treatments55556.com

55556.com  时间:2021-04-08  阅读:()
RESEARCHOpenAccessFresh,driedorsmokedRepellentpropertiesofvolatilesemittedfromethnomedicinalplantleavesagainstmalariaandyellowfevervectorsinEthiopiaFitsumFikruDube2,3,KassahunTadesse3,GranBirgersson1,EmiruSeyoum3,HabteTekie3,RickardIgnell1andSharonRHill1*AbstractBackground:Inthesearchforplant-basedmosquitorepellents,volatileemanationswereinvestigatedfromfiveplantspecies,Corymbiacitriodora,Ocimumsuave,Ocimumlamiifolium,OleaeuropaeaandOstostegiaintegrifolia,traditionallyusedinEthiopiaasprotectionagainstmosquitoes.
Methods:Thebehaviouroftwomosquitoes,themalariavectorAnophelesarabiensisandthearbovirusvectorAedesaegypti,wasassessedtowardsvolatilescollectedfromtheheadspaceoffreshanddriedleaves,andthesmokefromburningthedriedleavesinatwo-choicelandingbioassayandinthebackgroundofhumanodour.
Results:Volatileextractsfromthesmokeofburningdriedleaveswerefoundtobemorerepellentthanthosefromfreshleaves,whichinturnweremorerepellenttomosquitoesthanvolatilesfromdriedleaves.
Ofallsmokeandfreshvolatileextracts,thosefromCo.
citriodora(52-76%)andOc.
suave(58-68%)werefoundtobethemostrepellent,Os.
integrifolia(29-56%)tobeintermediatewhileOl.
europaea(23-40%)andOs.
integrifolia(19-37%)weretheleastrepellent.
OnevolatilepresentineachofthefreshleafextractsofCo.
citriodora,Oc.
suaveandOs.
integrifoliawas-ocimene.
Thelevelsof-ocimenereflectedthemosquitorepellentactivityofthesethreefreshleafextracts.
Femalehost-seekingmosquitoesrespondeddose-dependentlyto-ocimene,bothphysiologicallyandbehaviourally,withamaximalbehaviouralrepulsionat14%-ocimene.
-ocimene(14%)repelsmosquitoesinour6-minutelandingassayscomparabletothesyntheticinsectrepellentN,N-diethyl-m-toluamide(10%DEET).
Conclusions:VolatilesinthesmokeofburningaswellasfreshleavesofCo.
citriodoraandOc.
suavehavesignificantrepellentpropertiesagainsthostseekingAn.
arabiensisandAe.
aegyptimosquitoes.
-ocimene,presentinthefreshleafheadspaceofCo.
citriodora,Oc.
suaveandOs.
integrifolia,isasignificantlyeffectivevolatilemosquitorepellentinthelaboratory.
Inadditiontoitsrepellentproperties,-ocimenehaslongapprovedsafeforuseinfoodandcosmetics,makingthisvolatileanintriguingcompoundtopursueinfurthertestsinthelaboratoryandfieldtovalidateitsmosquitorepellentactivityandpotentialforuseinacommercialproduct.
Also,thelandingbioassaywithhumanisedmembranesisapotentiallyusefulrepellentscreeningtechniquethatdoesnotrequiretheexposureofhumanstothevectors,howeverfurthertestsinparallelwithconventionaltechniquesareadvised.
*Correspondence:sharon.
hill@slu.
se1DivisionofChemicalEcology,DepartmentofPlantProtectionBiology,SwedishUniversityofAgriculturalSciences,23053Alnarp,SwedenFulllistofauthorinformationisavailableattheendofthearticleDubeetal.
MalariaJournal2011,10:375http://www.
malariajournal.
com/content/10/1/3752011Dubeetal;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
BackgroundThehealthrisksassociatedwitharthropoddiseasevec-torshavelongencouragedresearchintomethodsforprotectioninendemicareas,inboththegrassroots[1]andscientificcommunities.
Diligentinvestigationsintosuchgrassrootsprotectionmethodsbythescientificcommunityisleadingtothedevelopmentofnewbio-rational,effectiveandaffordableproductsaswellasincreasingknowledgeandconfidenceintraditionalpro-tectionmethodsandreducingvector-bornedisease.
Oneofthemosteffectivestrategiestominimizevector-bornediseaseispersonalprotection,whichfocusesonthebehaviourofbothpeopleandmosquitoestominimizehumanexposuretovectors[2].
Theuseofinsecticide-treatednets(ITNs)isthemostpowerfulmethodforper-sonalprotectioncurrentlyavailableforeffectiveinfectionreduction[3].
Evenso,ITNshavetheirlimitations;pri-marily,thattheydonotprotectagainstexophagicvectors,orthosevectorsthatbiteattimeswhenpeoplearenotsleepingundertheirbednets.
[4].
Diseasevectors,suchasAnophelesarabiensis,thepri-marymalariavectorinsemi-arideasternsub-SaharanAfrica[5,6],Aedesaegypti,themainvectorofdengueandyellowfever,aswellasthemalariavectorsAnophelesfar-autisensulatoandAnophelesdarlingi[7,8],haveadaptedtheirpeakbitingactivitiestotheearlyeveningandearlymorning,whentheirpotentialhostsarelessprotected.
Infactinsomeregions,An.
darlingihasbecomeexclusivelyexophagic,arguablyinresponsetoindoorresidualspray-ing(IRS)[8]whichhasreducedthenumberofendophilicspecies[9].
Suchbehaviouraladaptationstothesecurrentprotectionmethods,emphasizetheneedforanotherlineofdefenceagainstdiseasetransmission.
Mosquitorepel-lentshaveauniqueroleundertheseconditions.
Easilyaccessible,safeandeffectivemosquitorepellentsprovideavaluablesupplementtoIRSandITNuse,andinareaswithday-biting,exophagicvectors,thismaybetheonlyoptionforreducingthelevelofdiseasetransmission[10].
Plant-basedmosquitorepellentsareaviablesourceofmaterialforuseinprotectionagainstmosquitoesandmosquito-transmitteddiseases[11]andhavesomeadvan-tagesoverthecurrentgold-standardsyntheticrepellent,N,N-diethyl-m-toluamide(DEET)[10].
Avarietyofplantshavebeenidentifiedfortheirmosquitorepellentproper-tiesthroughbothgrassrootsandscientificinvestigations[10,11].
VolatilesfromessentialoilsofLamiaceae(culinaryherbs),Poaceae(aromaticgrasses)andPinaceae(pineandcedartrees),areeffectiveagainstvarioushaematophagousarthropodsandsomeessentialoils,ortheircomponents,formthebasisofcommercialrepellentformulations[11,12].
Themostnotableoftheseisp-menthane-3,8-diol(PMD),ahydro-distilledcompoundfromthelemoneuca-lyptusplant,Corymbiacitriodora[12].
Theburningand/orhangingoffreshanddriedleavesfromLamiaceae,PoaceaeandPinaceaearoundandwithinthehometoprovideprotectionagainstmosquitobitesiswidelyusedthroughoutruralEthiopia[13,14]aswellasothertropicalregions[15-19].
Smokefromsomeoftheseplantsiseffectiveinrepellinganophelinemosquitoes:e.
g.
Ostostegiaintegrifolia(90.
1%)[20],Oleaeuropaea(79.
8%)[20],Co.
citriodora(78.
7%)[16,21]andOcimumsuave(44.
5%)[16].
TheleavesofOc.
canumprovided63.
6%pro-tectionfrommosquitobiteswhenhungfreshinthehomesinGuineaBissau,WestAfrica[17].
InwesternKenya,Seyoumetal[15,16,19]foundlivepottedplantsofOc.
americanum,Oc.
kilimandscharicumandOc.
suavetoberepellentprovidingonaverageof39.
7%,44.
45%and44.
45%[15,16,19]protectionfrombites,respectively.
