BioMedCentralPage1of9(pagenumbernotforcitationpurposes)BMCEvolutionaryBiologyOpenAccessResearcharticleExpressionpatternofthree-fingertoxinandphospholipaseA2genesinthevenomglandsoftwoseasnakes,LapemiscurtusandAcalyptophisperonii:comparisonofevolutionofthesetoxinsinlandsnakes,seakraitsandseasnakesSusantaPahari1,4,DavidBickford1,BryanGFry1,2andRManjunathaKini*1,3Address:1ProteinScienceandConservationEcologyLaboratories,DepartmentofBiologicalSciences,NationalUniversityofSingapore,117543,Singapore,2DepartmentofBiochemistry&MolecularBiology,Bio21Institute,UniversityofMelbourne,Parkville,Victoria,3010Australia,3DeparmentofBiochemistry,MedicalcollegeofVirginia,VirginiaCommonwealthUniversity,Richmond,VA23298-0614USAand4CenterforPostGraduateStudies,SriBhagawanMahaveerJainCollege,18/3,9thMain,Jayanagar3rdBlock,Bangalore,IndiaEmail:SusantaPahari-susanta2001@yahoo.
com;DavidBickford-dbsbdp@nus.
edu.
sg;BryanGFry-bgf@unimelb.
edu.
au;RManjunathaKini*-dbskinim@nus.
edu.
sg*CorrespondingauthorAbstractBackground:Snakevenomcompositionvarieswidelybothamongcloselyrelatedspeciesandwithinthesamespecies,basedonecologicalvariables.
Interrestrialsnakes,suchvariationhasbeenproposedtobeduetosnakes'diet.
Landsnakestargetvariouspreyspeciesincludinginsects(arthropods),lizards(reptiles),frogsandtoads(amphibians),birds(aves),androdents(mammals),whereasseasnakestargetasinglevertebrateclass(fishes)andoftenspecializeonspecifictypesoffish.
Itisthereforeinterestingtoexaminetheevolutionoftoxinsinseasnakevenomscomparedtothatoflandsnakes.
Results:Herewedescribetheexpressionoftoxingenesinthevenomglandsoftwoseasnakes,Lapemiscurtus(Spine-belliedSeaSnake)andAcalyptophisperonii(HornedSeaSnake),twomembersofalargeadaptiveradiationwhichoccupyverydifferentecologicalniches.
WeconstructedcDNAlibrariesfromtheirvenomglandsandsequenced214and192clones,respectively.
Ourdatashowthatdespitetheirexplosiveevolutionaryradiation,thereisverylittlevariabilityinthethree-fingertoxin(3FTx)aswellasthephospholipaseA2(PLA2)enzymes,thetwomainconstituentsofLapemiscurtusandAcalyptophisperoniivenom.
Tounderstandtheevolutionarytrendsamonglandsnakes,seasnakesandseakraits,pairwisegeneticdistances(intraspecificandinterspecific)of3FTxandPLA2sequenceswerecalculated.
Resultsshowthattheseproteinsappeartobehighlyconservedinseasnakesincontrasttolandsnakesorseakraits,despitetheirextremelydivergentandadaptiveecologicalradiation.
Conclusion:Basedontheseresults,wesuggestthatstreamlininginhabitatanddietinseasnakeshaspossiblykepttheirtoxingenesconserved,suggestingtheideathatpreycompositionanddietbreadthmaycontributetothediversityandevolutionofvenomcomponents.
Published:27September2007BMCEvolutionaryBiology2007,7:175doi:10.
1186/1471-2148-7-175Received:20April2007Accepted:27September2007Thisarticleisavailablefrom:http://www.
biomedcentral.
com/1471-2148/7/1752007Paharietal;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
BMCEvolutionaryBiology2007,7:175http://www.
biomedcentral.
com/1471-2148/7/175Page2of9(pagenumbernotforcitationpurposes)BackgroundThecompositionofsnakevenomsvarieswidelybothwithinaspeciesandamongcloselyrelatedspecies[1-4].
Thisvariationisproposedtobeduetochangesinthedietofsnakes,basedonthefindingsinthevariationofintraspecificvenomcompositioninapitviper,Callose-lasmarhodostoma,alandsnake[2].
Landsnakesdependonadiversityofpreyincludinglizards(reptiles),frogsandtoads(amphibians),birds(aves),insects(arthropods),androdents(mammals)[5,6].
Theyprobablyrequirearangeoftoxinsthattargetdifferentgroupsofpreyspeciessincethereisvariationinvenom'sabilityforimmobiliza-tionandkillingacrosssuchavarietyofprey.
Toxinswhichareusedforsystematicpreyenvenomationfoundtohaveseveralisoformsintheirvenomglandasevidentfromglo-balcataloguingofsnakestoxingeneexpression[3,7-16]andithasbeencorrelatedthatvariationinpreyfavorstheevolutionofmultipleisoformsoftoxinsinvenoms[9,17].
Thevarietyofisoformsisbelievedtohavebeenachievedthroughfrequentgeneduplicationsaccompa-niedbyanacceleratedrateofevolution[18-20]similartothegenerationofadaptiveresponseinimmunoglobulinsandmajorhistocompatibilitycomplexgenesinresponsetoawiderangeofforeignantigens[21].
Thus,abirth-and-deathmodeofevolutiongeneratesdiversityintoxinsallowingsnakestofeedonavarietyofpreyspecies[22].
Elapidsnakesareamonophyleticcladeofapproximately300speciesin61genera[23].
Trueseasnakes(Hydrophi-inae)andseakraits(Laticaudaspp.
)formtwoelapidcladesthathaveevolvedindependentlybutareeitherrootedwithin(trueseasnakes)orbasalto(seakraits)theterrestrialAustralo-Papuanelapidsratherthanotherelapidgroups[24-28].
Thesesnakeshaveadaptedtomarinelifeandundergonemanychangesinforagingbehavior,morphologyanddiet[29].
Asaresult,althoughtheirfeedingsystemsareconfinedtopreyofasinglever-tebrateclass(fishes),theyoftenspecializeonparticulartypesorfamiliesoffish[30,31].
Withsuchrestrictionsinbothdietandhabitat,onemightexpectlowdiversityintoxincomponents(relativetosnakeswithbroaderdiets),ashasbeenshowntobethecaseinthehydrophiinaesub-family[9].
