Concentrationsrrqqq.com

rrqqq.com  时间:2021-04-08  阅读:()
AFGt-TR-79-O214ETIVIROT{TEiITALRESEARCHPAPERS,NO.
6i'6ModelsfortheAerosolsoftheLowerAtmosphereandtheEffectsofHumidityVariationsonTheirOpticalPropertiesERICP.
SHETTTEROBERTW.
FENN20September1979Approrrdforpublicrol.
.
rl;dirtributionunlimitrd.
oPTfcAtpHystcsDtvtstoNPRoJECT7670AIRFORGEGEOPHYSICSLABORATORYHANSCO|.
AF9,ilASSACt{UsETTs0t731AIRFORCESYSTEMSCOMMAND,USAFThisreporthasbeenreviewedbytheESDInfornationOffice(OI)andisreleasabletotheNationalTechnicalInforznationService(NTIS).
Thistechnicalreporthasbeenreviewedandisapprovedforpublication.
FORTHECOMMAI{DERlu.
nQQualifiedrequestorsmayobtainadditionalDefenseDocumentationCenter.
A11othersNationalTechnicalInforznationService.
copiesfromtheshouldapplytotheefScientietUnclaesified3rcuir"vcLAfr.
ricrrrororyHrs.
lEREFORTDOCUhENTATIONPAGEAFGL.
TR-I9-O2I4r.
r\,7EoFrEroFTrp:nGocovEiloScientific.
Interim.
a.
YfTLE(ndSpbaltt.
)MODELSFORTI{E.
A-EROSOLSOFTHELOWERATMoSpHEREANDrunerFbcis-oiHUMIDITyvARTATIoNSowrnninOPTICALPROPERTIESEricP.
ShettleRobertW.
FennERPNo.
66AirForce.
ee_ophysicsf,aUoraiorytOplHanscomAFBMassachusetts01316210tF76701401^.
::=:iC:--,.
SO;;,Cfffi.
trtr.
t'orce.
glophysicaLaboratory(Op)HanscomAFBMassachusetts013120September199UnclassifiedApprovedforpublicrelease;distributionunlimited.
tt.
otsTRtBuTtolsrrreAtmosphericopticalpropertiesLrghtscatteringInfraredAttenuationAerosblsRadiativetransferAlshAC:(Cq.
In6-n@puteatorwaveteristrrsuetweenb.
la;.
i'4d;';:if"1.
;;:,TEJB,'filiJ,"1#Aerosolmodelshavebeendeveloped-fortheloweratmosphere.
Thesemodelsarerepresentativeofconaiiiols_foundin;;;;i,l"6"rr,andmaritimei,i:Ti:i::;ljr^",".
1"^T.
c-"^1.
i"t[e_leroso]n;;o;;;iiirr*"""rationsintherera-tivehumiditvaredisculeed.
roaescriuetheaer.
os","p,ril-iTi$:rfr:3"rJ:iextremeofr00percent.
rerativehumidity,severalfognio;ersarepresented.
Foreachmodel-thecoefficientsir.
'"*tii,lti,il;;;it:i.
i'jll.
"0absorption,the:lrij.
l.
;:"jj::i:T*i':r".
*:1r-":,^"1191hF^.
opticar.
para_1i"""havebeencom_DD,:i11.
1173EO:rlo.
{orINOVCrt5ogsoLET!
UnelaseifiedtxlsPAGEo}noD.
r.
20.
(Cont)oresentedtosetherwithareviewoftheirerperimentalbasis.
The-optical--;;;;i;";FA;;;modelsarediscueseaanasomecomParigoneoftbemodeli"itti"tp""imentalmeaaurementgarepresented'Unclassified;ECUR|tyCLASSTFICAlO}|OFrHlsPAGE(11|.
^Dd.
Edtc.
.
ct)Prefocewewourdliketothankseverarindividuarswhoherpedwiththisreport,inparticu!