Inlightofthesestudies,thisinvestigationwascarriedouttoevaluatethepotentialofvolatilesfromtheleavesofCo.
citriodora,Oc.
suave,Oc.
lamiifolium,Os.
integrifo-liaandOl.
europaeatorepeltheday-bitingvectorsAn.
arabiensisandAe.
aegypti,importantvectorsofmalariaanddengue/yellowfeverinEthiopia,respectively.
MethodsExperimentalinsectsAcolonyofAe.
aegypti[Rockefellerstrain]wasmaintainedattheSwedishUniversityofAgriculturalSciences(SLU),Sweden.
Larvae(200-300)ofAe.
aegyptiwererearedintrays15cmwide*30cmlongwith2-3cmwaterindepth,andfedonceadayonadietofflakes(0.
2-0.
5g/tray)fromfishfoodBestFriend(BestFriendGroup,Finland).
InEthiopia,Ae.
aegypti(colonyfromAkliluLemmaInstituteofPathobiology)andAn.
arabiensis(col-onyfromWHOMalariaControlCentre)weremaintainedattheWHOMalariaControlCentreinNazareth,Ethio-pia;larvaewererearedintrays15cmwide*30cmlonginwater2-3cmdeep,andfedonceadayonfedonFaffapowder(0.
2-0.
5g/tray;FaffaFoods,Ethiopia).
Allcolonieswererearedunderstandardinsectaryconditionsof27±2°C,75±5%R.
H.
,L:D12:12h.
Adultsofbothspeciesweremaintainedincagesconstructedfromplasticbucketswithmeshlids(20cmdiameter*30cmheight)andweregivenadlibitumaccessto10%sucrosesolution.
Adultnon-blood-fedfemalemosquitoesusedforexperimenta-tionwerebetween4and6dayspost-emergenceandstarvedfor12hpriortotesting.
OdourcollectionInthisstudy,leavesofmatureCo.
citriodora,Oc.
suaveandOc.
lamiifoliumwerecollectedfromWondoGenetEssentialOilsResearchCentreinSouth-CentralEthiopia(latitude7.
0862,longitude38.
6190)andgrownintepidhumidhighlandconditions(agro-ecologyH3)wherethemajorsoiltypesareluvisols(sandyloamwithPHof7.
2).
Dubeetal.
MalariaJournal2011,10:375http://www.
malariajournal.
com/content/10/1/375Page2of14WondoGenetEssentialOilsResearchCentreisatanaltitudeof1780mabovesealevelwithatemperaturebetween10°Cand30°Candamaximumrainfallof2000mmandaminimumof700mm.
Leavesfromthetwootherspecies,Os.
integrifoliaandOl.
europaea,werecol-lectedfromAddisZemen,Ethiopia(latitude12.
143,long-itude37.
779)grownat1975mabovesealevelunderthesameconditionsasWondoGenetEssentialOilsResearchCentrestatedabove.
Leavesfromthesespecieswerecho-sentobeusedinthevolatilecollections,aspreviousstu-dieshavedemonstratedtheirpotentialasrepellents[15,16,19-21].
Volatileswerecollectedfromfresh,driedandsmokingdriedleavesusingstandardheadspacesam-plingmethods[22].
Volatileswerecollectedfromleavesthatwerefreshlycutandthosethatweredried,aswellasfromthesmokeofburningdriedleaves,representingthedifferentwaystheseleavesarecurrentlyusedinhomesasprotectionagainstmosquitoes.
Freshanddriedleafheadspacevolatileswerecollectedfor3hfromtheleaves(10g)placedinclosedglassbottleswithanactivatedcharcoalfilteredairinletandanoutletleadingtotheTefloncolumn(55mm*3mminnerdia-meter)filledwithSuperQabsorbent(35mg,mesh80/100,Alltech,Deerfield,IL,USA).
Volatilesfromtheburn-ingdriedleaves(10g)werecollectedbyplacingdriedleavesontotheburningcharcoalunderaninvertedglassfunnelfor10minallowingallleafmaterialtobecon-sumed(Figure1).
Inordertofilteroutthenon-volatileparticulatesemittedinthesmoke,arollofglasswool(5cm)wasplacedinsidethetubeofthefunnelupstreamofthevolatile-collectingcolumnfilledwithSuperQabsor-bentasabove(Figure1).
Volatileheadspacewasalsocol-lectedfromcharcoalsmokealoneasabioassaycontrolfortheburnedleaves,asabove.
Aftertheodourcollection,thevolatileswereelutedbyadding300μlhexanetothecol-umnstoobtainanextractofthevolatiles.
Thesamplesweresealedin1.
5mlglassvials(SkandinaviskaGenTecAB,Sweden)andstoredat-18°Cuntilusedinthebeha-viouralstudies.
LandingbioassayswithhumanisedmembranesMembranefeeders,commonlyusedtoprovideabloodmealtomosquitoesininsectaries[23],wereusedtomea-suretherepellenceofplantvolatileextractstomosqui-toes[24].
Humanodourwasusedasanattractantandaddedtobothcontrolandtreatmentmembranes(to'humanise'them)toensurethatmosquitoeswouldbeattractedtothemembraneintheabsenceofanyrepel-lentcompound(Figure2)[25].
InSweden,thebeha-viouralresponseofAe.
aegyptiwastestedbyusingtheHemotek("store-bought")feedingmembranes(DiscoveryWorkshops,Accrington,UK),whichwererubbedfor1minontheexperimenter'spalms,washedbynon-per-fumedsoap(Lactacyd,GlaxoSmithKline,UK)24hbeforetheexperiment,shiftingbetweenthehandseveryhalfminute.
Priorcontrolexperiments,bothnochoice(Figure2b-c)andchoiceassays(Figure2d),indicatedthattherewasminimalvariationinmosquitoattractiontotheeightpeopleassayed.
Thepersonchosentohuma-nisethemembranesintheexperimentsreportedherewastestsubjectAinordertokeepthebackgroundlevelofattractiontothemembranesconsistent.
Eachtreat-mentwasappliedatarateof10μlextractper19.
625cm2area,whichWakaetal.
[24]identifiedastheoptimaldoseperunitarea.
Odoursfromleafheadspaceweredilutedto5%byusinghexanegiving0.
3minequivalents(i.
e.
20sequivalents)appliedforfreshanddriedleaves,and0.
017minequivalents(i.
e.
1sequivalents)forthesmoke.
Everytreatmentwastestedinatwo-choiceland-ingassayinthepresenceofanegativecontrol(ahuma-nisedmembranetowhich10μlofthesamesolventisadded).
Forthepositivecontrolexperiments,DEET(5%and10%)wastestedinthesametwo-choicebioassay,alsointhepresenceofthenegativecontrol.
ThesolventFigure1Apparatusforcollectingvolatilesfromthesmokeofburningleaves(a)inacharcoalbrazier(b).
VolatileswerecollectedonaTefloncolumn(55mm*3mminnerdiameter)filledwithSuperQabsorbent(35mg,mesh80/100)(c)whichisprotectedfromnon-volatilesmokeparticulatesbyaglasswoolplug(50mm)(d)intheneckofthefunnel.
Dubeetal.
MalariaJournal2011,10:375http://www.
malariajournal.
com/content/10/1/375Page3of14Figure2Controlexperimentsforthetwochoicelandingassaywiththehumanisedmembrane.
(a)Rateofattractionoftwentyfemalemosquitoes(Aedesaegypti)becomesconstantafter4minofexposuretountreatedhumanisedmembranes.
ThenumberofAe.
aegypti(b)andAnophelesarabiensis(c)femaleslandinginthetwo-choiceassayonmembranesbothhumanisedbydifferenttestsubjectsvariesminimally.
ThenumberofAe.
aegyptifemaleslandinginthetwo-choiceassayonmembranes,onehumanisedbytestsubjectAandtheotherbyeithertestsubjectBorC,doesnotsignificantlydifferbetweentreatments(d).