WeshowedbyanalyzingthecDNAlibraryofAipysuruseydouxiithatits3FTxgeneisinactivatedbyadinucleotide(TT)deletion[32]andtheevolutionofitsPLA2isoenzymes,unlikethosefromothersnakevenoms,isdecelerated[33].
Asthisuniqueseasnakefeedsexclu-sivelyfisheggs[31],wesuggestedthatashiftinthedietofA.
eydouxiimayhaveresultedintherelaxationofselectionpressuresonits3FTxandPLA2genesHere,weexaminedthetotalgeneexpressionpatternoftwootherseasnakes,LapemiscurtusandAcalyptophispero-nii,whichhavedistinctanddifferenthabitatsandfeedingsystems.
L.
curtusinhabitsmanydifferentareaslikeopensea,estuaries,andcoralreefs,whereasA.
peroniiinhabitsonlysandyareasbetweencoralreefs[34].
L.
curtusincon-trasttootherseasnakesisageneralistfeederanditsdietisoneofthemostdiverseofallseasnakes[30,31,34-36].
Itspreyconsistsoffishes(90%;31differentfamilies)andveryfewinvertebrates(10%;squidandcuttlefish)[30,35,36].
Additionally,L.
curtuscohabitswithotherseasnakes,andconsequentlymaybeoverlappingindiet.
Incontrast,thedietofA.
peroniiisconfinedmainlytogobies(oneclassofseafish)[34]anditisadietandhabitatspe-cialist.
BecausethesetwosnakesaremembersofalargeadaptiveradiationoftheHydrophislineageandtheymighthavedivergedveryrapidly,differencesintheirvenomsmightalsobewidelydivergentiftheytrackdietspeciali-zation.
Ontheotherhand,ifdietspecializationwithinaconstrainedgroupofprey(e.
g.
,onlyfish),drivesmoreofastreamliningofvenomevolution,thenwemightexpecttheretobefewornochangesinvenomconstituents.
Therefore,itcouldbeinterestingtocomparethetotaltoxingeneexpressionofthesetwoseasnakes.
WeconstructedcDNAlibrariesofthevenomglandsfromA.
peroniiandL.
curtusspecimensandsequencedabout200clonesofeach.
Samplingoftranscriptomsindicatesthepresenceofanynewand/orrarefamiliesoftoxinsandenablesanalysesofthemolecularevolutionarytrendsamongtoxingenes.
Further,tocomparetheevolutionoftoxingenesamonglandsnakes,seasnakes,andseakraits,wecalculatedtheevolutionarydistancesusingallavaila-blesequencesoftwoprinciplecomponentsofthetoxinproteome,3FTxandPLA2.
ResultscDNAlibrariesofLapemiscurtusandAcalyptophisperoniivenomglandsWeobtained4and5gofmRNAfrom30mgofvenomglandtissuesofLapemiscurtusandAcalyptophisperonii,respectively.
WeconstructedtwoseparatecDNAlibrariesusing1gofmRNAfromeachpreparation.
Fromtheclonescontaininginserts,werandomlyselected250and225clones,respectively.
Fromthesecloneswewereabletoobtainsequencesof214cDNAclonesfromL.
curtusand192cDNAclonesforA.
peronii.
Figure1showsthedistributionofclonesinbothvenomglands.
Lapemiscurtuslibrary3FTxTodate,threelong-chainisoformsof3FTx(AAL54893,AAL54892andABN54806)andfourshort-chainisoformsof3FTx(AAL54894,AAL54895,P68416andABN54805)[37]havebeenreportedfromL.
curtusvenom.
WefoundcDNAclonesencodingbothlong-chainisoforms(AAL54893andAAL54892)of3FTxinthelibrary(41%abundance,Figure1)andtheratiobetweenthenumberofclonesofisoformsAAL54893andAAL54892was~10:1.
BMCEvolutionaryBiology2007,7:175http://www.
biomedcentral.
com/1471-2148/7/175Page3of9(pagenumbernotforcitationpurposes)WealsofoundcDNAclonesencodingashort-chain3FTx(AAL54894;~2%abundance,Figure1)[37].
Novariationwasobservedinthecodingsequenceofthematurepro-teinswithAAL54893,AAL54892andAAL54894.
How-ever,wecouldnotdetectthelongchainisoform(ABN54806)andthreeothershort-chainisoformsof3FTx(AAL54895,P68416andABN54805)[37,38].
PLA2Sofar,threeisoformsofPLA2ofL.
curtus(AAL55556,AAL55555andAAL54920)havebeenreported[39].
WewereonlyabletodetectoneisoformwhichiscompletelyidenticalatthenucleotidelevelwithAAL55555(~10%abundance,Figure1).
CRISPPartialsequencesoftwoisoforms(Q8UW25andQ8UW11)ofCRISPfromL.
curtusvenomglandshaverecentlybeenreported.
OurcDNAlibrarycontained~2%clonescodingforQ8UW25isoformwithoutanyvariationatnucleotidelevel(Figure1).
OthersThecDNAlibraryhasasingletonpresenceofagrowthfac-tor(AY742212)whichshowssignificantidentitytoPlate-letDerivedGrowthFactor(PDGF).
Thepartialsequenceshows70%identitytotheC-terminusofthepredictedPDGF-DisoformfromGallusgallus(chicken).
AlthoughgrowthfactorssuchasNGF[40]andVEGF[41]areknowntobepresentinthevenom,thisisthefirstreportofPDGF-likeproteinsequencefromthevenomgland.
However,furtherstudiesareneededtoconfirmthepresenceofPDGFproteininthevenom.
L.
curtuslibrarycontained~20%housekeepinggenes(Fig-ure1),includingribosomalRNA,ribosomalproteinsandcytochromes.
Inaddition,~25%ofcDNAsequencesdidnotshowsignificantidentitytotoxinsormetabolicgenes(Figure1).
BlastXsearchofthesesequencesshowedpoororonlypartialidentitytoanyproteinsequenceswithotherorganismsornomatchatall.
Theseunknownsequencesinmostofthecasesarepartial,singletonclones.
However,theirorigin(venomglandormarginalcontaminationofsurroundingtissues)stillneedstobeestablished.