.
ar;FredVolzforhisadviceontheaerosolrefractiveindicesandhisgeneralcommentsontheaerosolmodels,FrankGibsonforhisworkindevel,opingtheFogModels,andBarrysiegelforhisassistancewiththecomputerprogramming.
1.
INTRODUCTION2.
MODELSFORTI{EPHYSICALPROPERTIESOFTHEAEROSOLS2.
LModelSizeDistribution2.
2EffectsofHumidityvariationsonAerosolproperties2.
3RuralAerosolModel2.
4UrbanAerosolModel2.
5MaritimeAerosolModel2.
6TroposphericModel2.
7FogModels3.
AEROSOLOPTICALPROPERTIES3.
IMieScatteringCalculations3.
2AerosolModelAttenuatlon3.
3FogModelAttenuation3.
4TablesofAerosolAttenuation4.
THEUSEOFTHEAEROSOLMODELS4.
IBoundaryLayerModels4.
2TroposphericAerosolModel4.
3FogModelsREFERENCESContenls1ltzt2t4161926303335353646498686878789lllustrotions1.
RefractiveIndexofMarineAerosol,Water,andSeaSaIt2.
RefrlctiveIndexfortheDryRuralandurbanAeroeolcomponents3.
Aerosol.
NumberDietributionfortheRuralModelatDifferentRelativetlumiditieewithrotalparticleconcentrationsFixedat15,000cm-34.
cumulativeNumberDensityfortheRuralAerosolModelatDifferentRelativeHumiditieewithrotalparticleconeentrationgF"ixedat15,000cm-J5.
VolurneDistributionfortheRuralAerosolModelatDifferentRelativeHumiditieswiththeTotalparticleconcentrationeFiredat15,000cm-36.
AerosolNurnberDistributionfortheMaritimeModetatDifferentRelativeHumiditie-swiththeTotalparticleconcentrationsFixedat4000cm-r7.
cumulativeNumbsDenaityfortheMaritimeAerosolModelatDifferentRelativeHumiditiesWiththeTgtalParticleConcentrationsFixedat4000cm-r8.
volumeDistributionfortheMaritimeAerosolModelatDifferentRelativeHumiditieswiththeTotalparticleconcentrationsFixedat4000cm-39.
AerosolNumberDistributionfortheTroposphericModelatDifferentRelativeHumiditieswithTotalparticleconcentrationsFixedat10,000em-33110.
cumulativeNumberDensityfortheTroposphericAerosolModelatDifferentRelat-iveHumiditiesWithToialParticleConcentrationsFixedat10,000cm-r3211.
volumeDistributionfortheTroposphericAerosolModelatDifferentRelativeHumiditiesWiththetotilParticleConcentrationsFixed.
at10,000cm-r12.
NumberDistributionfortheDifferentFogModets13.
cumulativeNumberDietributionfortheDifferentFogModets14.
VolumeDistributionfortheDiffer.
entFogModels15.
AttenuationcoefficientsvswavelengthfortheRuralAeroeolsat50PercentRelatlveHumidity16.
AttenuationcoefficientsvswavelengthfortheRuralAerosolModelsatgbpercentRelativeHuiriditv17.
Extinctioncoefficientsvswavel^engthfortheRuralAerosolModelforDifferentRelativeHumiditieJandconstantNumoero""sitvorPar-ticles3lB.
AttenuationcoefficientsvswavelengthfortheurbanAeroeolsat50PercentRelativeHumidity19.
AttenuationcoefficientsvswavelengthfortheurbanAerosolsat95PercentRelativeHumiditv20.
ExtinctioncoefficientsvswavelengthfortheurbanAerosolModelforDifferentlrelativeHurhiditieJandconstantNumberoensity-ofParticles392L.
Attenuati.
oncoefficientsvswaverengthfortheMaritimeat50percentRelativeHumidity:ia9.
*,t717202l2l272728323434353633839AerosolModel40lllustrotions22.
AttenuationcoefficientsvswavelengthfortheMaritimeAerosolModelat95PercentRelativettumidity23.