ThenumberofAe.
aegyptiandAn.
arabiensisfemaleslandinginthetwo-choiceassayonmembranesbothhumanisedbytestsubjectA(e).
TherateoflandingonmembraneshumanisedbytestsubjectAremainsconstantfrom4minto14minafterbothspeciesofmosquitoeshavebeenexposedtothemembranes(f).
Dubeetal.
MalariaJournal2011,10:375http://www.
malariajournal.
com/content/10/1/375Page4of14usedintheDEETexperimentswasdichloromethane,aneffectivesolventforthelong-termstorageofDEET.
Duetoitslowboilingpoint(40°C),dichloromethaneevapo-rateswithinsecondsofapplicationtothemembrane,andthus,likehexane,willnotinterferewiththelandingbioassayresultsasmorethan4minhavepassedafterapplicationtothemembranebeforedatacollectionbegins.
TwodosesofDEETwereusedsincetheyarecommonincommercialpreparationsusedonbothchil-drenandadults.
Thelandingbioassay,carriedoutinSweden,usedtwoHemotekchambers(6cmdiameter;Figure3a)withhumanisedmembranes,onewithsolventaddedasacontrolandtheotherwiththetestextract,whichwereplacedagainstthetopnettingofthecage(Figure3b).
Twentynon-blood-fedfemalemosquitoeswerereleasedintoa30cmcubicgauzecagefor3htoacclimatizeandthenplacedina30cmcubictestcage.
Experimentswerecarriedoutunderstandardinsectaryandlabora-torytestingconditions[11]duringthemosquitoes'mostFigure3Behaviouralbioassayequipmentusedinthisstudy.
Membranefeedingchambers(a)fromthestore-boughtapparatus(Hemotek)aredisplayedhere.
Landingbioassaychambersfromastore-bought(Hemotek)usedforAedesaegyptiinSweden(b)andalab-constructedmembranefeedingapparatususedforbothAe.
aegyptiandAnophelesarabiensisinEthiopia(c).
Dubeetal.
MalariaJournal2011,10:375http://www.
malariajournal.
com/content/10/1/375Page5of14activeperiods:atdawnanddusk(06:00-08:00and17:00-19:00)forAe.
aegyptiandduskforAn.
arabiensis(17:00-19:00).
After4minofexposuretothetreatments,thetimeittakestoreachaconstantrateofmosquitoattractiontothehumanisedmembranes(Figure2a),thenumbersofmosquitoeslandingonboththeextracttreatedandthesolventtreatedhumanisedmembraneswerecountedat1-minintervalsfor6min.
Choiceindices(CITandCIC),aswellasarepellenceindex(R),weredeterminedforeachtreatmentasfollows:CIT=T/(T+C);CIC=-C/(T+C);and%R=(C-T)/C*100%[26-28];whereTisthetotalnumberofmosqui-toeslandingontheextracttreatedhumanisedmem-braneeachminutefor6minandCisthetotalnumberofmosquitoeslandingonthesolventtreatedhumanisedmembraneeachminutefor6min.
Theexperimentswerereplicated3-5times.
Thetreatmentandcontrolchamberlocationswerealternatedbetweeneachtesttocontrolforanypotentialpositioneffect.
Abioassaychamber,similarinconstructiontothestore-boughtHemotekapparatus(Figure3b),wasbuilttoconductthelandingassaysinEthiopiausingametalwaterbath,regulatoryheater,pumpsandTeflontubes(Figure3c).
Thewaterbathwasfittedwithtwocham-bers(6cmindiameter)protrudingdownwardsfromitsbaseandmadefrommetalpipes(10cminlength).
Insidethebath,theheaterwasadjustedto37±3°C,tosimulatehumanbodytemperature.
Inordertomaintainthetemperatureatauniformlevelthroughoutthebathandtwochambers,thetwopumpsinsidewerecon-nectedwithTeflontubestocirculateheatedwater.
Thislab-constructedchamberalsomadeuseoftheHemotekbrandmembraneandbothAe.
aegyptiandAn.
arabien-siswereevaluatedfortherepellencepotentialofvola-tilesfollowingsimilarproceduresasfortheHemoteklandingbioassaydescribedabove.
ChemicalanalysisVolatileextractsfromtheleavesofallfiveplantswereassessedusinggaschromatography(GC)and,subse-quently,freshleafextractswereevaluatedbycombinedGCandmassspectrometry(GC-MS).
ExtractswereinjectedontoaHP6890gaschromatograph(AgilentTechnologies,PaloAlto,CA,USA)fittedwithasplit-lessinjector(220°C)andflameionizationdetector(FID)(220°C).
Volatileswereseparatedonafusedsilicacapillarycolumn(30m*0.
25mminnerdiameter)coatedwithDB-WAX(df=0.
25μm).
Hydrogenwasusedasthemobilephase(speed45cms-1).
Theoventemperaturewasheldat40°Cfor2minandthenincreasedat10°Cmin.
-1toafinaltempera-tureof230°C,whichwasheldfor10min.
TheidentificationofactivecompoundsintheextractswasperformedbyGC-MS.
Eachextract(2μl)wasinjectedontoa6890Ngaschromatograph(AgilentTechnologies)coupledtoa5975massspectrometer(AgilentTechnologies).
CompoundswereseparatedonasimilarcapillarycolumnasintheGC-analysisabove.
Themobilephasewashelium(speed35cms-1).
Theoventemperaturewasheldat40°Cfor2minandthenincreasedat10°Cmin-1toafinaltemperatureof230°C,whichwasheldfor10min.
Theidentityofactivecom-poundswasdeterminedbycomparisonwithreferencesfrommassspectrallibraries(e.
g.
NIST05,AgilentTech-nologies)andKovatsindices.
PhysiologicalanalysisTheGCwasfittedwithasplitattheendofthecolumn,deliveringhalftheeffluenttotheFIDandtheotherhalfthroughaheatedtransferline(230°C)intotheairstreampassingoverthemosquitoantennamountedforelectroan-tenno-detection(GC-EAD).
AglasscapillaryreferenceelectrodefilledwithBeadle-EphrussiRingerandgroundedthroughasilverwirethatwasinsertedintothebaseoftheheadofamosquito.
Asimilarrecordingelectrode,con-nectedtoahighimpedanceDCamplifierwithautomaticbaselinedriftcompensation,wasplacedoverthedistalcutendofanantenna.
TheantennalsignalwasstoredandanalysedonaPCequippedwithanIDAC-cardandtheprogramEADversion2.
3(Syntech,Kirchzarten,Germany).
Arepeatableresponse,indicatinganactivecompound,wasdefinedasadepolarizationoftheantennalsignalatthesameretentiontimeinatleastthreetrials.
FollowingtheputativeidentificationofantennalactivecompoundsinfreshleafextractsusingGC-EADandGC-MS,onecompoundsharedbythoseextractswasfoundtobebehaviourallyrepellent,-ocimene,andwasusedforfurtheranalysis.
Variousamountsofsynthetic-ocimenewereusedintheelectroantennographicassaytoconfirmitsphysiologicalactivityandtodeterminewhetheritinducedadoseresponse.
-Ocimenewasseriallydilutedinredistilledhexaneindecadicsteps(0.
001-10%).
Tenmicro-litresofeachdosewasaddedtoa0.
5cm2pieceoffilterpaperthenplacedintotheendofaglassPasteurpip-etteandallowedtoequilibrateforatleast20minprioruse.
Thetipofthesestimuluscartridgeswasthenplacedintotheairflowovertheantennaandtheairdivertedthroughthecartridgefor0.
5s.
Eachstimulusresponsehastheaverageoftwosolventblankresponses,onepriorandonefollowingthestimuluspulse,subtractedtodeterminetheantennalresponsetothetestvolatile.
Antennalresponsesarepresentedasaratioofmaximalresponse.