Acalyptophisperoniilibrary3FTxAminoacidsequencesoftwoisoformsofshort-chain3FTxhavebeenreportedearlier[42,43].
Gln43ofthemajorisoform(AY742211)haschangedtoGlu43intheminorisoform(AY742210)[43].
InAcalyptophisperoniilibrary,theshort-chain3FTxwasmostabundant(~64%)(Figure1)andtherearetwoisoformsof3FTxinequalnumbers(60and62respectively).
Thesetwoisoforms(AY742210andAY742211)havethreenucleotidechangesintheirsignalsequencesleadingtosubstitutionofThr7(ACC)andLeu8(TTG)bySer7(TCC)andPro8(CCG),respectively.
However,novariationwasobservedinthecodingsequenceofthematureproteinandthededucedproteinsequencecorrespondsonlytothemajorisoform[42].
AswedidnotobtainclonescorrespondingDistributionoftranscriptsinthevenomglandsofLapemiscurtusandAcalyptophisperoniiFigure1DistributionoftranscriptsinthevenomglandsofLapemiscurtusandAcalyptophisperonii.
HypotheticalsequencesHypotheticalsequencesLong-chainneurotoxinHousekeepinggenesHousekeepinggenesShort-chainneurotoxinPLA2GrowthfactorShort-chainneurotoxinPLA2CRISPLapemiscurtusAcalyptophisperoniiBMCEvolutionaryBiology2007,7:175http://www.
biomedcentral.
com/1471-2148/7/175Page4of9(pagenumbernotforcitationpurposes)totheminorform,weproposethattheminorformismostlikelyduetodeamidationofGln43[44]andnotaseparategeneproduct.
Generallyintoxinfamilies,ithasbeenobservedthatthesignalpeptideregions,5'UTRand3'UTRarehighlyconserved,whereasthematureproteinregionshowsanumberofsubstitutions[19,45].
Incon-trast,thetwoisoformsofshort-chain3FTxdifferintheirsignalpeptideregionbutnotinthematureproteininthiscase.
Itwouldbeinterestingtoexaminetheimportanceofthesesubstitutions.
PLA2SofarnoPLA2sequencesfromA.
peroniihavebeenreported.
Wefoundpartialcloneshaving3'terminalsequencesofPLA2inA.
peroniilibrary(~5%;Figure1).
Theyshow100%identityinthe3'UTRregionwithL.
cur-tusPLA2(AAL55556andAAL54920).
Furtheridentifica-tionandcharacterizationoffulllengthPLA2isunderway.
OthersThecDNAlibrarycontains~6%clonesencodinghouse-keepinggenes(Figure1).
TheseincludeNADHdehydro-genase,ribosomalproteinsandCa2+bindingproteins(calglandulin).
Thelatterclassofproteinhasbeenimpli-catedintoxinsecretion[46,47].
LiketheL.
curtuslibrary,theA.
peroniilibraryalsocontained~25%withnohomol-ogytoanyknowntoxinorhousekeepinggenes(Figure1).
Asearlier,inmostcasesthesesequencesarepartial,single-tonclonesandtheiroriginneedstobeverified.
Intraandinterspecificrelationshipof3FTxandPLA2sequencesThenumberofavailableproteinsequencesencoding3FTxandPLA2werehigherthancDNAsequencesbecausemostofthesequenceshavebeenreportedfromdirectproteinsequencing.
Therefore,weusedproteinsequencestocal-culateintraandinterspecificpairwisedistancesforlandsnakes,seasnakesandseakraits.
Itshouldbenotedthatduetopaucityoftheavailabledatathenumberofspeciesandnumberofshort-chain3FTxusedforthecalculationsforlandsnakes,seasnakesandseakraitswerenotthesame.
Forshort-chain3FTx,37%oftheintraspecificdistancesofbothPseudonajatextilisandBungarusspecies(landsnakes)areintherangeof(0.
2–0.
3)and(0.
7–0.
8)respectively,while63%oftheintraspecificdistancesofseakraitsfallintherangeof(0.
1–0.
2),andmostoftheintraspecificpair-wisedistancesofseasnakesareintherangeof(0.
02–0.
04)(Figure2A).
Interspecificpairwisedistancesalsoappearhigher(50%intherangeof0.
7forBungarusspe-cies)forlandsnakes,andlowerforseasnakes(100%intherangeof0.
02).
Interspecificdistancesof3FTxforPseu-donajaspecieswerenotcalculatedbecausesequenceswereonlyavailablefromonespecies(P.
textilis).
Thehighergeneticdistancesof3FTxinlandsnakesindicatehigherlevelsofgeneticdiversitycomparedtoseasnakes,wheresequencesweremuchmoreconserved.
Thegeneticdiver-sitywithinseakraitsisintermediateinbothintraandinterspecificcomparisons.
ForPLA2,22%oftheAustral-ianelapidsand36%oftheBungarusspeciesintraspecificdistancesfallbetween(0.
1–0.
3)and(0.
1–0.
2)respec-tively.
Ontheotherhand,97%and44%oftheseasnakes'andseakraits'intraspecificdistancesrangedfrom(0.
1–0.
2)and(0.
2–0.
3)respectively(Figure2B).
InterspecificdistancesofPLA2forAustralianelapids,Bungarusspeciesandseakraitsandseasnakeshavecomparablevalues(30%–60%intherangeof0.
2–0.
3;Figure2B).
Butinseasnakes,interspecificdistances(58%fallbetween0.
2–0.
3)appearlowerthantheintraspecificdistances.
Oneofthepossibilitiesforthisreversetrendcanbeduetopoorphy-logeneticresolutionamongspeciesinthehydrophiinaesubfamily[48,49]DiscussionSnakevenomsarearichanddiversesourceofpharmaco-logicallyactiveproteinsandpeptidecomponents[50,51].
Someofthesecomponentsareenzymes,whereasothersarenonenzymaticproteinsorpolypeptides.
Mostofthesecomponentsareoffensiveweaponstocapturetheprey,injectionofvenomintopreyleadstoimmobilization,deathandcansubsequentlyaidindigestionaswell[52,53].
Venommightalsobeusedfordefensivepurposestokeeppossiblepredatorsaway.