ExtinctioncoefficientsvswavelengthfortheMaritimeAerosolModelforDifferentRelativeHumiditiesandconstantNumberDensityofParticles24.
AttenuationcoefficientsvswavelengthfortheTropoephericAerosolModelatb0percentRelJtiveHumidity25.
AttenuationcoefficientsvswavelengthfortheTroposphericAerosolModelatg5percentRelaiiveHumidity26.
ExtinctioncoefficientsvswavelengthfortheTroposphericAerosolModelforDifferentRelitiveHumiditieiandconstantNumberDensityofparticles27.
AttenuationCoefficientsvsWavelength;HeavyAdvectionFog,Model128.
Attenuationcoefficientsvswavelength;LighttoModerateAdvectionFog,Model229.
AttenuationCoefficientsvsWavelength;HeavyRadiationFog,Model330.
AttenuationCoefficientsvsWavelength;LighttoModerateRadiationFog,Model431.
ExtinctioncoefficientsvswavelengthfortheDifferentFogModels404l4142424647474848Tobles1.
characteristicsofAerosolModelsoftheLowerAtmosphere142.
ModeRadiifortheAerosolModelsasaFunctionofRelativeHumidityL43.
RefractiveIndexfortheDifferentAerosolComponentslg4.
RefractiveIndexoftheRuralModelasaFunctionofRelativeHumidityandWavelength,(a)SmallRuralAerosols,(b)LargeRuralAerosol:sZz5.
RefractiveIndexoftheUrbanModelasaFunctionofRelativeHumiditvandWavelength,(a)SmallUrbanAerosols,(b)LargeUrbanAerosois246.
RefractiveIndexoftheoceanicModelasaI'unctionofRelativeHumidityandWavelength7.
SizeDistributionParametersoftheFogModels8.
TotalNumberDensityfortheRuralAerosolModelasaFunctionofRelativeHumidityandMeteorologicalRange9.
TotalNumberDensityfortheurbanAerosolModelasaFunctionofRelativeHumidityandMeteorologicalRange10.
TotalNumberDensityfortheMaritimeAerosolModelasaFunctionofRelativeHumidityandMeteorologicalRange2933444445Tobls:11.
TotalNumberDensityfortlreTroposphericAerosolModelaeaFunctionofRelatlveHumidityandMeteorologicalRangeL2.
AttenuationCoefficienta,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=0%RuralModel13.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=5O%RuralModel14.
AttenuationCoefficients,SingleScatterAlbedo,andAeymmetryParameterforRelativeHumidity=70%RuralModel15.
AttenuationCoefftcients,SlnglScatterAlbedo,andAeymmetryParameterforRelativeHumidity=BWoRuralModel16.
AttenuationCoefficiente,Sin$lScatterAlbedo,andAsymmetryParameterforRelativeHumidity=9O1oFuralModel17.
AttenuationCoefficiente,SingleScatterAlbedo,andAsymmetryParameterforRelativellumidity=95%RuralModel18.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=98%RuralModel19.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=99%RuralModel20.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=0%UrbanModel21.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumtdity=50ToUrbanModel22.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=701oUrbanModel23.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=8010UrbanModel24.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=9O%UrbanModel25.
Attenuati.
onCoefficients,SlngleScatterAlbedoiandAsymmetryParameterforRelativeHumidity=9510UrbanModel26.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=98%UrbanModel27.
AttenuationCoefflcients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=99ToUrbanModel28.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=0%MaritimeModel29.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=5O%MaritimeModel30.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=7Os/eMaritimeModel31.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=801oMaritimeModel32.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelattveHumidlty=9A%MaritimeModel45505152535455565758596061626364656667686970Tobles33.
AttenuationCggftigign!
:,S_Tgl9ScatterAtbedo,andAsymmetryParameterforRelativettumidity=95ToUaritimeModel34.
