
KoreanMath.
Soc.
48,671-680(2008)21.
Moosaei,M:Fixedpointtheoremsinconvexmetricspaces.
FixedPointTheoryAppl.
2012,ArticleID164(2012).
doi:10.
1186/1687-1812-2012-16410.
1186/1687-1812-2014-98Citethisarticleas:Moosaei:Commonxedpointsforsomegeneralizedcontractionpairsinconvexmetricspaces.
FixedPointTheoryandApplications2014,2014:98

Sharktech:无限流量服务器丹佛,洛杉矶,荷兰$49/月起,1Gbps带宽哦!

鲨鱼机房(Sharktech)我们也叫它SK机房,是一家成立于2003年的老牌国外主机商,提供的产品包括独立服务器租用、VPS主机等,自营机房在美国洛杉矶、丹佛、芝加哥和荷兰阿姆斯特丹等,主打高防产品,独立服务器免费提供60Gbps/48Mpps攻击防御。机房提供1-10Gbps带宽不限流量服务器,最低丹佛/荷兰机房每月49美元起,洛杉矶机房最低59美元/月起。下面列出部分促销机型的配置信息。机房...

RAKsmart:美国洛杉矶独服,E3处理器/16G/1TB,$76.77/月;美国/香港/日本/韩国站群服务器,自带5+253个IPv4

RAKsmart怎么样?RAKsmart机房即日起开始针对洛杉矶机房的独立服务器进行特别促销活动:低至$76.77/月,最低100Mbps带宽,最高10Gbps带宽,优化线路,不限制流量,具体包括有:常规服务器、站群服务器、10G大带宽服务器、整机机柜托管。活动截止6月30日结束。RAKsmart,美国华人老牌机房,专注于圣何塞服务器,有VPS、独立服务器等。支持PayPal、支付宝付款。点击直达...

百纵科技(1399元/月)香港CN2站群232IP

湖南百纵科技有限公司是一家具有ISP ICP 电信增值许可证的正规公司,多年不断转型探索现已颇具规模,公司成立于2009年 通过多年经营积累目前已独具一格,公司主要经营有国内高防服务器,香港服务器,美国服务器,站群服务器,东南亚服务器租用,国内香港美国云服务器,以及全球专线业务!活动方案:主营:1、美国CN2云服务器,美国VPS,美国高防云主机,美国独立服务器,美国站群服务器,美国母机。2、香港C...

98成人网为你推荐
吉安隆海锋永政采字【2020】36企业建网站什么企业需要建网站?googleprGoogle PR的值是6.这个是什么意思?cuteftpcuteFTP的使用方法?支付宝调整还款日月底30号用花呗到时候下个月什么时候还款?美要求解锁iPhone如何看美版苹果是有锁无锁ipad代理如何贷款买IPAD爱优网为什么优酷土豆等视频网站那么多人上传视频瑞东集团海澜集团有限公司怎么样?zencart模板要把zen cart用好的话,需要具备哪些知识?
budgetvm cybermonday 瓦工 便宜域名 云鼎网络 嘉洲服务器 193邮箱 我爱水煮鱼 有益网络 老左来了 静态空间 服务器托管什么意思 php空间购买 工信部网站备案查询 ledlamp 免费个人主页 服务器硬件配置 ssl加速 黑科云 netvigator 更多