Venomsystemsappeartohaveevolvedtomeetsomeofthesegoals,asingletimeinreptileevolution,atthebaseoftheToxicofera[54,55].
Inthiswork,weshowthehighabundanceof3FTxinthevenomsofseasnakes(41%forLapemiscurtusand~64%forAcalyptophisperonii)whilePLA2isadistantsecondlarg-estgroup(~10%forL.
curtusand~5%forA.
peronii)ofseasnaketoxins.
Overall,boththe3FTxandPLA2donotpos-sessanabundanceofdifferentisoformsgeneratingsignif-icantvariationinthevenomcomposition.
ThefactthatwedidnotdetectsomeoftheisoformsofthesetwogroupsoftoxinsaspreviouslyreportedinL.
curtusmaybeeitherduetoregionalvariationwithinthespeciesorasamplingartifactsincethecDNAlibrarywasgeneratedfromvenomglandsofasinglesnake.
However,bothgroupsoftoxinsappearstobesimpleanddonothavenoteworthydiversityintheirisoformcompositions.
Itsuggeststhatseasnakevenomsgenesarequiteconserved,andthereforelackthediversityinitsvenomcompositionasobservedforlandsnakeandseakraits.
However,addi-tionaldatafromgeneexpressionprofile,frequencyofgeneduplicationandacceleratedevolutionprofileofseasnakesisneededtofurthertestthishypothesis.
Comparisonofintraspecificdistancesamong3FTxshowedthatthemaximumvalueforlandsnakesis0.
8BMCEvolutionaryBiology2007,7:175http://www.
biomedcentral.
com/1471-2148/7/175Page5of9(pagenumbernotforcitationpurposes)Pairwiseintraspecific(whitebar)andinterspecific(blackbar)distancesforlandsnakes,seasnakesandseakraitsFigure2Pairwiseintraspecific(whitebar)andinterspecific(blackbar)distancesforlandsnakes,seasnakesandseakraits.
PanelA:3FTx(1aand1b:landsnakes;PseudonajatextilisandBungarusspeciesrespectively),2and3:seakraitsandseasnakesrespectively.
PanelB:PLA2:(4aand4b:landsnakes;AustralianelapidsandBungarusspeciesrespectively),5and6:seakraitsandseasnakesrespectively.
RFdenotesrelativefrequency.
0%50%100%00.
020.
0400.
10.
20%50%100%20%50%100%00.
50.
1a1b00.
150.
33PairwisedistanceA100%50%0%RelativefrequencyPairwisedistance0%50%00%00.
20.
451RelativefrequencyB10%50%100%00.
20.
40.
60.
60%50%00%00.
20.
44a4b0%50%100%00.
20.
46BMCEvolutionaryBiology2007,7:175http://www.
biomedcentral.
com/1471-2148/7/175Page6of9(pagenumbernotforcitationpurposes)whereasseasnakesareat0.
03andseakraits,0.
2(Figure2A).
Thevariationbetweenlandandseasnakesisabout30fold,whereaslandsnakeandseakraitdifferonly4fold.
However,thislevelofvariationhasnotbeenfoundinPLA2genes.
Inlandsnakes,themaximumintraspecificdistanceis0.
2forlandsnakesandseakraits,whereasseasnakeshaveamaximumvalueof0.
1,indicatingadiffer-enceofonly2fold(Figure2B).
Interspecificdistances,forboth3FTxandPLA2,ontheotherhand,showgreaterorequalvaluesthantheintraspecificdifferencesinlandsnakesandseakraits(Figure2Aand2B).
Fromthegeneticdistancedata,itisobviousthat3FTxisgainingmorevari-abilitythanPLA2.
Thisisprobablyrelevantbecauseenvenomationbyelapidsnakesisusuallycharacterizedbyrapidneurotoxiccomplicationsduetopresenceoflargeamountsofneurotoxins[56].
Overall,ourcalcula-tionfortheintraandinterspecificvariationinboth3FTxandPLA2appearsdistinctamonglandsnakes,seasnakesandseakraitsindicatingtheprobableexistenceofdistinctevolutionarypatternsthatseparatethesegroups.
Interestingly,theconservationoftoxindiversityinseasnakesisnotconfinedwithinspecies,itextendsacrossdif-ferentgenera.
Forexample,Enhydrinaschistosa,acommonseasnake,hasjusttwoneurotoxins(P25492andP25493)[57].
ThetoxinP25492isidenticalinsequencetoashort-chainneurotoxinfoundinLapemiscurtusvenom[38]andtheothertoxin,P25493,isidenticaltotheshort-chainneurotoxinsfoundinvenomsofHydrophiscyanocinctus[58]andPelamisplaturus[59].
Incontrast,among2763FTxsreportedtodate[22],wecouldnotfindasingle3FTxcommonacrossdifferentgeneraoflandsnakes.
Conservationoftoxinsequences,evenacrossgeneraofmarinesnakesispossiblyduetoahighlyconstrainedniche,andthestreamlinednatureoftheirvenomsisresponsiblefortheremarkabledegreeofantivenomcross-reactivity[60].
TheanalysisofourcDNAlibrariesindicatedthattheLapemiscurtusvenomismarginallymorediversethanthatofAcalyptophisperonii.
TheL.
curtuslibrarycontainsCRISPandgrowthfactorisoformsinadditionto3Ftxneurotox-insandPLA2enzymes.
Chenetal.
(AAV98367)reportedthepresenceofakallikreintoxininLapemiscurtusvenomaswell.
RecruitmentofadditionaltoxinfamilieslikeCRISP,growthfactor,kallikreintoxinmaybeduetoitsbroaddietaryrequirements.
Incontrast,A.
peroniivenomglandscontainonlyneurotoxinsandPLA2inhighconcen-trationandittargetsonlygobiesasitsdiet[30,31,34-36].
Therefore,evolutionoftoxin(s)inageneralist(L.
curtus)andarestrictedfeeder(A.
peronii)appeartobedifferent.
Thisdoesnotindicatethatothertoxinclassesarenotexpressedatlowlevels;morerigoroussequencingmayrevealrarertranscripts.