Attenuationc:lfi:1:llp:1r-"St9.
scatterAlbedo,andAsymmetryparameterforRelativeHumldity_gB%Mariiim;Moiel35.
Attenuationc::l-fi:l:ry:,lrler:ScatterAtbedo,andAsymmetryParameterforRelativenumiaity=gg%MaritimeModel36.
AttenuationC::l-fi:l:lF,S_t_r,CtgScatterAlbedo,andAsymmetryParameterforRelativeHu-midity=0%Tropospf,L"i"Model37.
AttenuationCggffilign!
:,Si"elgScatterAlbedo,andAsymmetryParameterforRelativettumidity=ieloTroposphericModel38.
AttenuationCggtfigigll:,S-.
-"g19-scatterAtbedo,andAsymmetryParameterforRelativeHumidity=7O%TroposphericModel39.
Attenuationc::l-f*l:lt:,S-.
_relg.
scatterAlbedo,andAsymmetryParameterforRelativeHumiaity=gO%TroposphericModel40.
AttenuationCo^gffigign!
:,S-r_"g19ScatterAlbedo,andAsymmetryParameterforRelativettumlaity=gO%TroposphericModel41.
AttenuationCoefficient:,S_r_"g19.
ScatterAlbedo,andAsymmetryParameterforRelativeHumldity=95%TroposphericModel42.
Attenuationcoefficient:,s-tlgl:-scatterArbedo,andAsymmetryParameterforRelativeHumidity=ggToTroposphericModel43.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRelativeHumidity=gg%TroposphericModel44.
AttenuationCo.
effi,gienjs,Single-scatterAlbedo,andAsymmetryParameterfortheAdvectionFogIModel45.
AttenuationCo"1f_fi.
9ien^{,Aipt"jcatterAlbedo,andAsymmetryParameterfortheAdvectidnFog2Model.
46.
AttenuationCq9ffi5ie,1ts,SingleScatterAlbedo,andAsyrnmetryParameterforRadiationFogIModel47.
AttenuationCoefficients,SingleScatterAlbedo,andAsymmetryParameterforRadiationFog2Model7l7273747576777879808182838485ModelsfortheAerosolsoftheLowerAtmosphereondtheEffectsofHumidityVoriotionsonTheirOpticolPropertiesI.
INTRODUCTIONPropagationofelectromagneticradiationatoptical/infraredfrequenciesthroughtheatmosphereisaffectedbyabsorptionandscatteringbyairmoleculesandbvparticulatematter(haze,dust,fog,andclouddroplets)suspendedintheair.
Scatteringandabsorptionbyhazeparticlesoraerosolsbecomesthedominantfactorintheboundarylayerneartheearth'seurface,especiallyunderlowvisibilitycon-ditions.
Atmosphericaerosolparticlesintheatmospherevarygreatlyintheirconcen-tration,size'andcomposition,andconsequentlyintheireffectsonopticalandIRradiation.
Therearemanyscientificandtechnicalreasonswhyitisnecessarytodevelopmodelsforatmosphericaerosols.
Theyareneededtomakeestimatesofthetrans-mittance,ofangularlightscatteringdistribution,ofcontrastreduction,skyradiance,orotheratmosphericopticalpropertiesoreffects.
Modelsfortheoplic_alpropertiesofaerosolshavebeendevelopedpreviouslyatAFGLandelsewhu"".
t-*Forthelowerlayerneartheearth'ssurface,thesemodelsdefineanaveragecontinentaltypeaerosolwhoseconcentrationcanbescaledaccordingtosurfacevisibility.
GecffiA-Iorpublication20Septembert99)Pu9to.
thelargenumberofreferencescitedinthisreport,theywillnotbefootnoted.
SeeReferences,pagesggthrough94.
11Theaerosolpropertieeinthesemodelswerebasedonexperimentalmeaeure-mentgthatweremadeduringandpriortothemid-1960's.
Atthattimetherewassufficientexperimentaldataavailabletodefineanaverageaerosolmodelwithsomedifferenthazeconcentrationsinthelowertroposphere(uptoafewkmaltitude)withexponentialverticaldecreaseinparticleconcentration.