SyntheticchemicalsSyntheticvolatilesarecommonlyusedtoconfirmphysio-logicalandbehaviouralactivityofcompoundsidentifiedfromnaturalextracts[22].
Intheseexperiments,syn-thetic-ocimenewasusedtoconfirmtheactivityofthiscompoundputativelyidentifiedfromtheodourextractsDubeetal.
MalariaJournal2011,10:375http://www.
malariajournal.
com/content/10/1/375Page6of14offreshleaves.
N,N-diethyl-m-toluamidewasusedasacontrolinthelandingassaystoindicatethemaximalrepellentbehaviourofthemosquitoes.
-ocimene(3,7-dimethyl-1,3,6-octatriene)andN,N-diethyl-m-toluamide(DEET),werepurchasedfromInternationalFlavorsandFragrances,R&D(No.
00151353;>90%)andSigma-Aldrich(LaborchemikalienGmbH,Seelze,Germany)respectively.
Dilutionsof-ocimeneandDEETforbioas-saysweremadeinre-distilledhexane.
StatisticalanalysisTheeffectivenessofvolatilecollections(treatment)wasevaluatedagainstsolventalone(control).
Therepellenceindex(R)wasestimatedas%R=(C-T)/C*100%,whereCandTarethemeannumberofmosquitoeslandingonthecontrolandthetreatmentmembranes,respectively[26-28].
Comparisonsofrepellenceindicesamongmosquitospecies,landingassaytype,plantspe-ciesandleaftreatmentswereanalysedbytheunba-lancedgenerallinearmodeloftheanalysisofvariance(ANOVA)statedasfollows:ABCC*AC*BDD*AD*BD*CD*A*CD*B*C;whereAisthemosquitospe-cies(Ae.
aegypti,An.
arabiensis),Bisthebioassay(store-bought,lab-constructed),Cistheplantspecies(Co.
citriodora,Oc.
suave,Oc.
lamiifolium,Os.
integrifo-lia,Ol.
europaeaandhandrubcontrol)andDisthetreatment(smoke,fresh,driedandcharcoalcontrol).
Dunnett'ssimultaneousposthoctestswereconductedtocompareresponsestotheextractswithasolventcon-trolinthelandingassays,andTukey'sposthoctestswereusedtocompareamongalloftheresponsestovariousdosesof-ocimeneinthephysiologicalandbehaviouralassaysasrequiredusingMINITABstatisti-calprogramversion14.
12.
0(Minitab2004).
ResultsBehaviouralresponsetothehumanisedmembraneUnderno-choiceconditionswithasinglehumanisedmembrane,therateofattractionofAe.
aegyptifemalesstabilisedafter4min(5±1perminute;Figure2a).
Mosquitoesweretestedforattractiontomembraneshumanisedbyeightdifferenttestsubjects.
Inano-choiceassaywithtwohumanisedmembranes,attractiontomembraneshumanisedbydifferenttestsubjectswasnotsignificantlydifferentineitherspecies(Ae.
aegyptic20.
1360,df2;An.
arabiensisc20.
3625,df6;Figure2band2c).
Inatwo-choiceassay,testsubjectAwasnotsignificantlymoreattractivethaneithertestsubjectB(pairedt-testt=0.
3492,df5)orC(pairedt-testt=0.
5058,df11)totheAe.
aegyptifemales(Figure2d).
TestsubjectAwasthereforechosentohumaniseallmembranesinthesubsequentexperiments.
Inno-choiceassayswithtwomembraneshumanisedbytestsubjectA,thelandingrateperminuteover10mindidnotdifferbetweenthespecies(unpairedt-testt=1.
247,df18;Figure2e).
TherateofattractiontothehumanisedmembraneswasdeterminedtobeconstantinAe.
aegypti(R2=0.
99987)andAn.
arabiensis(R2=0.
99981)over10min(Figure2f)followingthe4-minacclimatisa-tionperiod(Figure2a).
NeitherAe.
aegyptinorAn.
ara-biensisdifferedinthenumberoflandingsmadeonhumanisedmembraneswitheithertheextractfromthecharcoalsmokeheadspacecollectionorsolventcontrol(datanotshown).
BehaviouralresponsetoplantextractsThetwo-choicelandingbioassaysusingmembranefee-ders(Figure3)wereconductedunderlaboratorycondi-tionsonAe.
aegyptiandAn.
arabiensisfemales.
Ofthemosquitoesthatwereactivatedtofly(≥80%),thenum-berofmosquitoeslandingoneitheroftheprofferedmembraneseachminutefor6minallowedforthecal-culationofchoiceindicesassociatedwiththecontrol(CIC)andtreated(CIT)membranes(Figure4)aswellastherepellenceindex(R).
Agenerallinearmodel(GLM)fortheanalysisofvar-iance(ANOVA)oftherepellenceindiceswasdevelopedincludingfourfactors(bioassay,mosquitospecies,plantspeciesandleaftreatment).
PriortothegenerationoftheGLM,therepellenceindicesweredeterminedtofol-lowanormaldistribution(D'Agostino-Pearsonnormal-itytest,P>0.
05).
ThismodeldeterminedthatthelandingbehaviourofAe.
aegyptididnotdifferbetweenthestore-boughtandlab-constructedbioassays(F=0.
06;DFn=1;DFd=144;P=0.
81;Figure4).
Thepat-ternoflandingbehaviourofthefemalemosquitoes,whetherAe.
aegyptiorAn.
arabiensis,inresponsetoalltheextractsinthetwo-choiceassaydidnotsignificantlydiffer(F=2.
98;DFn=1;P=0.
087;Figure4).
TheGLMindicatedthattherewasnosignificantinteractionamonganyofthefactors(mosquito*plant,F=0.
15,DFn=5,P=0.
98;bioassay*treatment,F=0.
61,DFn=2,P=0.
55;plant*bioassay,F=0.
05,DFn=5,P=1.
00;bioassay*treatment,F=0.
95,DFn=15,P=0.
50;mos-quito*plant*treatment,F=0.
17,DFn=15,P=1.
00;bioassay*plant*treatment,F=0.
12,DFn=15,P=1.
00).
Therefore,furthercomparativeanalysesoffemalemos-quitoresponsesweremadeconsideringplantspecies(F=5.
93,DFn=5,P0.
001;Figure4).
GaschromatographyandmassspectroscopyThesmokedleafextractsresultedinhighlycomplexchromatogramsthatweredifficulttointerpret,whiledriedleafextractsappearedtohaveverylowlevelsofvolatilecompoundsonthechromatogram.
Forthesereasons,theinvestigationsfocusedonthefreshleafextracts(Figure5).
TheGC-EADwasperformedusingthefreshleafextractonAe.
aegyptiantennae(datanotshown).
TherepeatedphysiologicalresponseoftheantennaetooneGCpeak(10.
94min.
)wassharedamongstthemostrepellentheadspaceextracts,Co.
citriodora,Oc.
suaveandOs.
integrifolia,andthusOcimumsuaveCorymbiacitriodoraOstostegiaintegrifolia0'"1#('0"*'"1Figure5Identificationof-ocimene.
Totalionchromatograms(TIC)oftheheadspacecollectedfromfreshleavesofplantswhoseextractswereshowntoberepellentintwo-choiceassays.
ThearrowsindicatethepeakthathassincebeenidentifiedasZ--ocimeneusingmassspectrometry.
Dubeetal.
MalariaJournal2011,10:375http://www.
malariajournal.
com/content/10/1/375Page9of14promptedfurtherinvestigation.
Theputativeidentifica-tionofthiscompoundthroughGC-MSdetermineditwasZ--ocimene.
TherelativeamountsofZ--ocimenepresentintheheadspaceofthesethreespecies,andnotfoundintheothertwo,reflectedtheheadspacerepel-lencedeterminedinthebioassays(Figures4and5).
AlthoughotherGCpeaksweresharedamongthesethreespecies(e.
g.
at17.