ThetoxinexpressionprofiledatafromcDNAlibraryofL.
curtusandA.
peroniiandarelationshipbetweentheirhab-itatanddietmaysuggestthatecologicalvariablespresum-ablyplayedamajorroleindeterminingthetrajectoryoftheirevolutionarypathsalongecologicalniches(special-istandgeneralist)andnotcompletelybecauseofadistantphylogeneticrelationshipbetweenthem.
Therearehow-ever,afewspecificcasesavailableintheliterature,wherearelationshipbetweenintraspecificvariationsinvenomwithrespecttodietarypreferenceshasnotbeenfound[61,62,63].
Dothesespecificexceptionsprovethegen-eralrule,oristhereathresholdwheretheevolutionoftoxinsbecomesdecoupledfromfeedingecologyand/ordietThesequestionsremaincogentforthefutureoftoxinevolutionresearchandweproposethatseasnakeswillremainmajorplayersinhelpingtounderstandhowtoxinevolutionandfeedingecologyarelinked.
ConclusionGlobalcataloguingoftoxinexpressionshowsconservedexpressionpatternoftwomainfamiliesoftoxins,3FTxandPLA2,intwoseasnakesvenomgivingrisetoasimplevenomcompositionrelativetolandsnakesandseakraits.
Geneticdistancevaluesof3FTxandPLA2toxinsshowamorediversetrendofevolutionforlandsnakesandseakraitsthantoseasnakes.
Asthedietbreadth(preyitems)expandsfromseasnakestolandsnakes(seakraitsasinter-mediate),wesuggestthatthesetrendsinevolutionoftox-insmaybelinkedtotheirdiet.
MethodsCollectionofvenomglandsLapemishardwickiihasbeensynonymizedwithLapemiscurtus[64]soL.
curtusisusedinthispaper.
OnespecimenofL.
curtusandanotherofA.
peroniiwerecollectedfromAlbatrossBayinWeipa,Queensland,Australia.
Venomglandsweredissectedfromeachofthesefreshlycaughtsnakes.
TwoglandsfromeachsnakewereusedfortheconstructionofcDNAlibraries.
Althoughsamplesizesaresmallforeachspecies,thedifficultyinacquiringspeci-mensorkeepingindividualsincaptivitymakeeventhesesmallsamplesizesextremelyvaluableandworthyofstudy.
Libraryconstruction,sequencingandanalysisTotalRNAwasextractedfromthevenomglandsusingRNeasyMiniKit(Qiagen,Hilden,Germany).
Theinteg-rityoftotalRNAwascheckedbyagarosegelelectrophore-sis.
ThemRNAwaspurifiedusingmRNAisolationkit(RocheAppliedScience,Mannheim,Germany).
Thepuri-fiedtotalmRNAwasusedtomakethecDNAlibraryfol-lowingtheinstructionsoftheSMARTcDNAlibraryconstructionkit(Clontech,Mountainview,California,USA).
ThelibrarywaspackagedusingGigapackgoldpack-agingextract(Stratagene,CedarCreek,Texas,USA).
Indi-BMCEvolutionaryBiology2007,7:175http://www.
biomedcentral.
com/1471-2148/7/175Page7of9(pagenumbernotforcitationpurposes)vidualcloneswererescuedfromrandomlyselectedwhiteplaquesandgrownin(Luriabroth+ampicillin)medium.
PlasmidswerepurifiedusingQIAprepspinminiprepkit(Qiagen,Hilden,Germany).
PurifiedplasmidsweresequencedbycyclesequencingreactionusingtheBigDyeTerminatorv3.
1kit(AppliedBiosystem,FosterCity,Cali-fornia,USA)andwithanautomatedDNAsequencer(Model3100A,AppliedBiosystem,FosterCity,Califor-nia,USA).
SequenceswerecomparedtocDNAandpro-teinsequencesinNCBIdatabaseusingBLASTprogram(BlastNandBlastX)andidentical(orsimilar)cloneswereclustered.
EachclusterwasalignedusingtheprogramClustalWinEuropeanBioinformaticsInstitutesite.
CalculationofgeneticdistancesGeneticdistanceswerecomparedbycalculatingintraandinterspecificpairwisedistancesforthe3FTxandthePLA2enzymes.
Allavailableproteinsequencesof3FTx(short-chainisoforms)andPLA2oflandsnakes,seakraitsandseasnakeswereretrieved[seeadditionalfile1].
Redundantsequencesandsignalpeptideswereremovedandaligned.
AlignedsequenceswereanalyzedinPAUP*version4.
0program[65]usingthepairwisedistancealgorithm(uncorrecteddistances,kimura-2parameters)forbothwithinandbetweenspecies.
Thepairwisedistanceswerethenplottedasagroupforlandsnakes,seasnakesandseakraits.
AccessionnumbersNucleotidesequencedatareportedherehavebeendepos-itedinGenBankunderaccessionnumbers[GenBank:AY742212,GenBank:AY742210,GenBank:AY742211].
CompetinginterestsTheauthor(s)declaresthattherearenocompetinginter-ests.
Authors'contributionsSPhasperformedtheexperiments,dataanalysis,writingandextensionofthethemeofthemanuscript.
DBhashelpedtoexaminethephylogeneticaspectoftheconcept.
BGFisresponsibleforthesamplecollectionandwritingofthemanuscript.
RMKcontributedthedevelopingtheconceptandwritingofthemanuscript.
Alltheauthorscontributedtoeditingthemanuscriptandapprovedofitsfinalform.
AdditionalmaterialAcknowledgementsThisworkwassupportedfromthegrantsfromBiomedicalResearchCoun-cil,AgencyforScienceandTechnologyResearch,Singapore(RMK)andtheAustralianGeographicSociety,Australia&PacificScienceFoundation,Aus-tralianResearchCouncil,CASSFoundation(BGF).
).
WeacknowledgethesuggestionandhelpofDr.
RudolphMeier,Mr.
ShiyangKwongforthedataanalysis.
WewouldalsoliketothankDaveDonaldforhisinvaluablehelpincollectingspecimensinWeipa.
References1.
ChippauxJP,BocheJ,CourtoisB:ElectrophoreticpatternsofthevenomsfromalitterofBitisgabonicasnakes.
Toxicon1982,20:521-523.
2.
DaltryJC,WusterW,ThorpeRS:Dietandsnakevenomevolu-tion.
Nature1996,379:537-540.
3.