Duringthepastdecade,inthiscountryandelsewhere,extensiveadditionalmeasurementsfromgroundaswellasairborneplatformshavebeenmadeofaerosolconcentrations,theirsizedistribution,andopticalproperties,towarrantthedevelopmentofupdatedaerosolmodelsthatalsodescribesomeofthetemporalandspatialvariationsinatmosphericaerogoldistributionsandproperties.
Therearenowsufficierrtexperimentaldatatodevelopmodelsforseveraldi.
fferentt5ryesoftroposphericaerosols,includingthedependenceoftheaerosolpropertiesonrela-tivehumidity.
SuchupdatedmodelshavebeendevelopedbyShettleandFennSaridToonandaPoIIack,"exceptbothofthesesetsofmodelsneglecttheeffectsofrelativehumidity.
Thepresentreportdescribesaerosolmodelsfortheloweratmosphereandtheiropticalpropertiesincludingadiscussionofhowtheaerosolpropertieschangeasafunctionofrelativehumidity.
Theopticalpropertiesofthemodelsaregivenforanumberofwavelengthsbetween0.
2and40pm,andforseveraldifferentrelativehumiditiesrangingfrom0to99percent.
Inadditionfourfogmodelsaregivenforttredroplet-condensationphase.
Themodelsoftheatmosphericaerosolsandtheiropticalpropertiespresentedbelowarebasedonareviewoftheavailabledataonthenatureoftheaerosols,theirsizes,theirdistribution,andvariability.
However,itmustbeemphasizedthatthesemodelsrepresentonlyasimple,generalizedversionoftypicalconditions.
Itisnotpracticaltoincludeallthedetailsofnaturalaerosoldistributionsnorareexistingexperimentaldatasufficienttodescribethefrequeneyofoccurrenceofthedifferentconditions.
WhiletAeseaeroeolmodelsweredevelopedtobeasrepresenta-tiveaspossibleofdifferentatmosphericconditions,thefollowingpointshouldbekeptinmindwhenusinganysuchmodel:Giventhenaturalvariabilityoftheatmosphericaerosolsalmostanyaerosolmodelissupportedbysomemeasurementsandnomodel(orsetofmodels)willbeconsistentwithallmeasurements.
2,MODEI,SFORTHEPHYSICALPROPERTIESOFTHEAEROSOLS2.
LModelSizeDistributironThesizedistributionsforthedifferentaerosolmodelsarerepresentedbyoneorthesumoftwolog-normaldistributions:L22n(r)=#,p,[-""'';it""1.
(1))exPwhereN(r)isthecumulativenumberdensityofparticlesofradiusr;oisthestandarddeviation;"i,Niarethemoderadiusandthenumberdensitywithrr.
Thisformofdistributionfunctionrepresentsthemultimodalnatureoftheatmos-phericaerosolsthathasbeendiscussedinvariousstudies.
l0-14whileHarrisandMcCormickl5h.
rr.
suggestedusingthesumoffourlog-normaldistributionsandDavies16hasusedthesumofasmanyassevenlog-normaldistributionstofitameaeuredaerosolsizedistribution,WhitbyandCantreUlThaveshownthattwomodesaregenerallyadeguatetocharacterLzethegrossfeaturesofmostaerosoldistributions.
WhileathirdcomponentisoftennecessarytorepresenttheAitkennucleiespeciallynearsourcesofcombustionparticulates,theireffectontheopticalpropertiesissmallandwillbeneglected.
Therearemeasurements-showingthecompositionoftheatmo-sphericparticu-Iatesdependingontheirsize,18,19andusingabimodalsizedistributionoffersthepossibilityoftreatingthecompositionoftheindividualmodesseparately.
However,thereis,ingeneral,insufficientexperimentaldatatouniquelydefinedifferentrefractiveindexmodelsforthedifferentsizeranges,alongwithdi.
fferingdependenceonrelativehumidity.