5min.
),noneoftheseshowedconsistent,repeatablephysiologicalresponsesduringGC-EADanalyses,thereforethesepeakswerenotpur-suedfurtherinthisstudy.
Synthetic-ocimeneAmixtureofbothgeometricisomers(E-andZ-)of-ocimeneisdetectedbytheantennaeoffemalesofbothmosquitospeciesunderinvestigation,An.
arabiensisandAe.
aegypti.
Usingelectroantennogram(EAG)record-ings,theantennalresponseofAn.
arabiensisandAe.
aegyptitosyntheticocimenewasfoundtobedosedependent(r2=0.
9325andr2=0.
998,respectively;F=26.
8,DFn=6,P0.
05).
Thebeha-viouralsensitivityofbothmosquitospeciestoDEETisapproximately10timesthatof-ocimene,asestimatedbyED50(0.
1%DEETand1-2%-ocimene).
Whilethereisnosignificantinteractionbetweenspeciesanddose,thetwomosquitospeciesappeartobehavesignificantlydifferentlyto-ocimene(2-wayANOVA;F=7.
279;DFn=6,P=0.
010)withAe.
aegyptibeingmarginallymoresensitiveto0.
7%-ocimene(TukeyposthocP=0.
05;Figure7).
DiscussionThepresentstudydemonstratesthatodoursfromtheleavesoffiveplantstraditionallyusedinEthiopiaaspro-tectionfrommosquitobiteshaverepellentproperties.
Theheadspaceextractsofsmokefromburningthese/7557595;5=56555-555565-55565-5565-565-6665655+0A)'1!
/0A1Figure6Antennalresponsetosynthetic-ocimene.
FemaleAnophelesarabiensis(diamonds;n=6)andB.
Aedesaegypti(circles;n=4)antennalresponseto-ocimeneusinganelectroantennogram(EAG).
Dubeetal.
MalariaJournal2011,10:375http://www.
malariajournal.
com/content/10/1/375Page10of14leavesweremorerepellentthanthosefromfreshordriedleavesofthesameplantspeciestohost-seeking(i.
e.
non-blood-fed)femalemosquitoesofbothAn.
ara-biensisandAe.
aegypti,theprimarymalariaanddengue/yellowfevervectorsinEthiopia,respectively.
Previousstudies,inwhichOs.
integrifolia[20],Ol.
europaea[20],Co.
citriodora[16,21]andOc.
suave[16]wereburnedtorepelmosquitoes,havealsodemonstratedalargereduc-tioninthenumberofmosquitoeslanding.
Notonlythese,buttherearealsomanyotherexamplesofburn-ingleavestodecreasethenumberofmosquitoesinthehouse,someofwhichhavealsoresultedinthereduc-tionofotherarthropodvectordensitiesindoors,suchasthesandflyandblackfly[29,30].
AccordingtoHoeketal[31]thereisasignificantlylowerriskofmalariainhouseholdsusingtraditionalsmokesandfumigants,suchastheburningleavesinthisstudy,comparedwiththosethatdidnot.
Thesepreviousstudiesontheeffectsofplant-derivedsmokeonarthropodvectorssupportourpresentfindings,whichclearlydemonstratethepotentialfortheuseofcombustion-releasedvolatilesagainstmosquitoes.
Somepossiblemechanismsfortheactionofplant-derivedsmokehavebeenproposed[1].
Thesmokemaydisguisehumankairomonecuesusedbythevectorstotargettheirhosts,itmaydisrupttheconvectioncurrentsessentialformosquitohostlocation,and/ortheburningoftheseleavesmayreleasevolatilecompoundsthatactasrepellentsorirritantsagainstthemosquito.
Smokefromcommonfirewoodhasbeenreportedtobeamos-quitorepellentbydeterringmosquitoesfromroostinginhouses[30,32]suggestingthatmaskingandcurrentdis-ruptionplayaroleintheefficacyofleafsmoke/fumi-gants.
Thecurrentstudy,however,investigatedthethirdpremiseandhasdemonstratedthattheprotectionagainstthemosquitoesresultingfromtheburningofdriedleavesappearstobeduetothereleaseofvolatilecompoundsduringcombustion.
Moreover,theback-groundodoursfromthecharcoalfuelusedforsmokeodourcollectiondemonstratednorepellentpropertieswhentestedinthelandingbioassay.
Thus,atleastaportionoftherepellentpotentialofsmokeheadspaceoriginatesfromtheplantvolatilesthemselves.
Heat,convectioncurrentsandparticulatesinthesmokemayalsoplayaroleintheprotectionprovidedbyplant-derivedsmokeasdiscussedabove,butthiswasnottestedinthisstudy.
Mosquitomembranefeedershavepreviouslybeenusedtotestarthropodrepellenceinbioassaysusingani-malbloodorskinasthebackgroundattractantforthemosquitoes[24,33].
Inthisstudy,analternativemethodforscreeningrepellentswasfoundtobe'humanisingthemembranes'byrubbingthefeedingmembranewithhumanhandstotransfertheappropriatehostodours.
565758595:5;556556655-55565-5565-565-6665655)0A1!
/0A1Figure7Behaviouralresponsetosynthetic-ocimene.
FemaleAedesaegypti(circles,n=10)andAnophelesarabiensis(diamonds,n=5)landingbehaviourinresponseto-ocimene(circlesanddiamonds)andDEET(triangles,n=3)addedtoahand-rubbed,heatedmembranecomparedtoahand-rubbed,heatedmembranealoneinatwo-choiceassay.
Dubeetal.
MalariaJournal2011,10:375http://www.
malariajournal.
com/content/10/1/375Page11of14Oneadvantagewiththehumanisedmembranesisthattheresultsobtainedfromthesebioassaysrelatedirectlytotheefficacyofrepellentforhumanratherthananimalprotection.
Emanationsfoundassociatedwithhumanhands,suchassweat,aredetectedby[34,35],andshowntobebehaviourallyattractiveto,mosquitoes[36].
Also,humanisingthemembranesisfast,ethicallysafeandcanbeeasilydoneunderlaboratoryorfieldcondi-tions.
Thetwolandingbioassayarenasusedinthisstudy,onestorebought(Hemotekmembranefeeder,DiscoveryWorkshops,UK)andtheotherselfassembled(F.
F.
Dube,AddisAbabaUniversity,ET),werefoundtobeequallyefficient,demonstratingagainthesimplicityandeaseofuseofthistechnique.
Amongtheplantspeciestested,theheadspaceextractsfromburningthedriedleavesofCo.
citriodoraandOc.
suavewerethestrongesthost-seekingfemalemosquitorepellent(>65%)bothforAn.
arabiensisandAe.
aegyptiinthelaboratory.
TheheadspaceextractsofCo.
citriodoraandOc.
suavefreshleaveswerealsoshowntobesignificantlyrepellent(>50%)whilethedriedleavesofnoneofthespecieswerestronglyrepel-lent(<30%).
ThesmokefromleavesofCo.
citriodorawaspreviouslysuggestedasastrongmosquitorepellentincontrolledsemi-fieldstudiesusingvolatilesexpelledthroughheatingtheleavesonmetalplate[15,16,21].
Theincreasedrepellentpotencyoftheheadspaceofburningleavesmaybeduetotheincreasedreleaserateofrepellentvolatilecompounds,eitheralreadypresentinthefresh/driedleafand/orcreatedduringthecom-bustionprocess.
Thatrepellentcompoundsarepresentintheleavesofmanyplantspecieshasbeenwelldocumented[12,37,38].
Boththejuicesandtheessentialoilextractsfromleaveshavearthropodrepellentproperties.
Forexample,theessentialoilextractedfromCo.
citriodoracanactdirectlyasanaturalinsectrepellenttoprovideprotectionagainstmosquitoesandotherharmfularthropods[37].