FryBG,WickramaratnaJC,HodgsonWC,AlewoodPF,KiniRM,HoH,WusterW:Electrosprayliquidchromatography/massspectrometryfingerprintingofAcanthophis(deathadder)venoms:taxonomicandtoxinologicalimplications.
RapidCommunMassSpectrom2002,16:600-608.
4.
JayanthiGP,GowdaTV:GeographicalvariationinIndiainthecompositionandlethalpotencyofRussell'sviper(Viperarusselli)venom.
Toxicon1988,26:257-264.
5.
ShineR:Habitats,diets,andsympatryinsnakes:astudyfromAustralia.
CanJZool1977,55:1118-1128.
6.
ShineR:Constraints,Allometry,andadaptation:foodhabitsandreproductivebiologyofAustralianBrownsnakes(Pseu-donaja:Elapidae).
Herpetologica1989,45:195-207.
7.
BazaaA,MarrakchiN,ElAyebM,SanzL,CalveteJJ:Snakevenom-ics:comparativeanalysisofthevenomproteomesoftheTunisiansnakesCerastescerastes,CerastesviperaandMac-roviperalebetina.
Proteomics2005,5:4223-4235.
8.
FrancischettiIM,My-PhamV,HarrisonJ,GarfieldMK,RibeiroJM:Bitisgabonica(Gaboonviper)snakevenomgland:towardacatalogforthefull-lengthtranscripts(cDNA)andproteins.
Gene2004,337:55-69.
9.
FryBG,WusterW,RyanRamjanSF,JacksonT,MartelliP,KiniRM:AnalysisofColubroideasnakevenomsbyliquidchromatog-raphywithmassspectrometry:evolutionaryandtoxinologi-calimplications.
RapidCommunMassSpectrom2003,17:2047-2062.
10.
JuarezP,SanzL,CalveteJJ:Snakevenomics:characterizationofproteinfamiliesinSistrurusbarbourivenombycysteinemapping,N-terminalsequencing,andtandemmassspec-trometryanalysis.
Proteomics2004,4:327-338.
11.
Junqueira-de-AzevedoIL,HoPL:AsurveyofgeneexpressionanddiversityinthevenomglandsofthepitvipersnakeBoth-ropsinsularisthroughthegenerationofexpressedsequencetags(ESTs).
Gene2002,299:279-291.
12.
KashimaS,RobertoPG,SoaresAM,Astolfi-FilhoS,PereiraJO,Giuli-atiS,FariaMJr.
,XavierMA,FontesMR,GiglioJR,FrancaSC:Anal-ysisofBothropsjararacussuvenomousglandtranscriptomefocusingonstructuralandfunctionalaspects:I--geneexpres-sionprofileofhighlyexpressedphospholipasesA2.
Biochimie2004,86:211-219.
13.
LiS,WangJ,ZhangX,RenY,WangN,ZhaoK,ChenX,ZhaoC,LiX,ShaoJ,YinJ,WestMB,XuN,LiuS:Proteomiccharacteriza-Additionalfile1Calculationofgeneticdistancefor3FTxandthePLA2enzymes.
Thedatacomparesgeneticdistancesamonglandsnakes,seasnakesandseakraits.
Clickhereforfile[http://www.
biomedcentral.
com/content/supplementary/1471-2148-7-175-S1.
doc]BMCEvolutionaryBiology2007,7:175http://www.
biomedcentral.
com/1471-2148/7/175Page8of9(pagenumbernotforcitationpurposes)tionoftwosnakevenoms:NajanajaatraandAgkistrodonhalys.
BiochemJ2004,384:119-127.
14.
NawarakJ,SinchaikulS,WuCY,LiauMY,PhutrakulS,ChenST:Pro-teomicsofsnakevenomsfromElapidaeandViperidaefami-liesbymultidimensionalchromatographicmethods.
Electrophoresis2003,24:2838-2854.
15.
SerranoSM,ShannonJD,WangD,CamargoAC,FoxJW:Amulti-facetedanalysisofviperidsnakevenomsbytwo-dimensionalgelelectrophoresis:anapproachtounderstandingvenomproteomics.
Proteomics2005,5:501-510.
16.
TsaiIH,ChenYH,WangYM:Comparativeproteomicsandsub-typingofvenomphospholipasesA2anddisintegrinsofPro-tobothropspitvipers.
BiochimBiophysActa2004,1702:111-119.
17.
FryBG,WusterW:Assemblinganarsenal:originandevolu-tionofthesnakevenomproteomeinferredfromphyloge-neticanalysisoftoxinsequences.
MolBiolEvol2004,21:870-883.
18.
DeshimaruM,OgawaT,NakashimaK,NobuhisaI,ChijiwaT,Shimo-higashiY,FukumakiY,NiwaM,YamashinaI,HattoriS,OhnoM:Acceleratedevolutionofcrotalinaesnakevenomglandser-ineproteases.
FEBSLett1996,397:83-88.
19.
OgawaT,OdaN,NakashimaK,SasakiH,HattoriM,SakakiY,KiharaH,OhnoM:UnusuallyhighconservationofuntranslatedsequencesincDNAsforTrimeresurusflavoviridisphosphol-ipaseA2isozymes.
ProcNatlAcadSciUSA1992,89:8557-8561.
20.
OgawaT,ChijiwaT,Oda-UedaN,OhnoM:MoleculardiversityandacceleratedevolutionofC-typelectin-likeproteinsfromsnakevenom.
Toxicon2005,45:1-14.
21.
NeiM,GuX,SitnikovaT:Evolutionbythebirth-and-deathprocessinmultigenefamiliesofthevertebrateimmunesys-tem.
ProcNatlAcadSciUSA1997,94:7799-7806.
22.
FryBG,WusterW,KiniRM,BrusicV,KhanA,VenkataramanD,RooneyAP:Molecularevolutionandphylogenyofelapidsnakevenomthree-fingertoxins.
JMolEvol2003,57:110-129.
23.
GolayP,SmithHM,BroadleyDG,DixonJR,McCarthyC,RageJC,SchattiB,ToribaM:Endoglyphsandothermajorvenomoussnakeoftheworld.
AchecklistAre-Genèva,AzemiopsS.
A.
;1993:1-478.
24.