Forthemaritimeconditions,thereis.
rridence20showingthattheIargepar_ticlesarealmostexclusivelyofoceanicoriginandthesmallerparticlesarepre-dominantlyofthesamecompositionasthecontinentalaerosolssothatwedonordifferentiatebetweenthetwosizerangesintermsoftheircompoeition.
Fourdifferentaerosolmodelsfortheatmosphericboundarylayerneartheearth'ssurfacehavebeendeveloped.
Theydifferinparticlesizedistributionandparticlerefractiveindex.
TableIliststheparametersdefiningthesizedistribu-tionsinaccordancewithEq.
(1)forthesemodels.
ThechoicesofNinTable1arenormalizedtocorrespondtoIparticle/cm3.
Theactualsizedistributionscanbere-normalizedtogivethecorrectextinctioncoefficientsforthealtitudeandforthevisibilitybeingused.
Thecontinentalandoceaniccomponentsofthemaritimemodelcanbeusedinvariousproportionsdependingontheprevailingwinds-particularlyincoastalregions.
ThebasisforthecharacterizationofeachoftheaerosolmodelsisdiscussedinSections2.
3through2.
6.
Followingtheusualconvention,togisthelogarithmtothebasel0andInisthelogarithmtothebasee.
13Tablet.
CharacteristicsoftheAerrosolModelsoftheLowerAtmoephereAerosolModelSizeDistributionTypeRURALURBANMARITIMEContinentalOriginOceanicOriginTROPOSPHERICN.
Ir.
I+o.
IMixtureofWater-SolubleandDust-Li.
keAerosolsRuralAerosolMixturewithSoot-LikeAerosolsRuralAerosolMixtureSeaSaltSolutioninWaterRuralAerosolMixture0.
9998750.
0001250.
9998750.
0001251.
1.
1.
0.
030.
50.
030.
50.
030.
30.
030.
350.
40.
350.
40.
350.
40.
35Thesemoderadiicorrespondtomoderatehumidities(0to80%);valuesofr.
asfunctionofhumidityaregiveninTable2.
ITable2.
ModeRadiifortheAerosolModelsasaFunctionofRelativeHumiditv2.
2EffecteofHumidityVariationeonAerodPmpertierAstherelativehumidityincreases,watervaporcondensesoutoftheatmos-phereontotheparticulatessuspendedintheatmosphere.
Thiscondensedwaterincreasesthesizeoftheaerosolsandchangestheircompositionandtheireffectiverefractiveindex.
Theresultingeffectoftheaerosolsontheabsorptionandscatter-ingoflightwillcorrespondinglybemodified.
Therehavebeenanumberofstudiesofthechangeofaerosolpropertiesasafunctionofrelativehumidity.
2L-28Thnemostcomprehensiveofthese,especiallyintermsoftheresultingeffectsontheaerosolopticalpropertiesistheworkofHdnel.
26-28RelativeHumidityTroposphericRuralMaritimeUrban'1"1"2tl,2QToSoTu70%8o1oso%gSoh981o99To0:0200o.
o27480.
02846o.
032740.
038840.
042380.
047510.
052150.
02700o.
o27480.
02846o.
032740.
038840.
042380.
047510.
052150.
43000.
430.
45710.
5470.
64620.
7078o.
97281.
17550.
16000.
17110.
20410.
31800.
38030.
46060.
60240.
75050.
025000.
025630.
029r10.
035140.
04180.
049040.
059960.
068470.
40000.
4113o.
47770.
58050.
70610.
86341.
16911.
4858t4Thechangeintheparticulatesizeisrelatedtotherelativehumidityby(followingHlnel'snotation)l'm(a)lr/sr(a)=rlt*o.
**|woL'moJwhereroisthedryparticleradius,pistheparticledensityrelativetothatofwater,mur(a.
,rr)isthemassofcondensedwater,moisthedryparticlemass,anda*isthewateractivitywhichisessentiallytherelativehumidityf,correctedforcurvatureoftheparticlesurface.