Infact,PMD,acompoundfoundintheessentialoilofCo.
citrio-dora[12],istheonlynaturallyderivedactiveingredienttobecertifiedasaninsectrepellentinEuropeandtheUSAthatiscommerciallyavailable.
ThejuicefromtheleavesofOc.
suaveandOc.
canumspreadonthelegsofhumanvolunteershasapproximately50%reductionofmosqui-toeslanding[38].
Z--ocimenewasidentifiedfromthefreshleafhead-spaceextractsofCo.
citriodora,Oc.
suaveandOs.
integri-foliaasaneffectivemosquitorepellentcompoundinthehumanisedmembranelaboratoryrepellenceassay.
Amixtureofbothgeometricisomersof-ocimene(14%)wasnotsignificantlydifferentinrepellentactivityfromDEET(10%)over6mininthelandingassay.
-ocimenehasbeenidentifiedpreviouslyinvolatileemissionsofCo.
citriodora(ca.
10%-ocimene)[39].
Inthesearchforrepellents,butmoreoftenforinsecticides,-ocimenehasbeenidentifiedasamajorcomponentofleafessentialoils,e.
g.
Oc.
suave(13.
5%Z--ocimene,[40])aswellasotherplantspecies[41-44].
Whilecommonpracticeassessestheentireessentialoilforitsbioactivity,-oci-meneitselfhasbeenshowntobeaneffectiveinsecticideagainstsomecroppests[45]andhoneybeemites[46].
Essentialoilscontainingahighproportionof-ocimenehavebeenassessedforlarvicidalactivityagainstmosqui-toes[43,44,47-49],howeveruntilnow,-ocimenealonehasnotbeenevaluatedforitsefficacyasarepellentofhost-seekingmosquitoes.
Theresultsindicatethat-oci-meneisaninterestingbiologicallyactivevolatilethatshouldbeincludedinfurtherexaminationsofplant-derivedmosquitorepellents,includingconfirmationofmosquito-repellentactivityusingconventionalrepellenceassays[10,11]aswellasdurationofactionandefficacyinblendswithothernaturallyderivedcompounds.
As-ocimeneisahighlyvolatilecompound,itsformulationforuseasaskin-appliedrepellentiscriticalwhenitcomestoitsdurationofaction.
Someformulationmeth-odstoreducethevolatilityofsuchcompoundshavebeendescribed[50].
Forexample,theadditionofalargemole-culesuchasvanillincansubstantiallyextendthedurationofactionofothernatural,buthighlyvolatile,repellents[50].
Thecommonuseof-ocimeneasapleasingscentincommercialproducts,e.
g.
alcohol-andcream-basedperfumes,whichneedtocontinuetoreleasetheirscentoveranumberofhoursafterapplication,bodeswellforthepossibilityoffindinglong-lasting,nottomentionpleasantsmelling,repellentformulationscontaining-ocimene.
-ocimenemaybeacheapandlocallyavailablemosquitorepellentwithaninoffensiveodourthatgov-ernmentandregulatorybodies,suchastheEUEFSA[51]andUSFDA[52],havealreadycertifiedassafeforuseinproductsappliedtohumanskinatconcentrationsupto20%(withtherecommendeddoseof5%topreventthepossibilityofskinirritationorsensitisation[51]).
Theseconcentrations,currentlyusedinmanycommer-ciallyavailableproducts(e.
g.
perfume,soapanddeodor-ant)appeartobewithintherepellentactivityagainstbothmosquitospeciestestedinthelaboratory.
ConclusionsTherefore,furtherstudiesareproposedtocharacterizetherepellentpotentialof-ocimeneandtoidentifyotherpotentialvolatilesfromheadspaceleafextractsofCo.
citriodoraandOc.
suave.
Theuseofatwo-choicelandingbioassaywithhumanisedmembranesprovidingtheback-groundemanationpromisestobeanefficientscreeningtechniquefortheassessmentofecologicallyrelevantpotentialmosquitorepellents,betheyheadspaceextracts,essentialoilsorsyntheticcompounds.
Whilethistechni-querepresentsapotentiallyusefulrepellentscreeningDubeetal.
MalariaJournal2011,10:375http://www.
malariajournal.
com/content/10/1/375Page12of14techniquethatdoesnotrequiretheexposureofhumanstothevectors,furthertestsinparallelwithconventionaltechniquesareadvised.
AcknowledgementsTheauthorswouldliketothankLinnaeus-PalmeStudentExchangeProgrammeandtheInsectChemicalEcology,EthologyandEvolution(IC-E3)togetherwithfundsfromFormasandSLUfortheirfinancialsupport,withoutwhichthecollaborationbetweenAddisAbabaUniversityandtheSwedishUniversityofAgriculturalSciences,necessaryforthecompletionofthiswork,wouldnothavebeenpossible.
MeridNegashisacknowledgedforhistechnicalcontributioninplantandvolatilecollection.
ThanksisofferedtotheWHOMalariaControlCenterinNazarethEthiopia,WondoGenetEssentialOilsResearchCentre,AkliluLemmaInstituteofPathobiology,andInstituteofBiodiversityConservationforaccesstotheirfacilitiesandmosquitocoloniesaswellasforinformativediscussionsthroughoutthisstudy.
Authordetails1DivisionofChemicalEcology,DepartmentofPlantProtectionBiology,SwedishUniversityofAgriculturalSciences,23053Alnarp,Sweden.
2DepartmentofPlantScience,McGillUniversity,LakeshoreRoad,Ste-Anne-de-Bellevue,QuébecH9X3V9,Canada.
3DepartmentofBiology,AddisAbabaUniversity,POBox1176,AddisAbaba,Ethiopia.
Authors'contributionsFFDcarriedoutthebehavioural,GC,GC-EADandGC-MSexperiments,andconstructedthemembrane-landingassayinAddisAbaba.
GBcarriedouttheGCandGC-MSanalysestogetherwithFFD.
KTcarriedoutthedoseresponseEAGexperimentswith-ocimene.
ES,togetherwithRIandSRHconceivedthestudyandparticipatedinthestudydesign.
ESandHTcoordinatedtheEthiopianstudies,whileRIandSRHdidthesameinSweden.
SRHperformedthestatisticalanalyses.
FFDandSRHdraftedthemanuscript.
Allauthorsreadandapprovedthefinalmanuscript.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Received:13August2011Accepted:19December2011Published:19December2011References1.
MooreSJ,LengletAD:Anoverviewofplantsusedforinsectrepellents.
InTraditionalMedicinalPlantsandMalaria.
Editedby:WilcoxM,BodekerG,RasoanaivoP.
London:CRCPress,TaylorandFrancis;2004:344-363.
2.
ChenLH,WilsonME,SchlagenhaufP:PreventionofMalariainlong-termtravellers.
JAmMedAssoc2006,296:2234-2244.
3.
ChoiHW,BremanJG,TeutschSM,LiuS,HightowerAW,SextonJD:Theeffectivenessofinsecticide-impregnatedbednetsinreducingcasesofmalariainfection:ameta-analysisofpublishedresults.
AmJTropMedHyg1995,52:377-382.
4.
GonzalezJO,KroegerK,AvinaAI,PabonE:Washresistanceofinsecticide-treatedmaterials.
TransRSocTropMedHyg2002,96:370-375.
5.
MunhengaG,MasenduHT,BrookeBD,HuntRH,KoekemoerLK:PyrethroidresistanceinthemajormalariavectorAnophelesarabiensisfromGwave,amalaria-endemicareainZimbabwe.
MalarJ2008,7:247.
6.
YohannesM,BoeleE:Earlybitingrhythmintheafro-tropicalvectorofmalaria,Anophelesarabiensis,andchallengesforitscontrolinEthiopia.
MedVetEntomol2011,25,doi:10.
1111/j.
1365-2915.
2011.
00955.
x.
7.