KeoghJS:Molecularphylogenyofelapidsnakesandaconsid-erationoftheirbiogeographichistory.
BiologicaljournaloftheLinneanSociety1998,63:117-203.
25.
KeoghJS,ShineR,DonnellanS:Phylogeneticrelationshipofter-restrialAustralo-Papuanelapidsnake(subfamilyHydrophii-nae)basedoncytochromeband16SrRNAsequences.
MolPhylogenetEvol1998,10:67-81.
26.
SchwanerTD,BaverstockPR,DessauerHC,MengdenGA:Immu-nologicalevidenceforthephylogeneticrelationshipofAus-tralianelapidsnakes.
InBiologyofAustralasianFrogandReptilesEditedby:GG,RSandHE.
Sydney,SurreyBeatty&Sons;1985:177-184.
27.
SlowinskiJB,KeoghJS:PhylogeneticrelationshipsofelapidsnakesbasedoncytochromebmtDNAsequences.
MolPhylo-genetEvol2000,15:157-164.
28.
VorisHK:Aphylogenyoftheseasnake(Hydrophiidae).
Fieldi-ana(Zoology)1977,70:79-166.
29.
HeatwoleH:InSeaSnakes2ndeditionedition.
Miami,Florida,KriegerPublishing;1999.
30.
GlodekGS,VorisHK:Marinesnakediets:preycomposition,diversityandoverlap.
Copeia1982,3:661-666.
31.
VorisHK,VorisHH:Feedingstrategiesinmarinesnakes:ananalysisofevolutionary,morphological,behavioralandeco-logicalrelationship.
AmerZool1983,23:411-425.
32.
LiM,FryBG,KiniRM:Eggs-onlydiet:itsimplicationsforthetoxinprofilechangesandecologyofthemarbledseasnake(Aipysuruseydouxii).
JMolEvol2005,60:81-89.
33.
LiM,FryBG,KiniRM:Puttingthebrakesonsnakevenomevo-lution:theuniquemolecularevolutionarypatternsofAipysuruseydouxii(Marbledseasnake)phospholipaseA2toxins.
MolBiolEvol2005,22:934-941.
34.
GreerAE:EncyclopediaofAustralianReptiles:Australianmuseumonline.
2004[http://www.
amonline.
net.
au/herpetology/research/encyclopedia.
pdf].
35.
CoggerHG:ReptilesandamphibiansofAustralia6thedition.
2000[http://www.
amonline.
net.
au/herpetology/research/index.
htm].
NewSouthWales,ReedNewHolland,FrenchsForest15thMarch200536.
ShineR:AustralianSnakes-anaturalhistoryChatswoods,NewSouthWales,ReedBooks;1993.
37.
ZhongXF,PengLS,WuWY,WeiJW,YangH,YangYZ,XuAL:Identificationandfunctionalcharacterizationofthreeposts-ynapticshort-chainneurotoxinsfromHydrophiinae,Lapemishardwickiigray.
ShengWuHuaXueYuShengWuWuLiXueBao(Shanghai)2001,33:457-462.
38.
FoxJW,ElzingaM,TuAT:Aminoacidsequenceofasnakeneu-rotoxinfromthevenomofLapemishardwickiiandthedetectionofasulfhydrylgroupbylaserRamanspectroscopy.
FEBSLett1977,80:217-220.
39.
YangWL,WeiJW,ZhongXF,ZhaoGJ,PengLS,WuWY,XuAL:DiversityofPLA2genesfromseasnakeLapemishardwickiigrayvenom.
ShengWuHuaXueYuShengWuWuLiXueBao(Shang-hai)2001,33:345-350.
40.
BaileyGS,BanksBE,PearceFL,ShipoliniRA:Acomparativestudyofnervegrowthfactorsfromsnakevenoms.
CompBiochemPhysiolB1975,51:429-438.
41.
TokunagaY,YamazakiY,MoritaT:SpecificdistributionofVEGF-FinViperinaesnakevenoms:isolationandcharacterizationofaVGEF-FfromthevenomofDaboiarussellisiamensis.
ArchBiochemBiophys2005,439:241-247.
42.
MoriN,TuAT:Isolationandprimarystructureofthemajortoxinfromseasnake,Acalyptophisperonii,venom.
ArchBio-chemBiophys1988,260:10-17.
43.
MoriN,TuAT:Amino-acidsequenceoftheminorneurotoxinfromAcalyptophisperoniivenom.
BiolChemHoppeSeyler1988,369:521-526.
44.
BischoffR,KolbeHV:Deamidationofasparagineandglutamineresiduesinproteinsandpeptides:structuraldeterminantsandanalyticalmethodology.
JChromatogrBBiomedAppl1994,662:261-278.
45.
NakashimaK,OgawaT,OdaN,HattoriM,SakakiY,KiharaH,OhnoM:AcceleratedevolutionofTrimeresurusflavoviridisvenomglandphospholipaseA2isozymes.
ProcNatlAcadSciUSA1993,90:5964-5968.
46.
GoncalvesLR,YamanouyeN,Nunez-BurgosGB,FurtadoMF,BrittoLR,NicolauJ:Detectionofcalcium-bindingproteinsinvenomandDuvernoy'sglandsofSouthAmericansnakesandtheirsecretions.
CompBiochemPhysiolCPharmacolToxicolEndocrinol1997,118:207-211.
47.
Junqueira-de-AzevedoIL,PertinhezT,SpisniA,CarrenoFR,FarahCS,HoPL:Cloningandexpressionofcalglandulin,anewEF-handproteinfromthevenomglandsofBothropsinsularissnakeinE.
coli.
BiochimBiophysActa2003,1648:90-98.
48.
LukoschekV,KeoghJS:Molecularphylogenyofseasnakesrevealsarapidlydivergedadaptiveradiation.
BiologicaljournaloftheLinneanSociety2006,15867150:.
49.
RasmussenAR:Phylogeneticanalysisofthe"true"aquaticelapidsnakesHydrophiinae(sensuSmithetal.
,1977)indi-catestwoindependentradiationsintowater.
Steenstrupia2002,27:47-63.
50.
HarveyAL:SankeToxinsNewYork,PrgamonPress;1991.
51.
LeeCY:SnakeVenoms.
HandbookofExperimentalPharmacologySpringer-Verlag,Berlin;1979.