/-*u\twl"r"=r'"*PtE=!
,r,\w/wherec,=surfacetensiononthewetparticlesurface,V*=sPecificvolumeofwater,R*=specificgasconstantforwater,T=absolutetemperature(oK).
Forroomtemperature(T=298'K),ZoVn,+=0.
001056[micron](Hdnel,28paget2O).
Typicalatmospherictemperaturesareasmuchas20percentlowerbut,forparticleradiir>0.
01!
,m,thisleadstoerylorsoflessthan2percentincurvature(2)(3)effectsoEq.
(3)canberewrittenas.
.
,o=r.
exp(*ru_+),whererisinpmandwherethedependenceofronawhasbeenmadeexplicit.
Thereareanumberofstudiesonchangeinsizeormassofaerosolparticlesasafunctionofrelativehumidityforvariouselectrolytes2l'25andnaturalatmos-phericpatticulates.
11'12'15'17'18'19'22'23'26'28'29,30Hi.
r.
l28(inhisTableIV)hastabulatedhisandothermeasurementsof+,0"a.
vforvarioustypesoftov(4',15naturalaerceols.
However,evenwiththisdataontherelativemasgofcondensedwaterforuseinEq.
(2),itisnotpoesibletocombineEq.
(2)and(4)intoanexactanalyticexpressiongivingaerosolradius,r,asanexplicitfunctionofrelativehumidity,becausea.
,,appearsonbothsidesofEq.
(a).
Variousapproximationshavebeendeveloped.
"2''28'3LHowever,thesetendtobreakdownforsmallparticlesizesandhighhumiditiee.
Toavoidthelimitationsoftheseapproximations,Eq.
(2)and(4)wereusedalternatelyinaniterativemanneruntiltheyconverged(typically5or6iterations)startingwitha*rfontherightsideofEq.
(2).
Starti;Uwithr=roinE9.
(4)leadstothesameresult.
TointerpolatebetweenH5nel's-"datafordifferentwaterii+lactivities,a'andd''',itwasasgumedthat#+,=(s')"n=.
*+(no-n",)[r]J]'(5)OncethewetaerosolparticlesizeisfoundfromEq.
(2)and(4),theeffectivecom-plexrefractiveindex,n,issimplythevolumeweightedaverageoftherefractiveindexesofthedryaerosolsubstance,no,andwater,nw.
Eguivalently,thiscanbewrittenas(6)Fortherefractiveindexofwater,thesurveyofHaleandQuemy32*.
sused.
WhiletherearesomeminordifferencesbetweentheopticalconstantsinHaleandQuerry'ssurveyandthemorerecentmeaguremer,t"33'34th.
""differencesarecomparablewiththeexperimentalemorsandaresmallcomparedwiththeotheruncertaintiesinthemodelparameters.
TheserefractiveindexdataareshowninFigure1.
2.
3RuralAemsolllodclThe"RuralModelttisintendedtorepresenttheaerosolunderconditionswhereitisnotdirectlyinfluencedbyurbanand/orindustrialaerogolsources.
Theruralaerosolsareassumedtobecomposedofamixtureof0percentofwatersolublesubstance(ammoniumandcalciumsulfateandalsoorganiccompounds)and30per-centdust-likeaerosols.
Therefractiveindexforthesecomponentsbasedonthemeasurementsofvolr35'36is"ho*ninFigure2andtabulatedinTable3.
Theserefractiveindexdataweightedbythemixingratioofthetwocomponentsarecon-sistentwithotherdirectmeasuremerrt",3'38".
dwithvaluesinferredfrominsitumeasurements.
39-4116OCEATIICAEROS(LWATER(TIALEAOUERRYISEASALT(\,OLZ}.
:til:.
l'.
\TJ5!
o=ul:l:ELHFE2('t:1.
262.
42.
21.
"1,.
al,ali.