BeebeNW,BakoteeB,EllisJT,CooperRD:DifferentialecologyofAnophelespunctulatusandthreemembersoftheAnophelesfarauticomplexofmosquitoesonGuadalcanal,SolomonIslands,identifiedbyPCR-RPLPanalysis.
MedVetEntomol2000,14:308-312.
8.
TadeiWP,ThatcherBD,SantosJMM,ScarpassaVM,RodriguesIB,RafaelMS:EcologicobservationsonAnophelinevectorsofmalariaintheBrazilianAmazon.
AmJTropMedHyg1998,59:325-335.
9.
SuthasN,PhornS,UdomC,CullenJR:ThebehaviorofAnophelesminimusTheobald(Diptera:Culicidae)subjectedtodifferinglevelsofDDTselectionpressureinnorthernThailand.
BullEntomolRes1986,76:303-312.
10.
MooreSJ:GuidelinesforStudiesonplant-basedinsectrepellents.
InTraditionalMedicinalPlantsandMalaria.
Editedby:WilcoxM,BodekerG,RasoanaivoP.
London:CRCPress,TaylorandFrancis;2004:365-372.
11.
MaiaMF,MooreSJ:Plant-basedinsectrepellents:areviewoftheirefficacy,developmentandtesting.
MalarJ2011,10:S11.
12.
CarrollSP,LoyeJ:PMD,aregisteredbotanicalmosquitorepellentwithdeet-likeefficacy.
JAmerMosqControlAssoc2006,22:507-514.
13.
KarunamoorthiK,MulelamA,WassieF:Assessmentofknowledgeandusagecustomoftraditionalinsect/mosquitorepellentplantsinAddisZemenTown,SouthGonder,NorthWesternEthiopia.
JEthnopharmacol2009,121:49-53.
14.
KarunamoorthiK,IlangoK,EndaleA:Ethnobotanicalsurveyofknowledgeandusagecustomoftraditionalinsect/mosquitorepellentplantsamongtheEthiopianOromoethnicgroup.
JEthnopharmacol2009,125:224-229.
15.
SeyoumA,PalssonK,Kung'aS,KabiruEW,LwandeW,KilleenGF,HassanaliA,KnolsBGJ:Traditionaluseofmosquito-repellentplantsinwesternKenyaandtheirevaluationinsemi-fieldexperimentalhutsagainstAnophelesgambiae:ethnobotanicalstudiesandapplicationbythermalexpulsionanddirectburning.
TransRSocTropMedHyg2002,96:225-231.
16.
SeyoumA,KilleenGF,KabiruEW,KnolsBG,HassanaliA:FieldefficacyofthermallyexpelledorlivepottedrepellentplantsagainstAfricanmalariavectorsinwesternKenya.
TropMedIntHealth2003,8:1005-1011.
17.
MooreSJ,LengletA,HillN:Plant-basedinsectrepellents.
InInsectRepellents:Principles,MethodsandUses.
Editedby:DebbounM,FrancesSP,StrickmanD.
BocaRaton:CRCPress,TaylorandFrancisGroup;2006:275-303.
18.
PalssonK,JnsonTG:PlantproductsusedasmosquitorepellentsinGuineaBissau,WestAfrica.
ActaTrop1999,72:39-52.
19.
SeyoumA,KabiruEW,WandeWL,KilleenGF,HassanaliA,KnolsBGJ:RepellencyoflivepottedplantsagainstAnophelesgambiaefromhumanbaitsinsemi-fieldexperimentshuts.
AmJTropMedHyg2002,67:191-195.
20.
KarunamoorthiK,MulelamA,WassieF:Laboratoryevaluationoftraditionalinsect/mosquitorepellentplantsagainstAnophelesarabiensis,thepredominantmalariavectorinEthiopia.
ParasitolRes2008,103:529-534.
21.
DugassaS,MedhinG,BalkewM,SeyoumA,GebreMichaelT:FieldinvestigationontherepellentactivityofsomearomaticplantsbytraditionalmeansagainstAnophelesarabiensisandAn.
pharoensis(Diptera:Culicidae)aroundKoka,centralEthiopia.
ActaTrop2009,112:38-42.
22.
BengtssonJM,Wolde-HawariatY,KhbaishH,NegashM,JembereB,SeyoumE,HanssonBS,LarssonMC,HillburY:FieldAttractantsforPachnodainterruptaSelectedbyMeansofGC-EADandSingleSensillumScreening.
JChemEcol2009,35:1063-1076.
23.
CosgroveJB,WoodRJ:Probingandgorgingresponsesofthreemosquitospeciestoamembranefeedingsystematarangeoftemperatures.
JAmMosqContAssoc1995,11:339-342.
24.
WakaM,HopkinsRJ,CurtisC:EthnobotanicalsurveyandtestingofplantstraditionallyusedagainsthematophagousinsectsinEritrea.
JEthnopharmacol2004,95:95-101.
25.
AndreasenMH,BilrtlesA,CurtisCF,WoodRJ:EnhancedbloodfeedingofAnophelesmosquitoes(Diptera:Culicidae)throughmembraneswithappliedhostodour.
BullEntomolRes2004,94:291-295.
26.
SharmaVP,AnsariMA:Personalprotectionfrommosquitoes(Diptera:Culicidae)byburningneemoilinkerosene.
JMedEntomol1994,31(3):505-507.
27.
YapHH,JahangirK,ChongASC,AdananCR,ChongNL,MalikYA,RohaizatB:Fieldefficacyofanewrepellent,KBR3023,againstAedesalbopictus(SKUSE)andCulexquinquefasciatus(SAY)inatropicalenvironment.
JVectorEcol1998,23(1):62-68.
28.
ChioEH,YangEC:Abioassayfornaturalinsectrepellents.
JAsiaPacificEntomol2008,4:225-227.
29.
MooreSJ,DebbounM:HistoryofInsectRepellents.
InInsectRepellents:Principles,MethodsandUses.
Editedby:DebbounM,FrancesSP,StrickmanD.
BocaRaton:CRCPress,TaylorandFrancisGroup;2006:3-29.
30.
BiranA,SmithL,LinesJ,EnsinkJ,CameronM:Smokeandmalaria:areinterventionstoreduceexposuretoindoorairpollutionlikelytoincreaseexposuretomosquitoesTransRSocTropMedHyg2007,101:1065-1071.
Dubeetal.
MalariaJournal2011,10:375http://www.
malariajournal.
com/content/10/1/375Page13of1431.
HoekW,KonradsenF,DijkstraDS,AmerasinghePH,AmerasingheFP:Riskfactorsformalaria:amicro-epidemiologicalstudyinavillageinSriLanka.
TransRSocTropMedHyg1998,92:265-269.
32.
KwekaEJ,MoshaFW,LowassaA,MahandeAM,MahandeMJ,MassengaCP,TenuF,LyatuuEE,MboyaMA,TemuEA:LongitudinalevaluationofOcimumandotherplantseffectsonthefeedingbehavioralresponseofmosquitoes(Diptera:Culicidae)inthefieldinTanzania.
ParasiteVect2008,42:1-8.
33.
DebbounM,WagmanJ:InvitrorepellencyofN,N-diethyl-3-methylbenzamideandN,N-diethylphenylacetamideanaloguesagainstAedesaegyptiandAnophelesstephensi(Diptera:Culicidae).
JMedEntomol2004,41:430-434.
34.
GhaniniaM,IgnellR,HanssonBS:Functionalclassificationandcentralnervousprojectionsofolfactoryreceptorneuronshousedinantennaltrichoidsensillaoffemaleyellowfevermosquitoes,Aedesaegypti.
EuropeanJNeurosci2007,26:1611-1623.
35.
HillSR,HanssonBS,IgnellR:Characterizationofantennaltrichoidsensillafromfemalesouthernhousemosquito,CulexquinquefasciatusSay.
ChemSenses2009,34:231-252.
36.
BraksMAH,TakkenW:IncubatedhumansweatbutnotfreshsweatattractsthemalariamosquitoAnophelesgambiaesensustricto.