52.
DuftonMJ:Killandcure:thepromisingfutureforvenomresearch.
Endeavour1993,17:138-140.
53.
KardongKV:Snaketoxinsandvenom:anevolutionaryper-spective.
Herpetologica1996,52:36-46.
54.
FryBG,VidalN,NormanJA,VonkFJ,ScheibH,RamjanSF,KuruppuS,FungK,BlairHS,RichardsonMK,HodgsonWC,IgnjatovicV,Sum-merhayesR,KochvaE:Earlyevolutionofthevenomsysteminlizardsandsnakes.
Nature2006,439:584-588.
55.
VidalN,HedgesSB:Thephylogenyofsquamatereptiles(liz-ards,snakes,andamphisbaenians)inferredfromninenuclearprotein-codinggenes.
CRBiol2005,328:1000-1008.
56.
HodgsonWC,WickramaratnaJC:Invitroneuromuscularactiv-ityofsnakevenoms.
ClinExpPharmacolPhysiol2002,29:807-814.
57.
FryklundL,EakerD:AminoacidsequencesofthetwoprincipalneurotoxinsofEnhydrinaschistosavenom.
Biochemistry1972,11:4633-4640.
58.
LiuCS,BlackwellRQ:HydrophitoxinbfromHydrophiscyanoc-inctusvenom.
Toxicon1974,12:543-546.
59.
WangCL,LiuCS,HungYO,BlackwellRQ:Aminoacidsequenceofpelamitoxina,themainneurotoxinoftheseasnake,Pela-misplaturus.
Toxicon1976,14:459-466.
60.
ChettyN,DUA,HodgsonWC,WinkelK,FryBG:TheinvitroneuromuscularactivityofIndo-Pacificsea-snakevenoms:PublishwithBioMedCentralandeveryscientistcanreadyourworkfreeofcharge"BioMedCentralwillbethemostsignificantdevelopmentfordisseminatingtheresultsofbiomedicalresearchinourlifetime.
"SirPaulNurse,CancerResearchUKYourresearchpaperswillbe:availablefreeofchargetotheentirebiomedicalcommunitypeerreviewedandpublishedimmediatelyuponacceptancecitedinPubMedandarchivedonPubMedCentralyours—youkeepthecopyrightSubmityourmanuscripthere:http://www.
biomedcentral.
com/info/publishing_adv.
aspBioMedcentralBMCEvolutionaryBiology2007,7:175http://www.
biomedcentral.
com/1471-2148/7/175Page9of9(pagenumbernotforcitationpurposes)efficacyoftwocommerciallyavailableantivenoms.
Toxicon2004,44:193-200.
61.
GreeneHW:Theevolutionoffeedingmechanismsinsnakes.
TucsonHerpSocNews1988,8:65-69.
62.
GreeneHW:Theevolutionoffeedingmechanismsinsnakes.
TucsonHerpSocNews1988,8:75-78.
63.
WilliamsV,WhiteJ,SchwanerTD,SparrowA:Variationinvenomproteinsfromisolatedpopulationsoftigersnakes(Notechisaterniger,N.
scutatus)inSouthAustralia.
Toxicon1988,26:1067-1075.
64.
GritisPA,VorisHK:VariabilityandsignificanceofparietalandventralscalesinthemarinesnakesofthegenusLapemis(serpentes:Hydrophiidae),withcommentsontheoccurenceofspinyscalesinthegenus.
Fieldiana(Zoology)NewSeries1990,56:1-13.
65.
SwoffordDL:PAUP*.
PhylogeneticAnalysisUsingParsimony(*andOtherMethods).
SinauerAssociates;2003.
可以看到这次国庆萤光云搞了一个不错的折扣,香港CN2产品6.5折促销,还送50的国庆红包。萤光云是2002年创立的商家,本次国庆活动主推的是香港CN2优化的机器,其另外还有国内BGP和高防服务器。本次活动力度较大,CN2优化套餐低至20/月(需买三个月,用上折扣+代金券组合),有需求的可以看看。官方网站:https://www.lightnode.cn/地区CPU内存SSDIP带宽/流量价格备注购...
imidc怎么样?imidc彩虹网路,rainbow cloud知名服务器提供商。自营多地区数据中心,是 Apnic RIPE Afrinic Arin 认证服务商。拥有丰富的网路资源。 在2021年 6.18 开启了输血大促销,促销区域包括 香港 台湾 日本 莫斯科 等地促销机型为 E3係,参与促销地区有 香港 日本 台湾 莫斯科 等地, 限量50台,售罄为止,先到先得。所有服务器配置 CPU ...
野草云服务商在前面的文章中也有多次提到,算是一个国内的小众服务商。促销活动也不是很多,比较专注个人云服务用户业务,之前和站长聊到不少网友选择他们家是用来做网站的。这不看到商家有提供香港云服务器的优惠促销,可选CN2、BGP线路、支持Linux与windows系统,支持故障自动迁移,使用NVMe优化的Ceph集群存储,比较适合建站用户选择使用,最低年付138元 。野草云(原野草主机),公司成立于20...
55556.com为你推荐
网络访问无法连接到internet是什么情况李子柒年入1.6亿新晋网红李子柒是不是背后有团队是摆拍、炒作为的是人气、流量?www.44ri.comwww.yydcsjw.comwww.5ff.comhttp://www.940777.com/网站,是不是真的网投六合125xx.com高手指教下,www.fshxbxg.com这个域名值多少钱?www.zjs.com.cn怎么查询我的平安信用卡寄送情况www.dm8.cc有谁知道海贼王最新漫画网址是多少??hao.rising.cn电脑每次开机的时候,都会弹出“http://hao.rising.cn/?b=34” 但是这个时59ddd.comarmada m300什么装系统铂金血痕花开易见落难寻,阶前愁杀葬花人;独把花锄偷洒泪,洒上空枝见血痕。是什么意思
备案域名 网站备案域名查询 mach5 bash漏洞 42u机柜尺寸 淘宝双十一2018 linux空间 ftp教程 能外链的相册 根服务器 腾讯总部在哪 阿里云官方网站 linode支付宝 智能dns解析 新疆服务器 xshell5注册码 SmartAXMT800 shuangcheng winds htaccess 更多