JChemEcol1999,25:663-672.
37.
YangYC,ChoiHC,ChoiWS,ClarkJM,AhnYJ:OvicidalandadulticidalactivityofEucalyptusglobulusleafoilterpenoidsagainstPediculushumanuscapitis(Anoplura:Pediculidae).
JAgriFoodChem2004,52:2507-2511.
38.
LukwaN,NayzemaNZ,CurtisCF,MwaikoGL,ChandiwanaSK:People'sperceptionsaboutmalariatransmissionandcontrolusingmosquitorepellentplantsinalocalityinZimbabwe.
CentAfricanJMed1999,45:64-68.
39.
ZiniCA,AugustoF,ChristensenE,SmithBP,BastosCaramoE,PawliszynJ:MonitoringbiogenicvolatilecompoundsemittedbyEucalyptuscitriodorausingSPME.
AnalChem2001,73:4729-4735.
40.
ChogoJB,CrankG:ChemicalcompositionandbiologicalactivityoftheTanzanianplantOcimumsuave.
JNatProd1981,44:308-311.
41.
JnsonTGT,PlssonK,Borg-KarlsonaA-K:Evaluationofextractsandoilsofmosquito(Diptera:Culicidae)repellentplantsfromSwedenandGuinea-Bissau.
JMedEntomol2006,43:113-119.
42.
GillijYG,GleiseraRM,ZygadloJA:MosquitorepellentactivityofessentialoilsofaromaticplantsgrowinginArgentina.
BioresourceTechnol2008,99:2507-2515.
43.
DharmagaddaVSS,NaikSN,MittalPK,VasudevanP:LarvicidalactivityofTagetuspatulaessentialoilagainstthreemosquitospecies.
BioresourceTechnol2005,96:1235-1240.
44.
SenthilkumarA,KannathasanK,VenkatesaluV:ChemicalconstituentsandlarvicidalpropertyoftheessentialoilofBlumeamollis(D.
Don)Merr.
againstCulexquinquefasciatus.
ParasitolRes2008,103:959-962.
45.
OgendoaJO,KostyukovskyM,RavidcU,MatasyohdJC,DengeAL,OmoloaEO,KariukieST,ShaayaE:BioactivityofOcimumgratissimumL.
oilandtwoofitsconstituentsagainstfiveinsectpestsattackingstoredfoodproducts.
JStoredProductsRes2008,44:328-334.
46.
RuffinengoS,EguarasM,FlorisI:LD50andrepellenteffectsofessentialoilsfromArgentinianwildplantspeciesonVarroadestructor.
JEcoEntomol2005,98:651-655.
47.
ChengSS,LiuJY,TsaiKH,ChenWJ,ChangST:ChemicalcompositionandmosquitolarvicidalactivityofessentialoilsfromleavesofdifferentCinnamomumosmophloeumprovenances.
JAgricFoodChem2009,52:4395-4400.
48.
ContiB,CanaleA,BertoliA,GozziniF,PistelliL:EssentialoilcompositionandlarvicidalactivityofsixMediterraneanaromaticplantsagainstthemosquitoAedesalbopictus(Diptera:Culicidae).
ParasitolRes2010,107:1455-1461.
49.
ZhuL,TianY:ChemicalcompositionandlarvicidalactivityofBlumeadensifloraessentialoilsagainstAnophelesanthropophagus:amalarialvectormosquito.
ParasitolRes2011,DOI:10.
1007/s00436-011-2388-2.
50.
TawatsinA,WrattenSD,ScottRR,ThavaraU,TechadamrongsinY:Repellencyofvolatileoilsfromplantsagainstthreemosquitovectors.
JVectorEcol2001,26:76-82.
51.
EFSA:FlavoringGroupEvaluation25,Revision1(FGE.
25Rev1):Aliphaticandaromatichydrocarbonsfromchemicalgroup311EFSAPanelonFoodContactMaterials,Enzymes,FlavoringsandProcessingAids(CEF).
EFSAJournal2010,8:1334.
52.
FDA:Part172:Foodadditivespermittedfordirectadditiontofoodforhumanconsumption,SubpartF–FlavoringAgentsandRelatedSubstances.
Sec172.
515Syntheticflavoringsubstancesandadjuvants2010.
doi:10.
1186/1475-2875-10-375Citethisarticleas:Dubeetal.
:Fresh,driedorsmokedRepellentpropertiesofvolatilesemittedfromethnomedicinalplantleavesagainstmalariaandyellowfevervectorsinEthiopia.
MalariaJournal201110:375.
SubmityournextmanuscripttoBioMedCentralandtakefulladvantageof:ConvenientonlinesubmissionThoroughpeerreviewNospaceconstraintsorcolorgurechargesImmediatepublicationonacceptanceInclusioninPubMed,CAS,ScopusandGoogleScholarResearchwhichisfreelyavailableforredistributionSubmityourmanuscriptatwww.
biomedcentral.
com/submitDubeetal.
MalariaJournal2011,10:375http://www.
malariajournal.
com/content/10/1/375Page14of14

friendhosting:(优惠55%)大促销,全场VPS降价55%,9个机房,不限流量

每年的7月的最后一个周五是全球性质的“系统管理员日”,据说是为了感谢系统管理员的辛苦工作....friendhosting决定从现在开始一直到9月8日对其全球9个数据中心的VPS进行4.5折(优惠55%)大促销。所有VPS基于KVM虚拟,给100M带宽,不限制流量,允许自定义上传ISO...官方网站:https://friendhosting.net比特币、信用卡、PayPal、支付宝、微信、we...

10GBIZ(月$2.36 ), 香港和洛杉矶CN2 GIA

10GBIZ服务商经常有看到隔壁的一些博客分享内容,我翻看网站看之前有记录过一篇,只不过由于服务商是2020年新成立的所以分享内容比较谨慎。这不至今已经有将近两年的服务商而且云服务产品也比较丰富,目前有看到10GBIZ服务商有提供香港、美国洛杉矶等多机房的云服务器、独立服务器和站群服务器。其中比较吸引到我们用户的是亚洲节点的包括香港、日本等七星级网络服务。具体我们看看相关的配置和线路产品。第一、香...

妮妮云36元,美国VPS洛杉矶 8核 8G 36元/月,香港葵湾 8核 8G

妮妮云的来历妮妮云是 789 陈总 张总 三方共同投资建立的网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑妮妮云的市场定位妮妮云主要代理市场稳定速度的云服务器产品,避免新手购买云服务器的时候众多商家不知道如何选择,妮妮云就帮你选择好了产品,无需承担购买风险,不用担心出现被跑路 被诈骗的情况。妮妮云的售后保证妮妮云退款 通过于合作商的友好协商,云服务器提供2天内全额退款,超过2天不退款 物...

55556.com为你推荐
摩根币摩根币到底是什么是不是骗局李子柒年入1.6亿李子柒男朋友是谁,李子柒父母怎么去世的?ww.66bobo.com有的网址直接输入***.com就行了,不用WWW, 为什么?yinrentangweichentang产品功效好不好?干支论坛天干地支国风商讯国风轮胎待遇怎么样弗雷德疯哈利波特大结局谁谁谁还是活的,谁死了???全部都要,只要出现的求大神帮助www.38.com求一能在线观看电影38度的地址`!采采风荷描写古代女子采荷或采莲时的优美句子或段落 要原创的 不要古人的诗词诗句 小说里用的蚕食嫩妻宠妻一加一老婆难做隐藏的文怎么看
台湾虚拟主机 日本动态vps 电影服务器 圣迭戈 域名优惠码 青果网 网页背景图片 免费smtp服务器 网通ip 52测评网 godaddy域名证书 空间出租 cdn加速原理 免费全能主机 美国在线代理服务器 上海电信测速 主机管理系统 东莞主机托管 hostease websitepanel 更多