:l,o'l-troto'lto'Gaail:o=lrl:.
oEEa!
:atat2,62,az2LOr.
8t.
6t.
44.
2l.
ot.
WAVELENOTHFigureRefractiveIndexofOceanicAerosol,Water,andSeaSaItFigure2.
RefractiveIndexfortheDryRuralandUrbanAerosolComponentsto(nlerurr)l7-WATERSOLUBLES(VOLZ}--.
-uJsrUKE(voLzf-----s@T{TW|TTYawEDtHAl{)IVAI/ELEI{GTHtrhomlFoaoocotaats6!
|aAaqNNrvFDA'!
!
J!
NNN{NNn-l0N!
rL{l{!
caoocdc-qor-o6sci'ia,;a3s'i'tcoa9ot-'r'.
oeo'J'toT;;TTr'rr;'ii.
r.
.
'.
Il,Ii*,Ljl,:.
I1,1.
i1,1,!
,Lli&,!
'1,!
,i!
S,uon.
.
nioertoorlahEHH$E5HHEEHig;5:;:$ii:E;E5:E:El!
i6!
sE!
Iti{E|*;:iEi!
}llt;i;t5!
:s:iel;;:iii1f;.
!
idsi;iiqr{i,','ii,'i;i,'ii';iiiii;ii';;ii'i'irritittt'iI''liiIirtr||I||IIrII||rI{NFboI|''N-soDSogNio-.
No.
|r5O9rD9lN'o.
.
vN5!
Fo6'g'5acgi|QO-U-91F6aor.
rD6DEtN{N-.
EdidiI:rYa&,i\"$99o.
.
o-r'I6F5-dtrsit'tt'ocDt6a-r,6r,F!
an6n6n6aaaF-FNrataatroae19;aacttoncNnQI----NtrvtEaaat565655i'a'iirirorr-ri---idi--r--.
.
ii-jitriaL^45t-'Egbfioc)_-r.
Y3!
qTE,F>2FE;HTr"53h.
X:OE\ndiEoofli^fl!
3$qiE-'-r-9AA-'H.
vHHH6r.
oNlottY'iooctoooooo6606uc0t0/A0N0ilngtulst0lLJnt0AUtr'^U7(d^obtsoJoEfl*22nD!
tJatt!
!
taF,oaQEDrvrsNtoorvNrv!
!
aNdrvNN(rNNN(vNNoCcCoaoc-os66eaeoooerIro9.
,6aco;A,iJltllrtlrlllrtlltl.
l,.
r.
tt_tlttrtttttrirtitrir:igil;EtsgEiHHHsH3HtHIFilHEFHgHH:H:HH3!
HHF'i;5s!
EiH;;3gg;Ee;s$;sI.
.
.
.
|.
|ON9666666gOi'iOa(d!
tiv-b0so)^>iB23

ZJI:香港物理服务器,2*E5-2630L/32G/480G SSD/30Mbps/2IP/香港BGP,月付520元

zji怎么样?zji是一家老牌国人主机商家,公司开办在香港,这个平台主要销售独立服务器业务,和hostkvm是同一样,两个平台销售的产品类别不一平,商家的技术非常不错,机器非常稳定。昨天收到商家的优惠推送,目前针对香港邦联四型推出了65折优惠BGP线路服务器,性价比非常不错,有需要香港独立服务器的朋友可以入手,非常适合做站。zji优惠码:月付/年付优惠码:zji 物理服务器/VDS/虚拟主机空间订...

【IT狗】在线ping,在线tcping,路由追踪

IT狗为用户提供 在线ping、在线tcping、在线路由追踪、域名被墙检测、域名被污染检测 等实用工具。【工具地址】https://www.itdog.cn/【工具特色】1、目前同类网站中,在线ping 仅支持1次或少量次数的测试,无法客观的展现目标服务器一段时间的网络状况,IT狗Ping工具可持续的进行一段时间的ping测试,并生成更为直观的网络质量柱状图,让用户更容易掌握服务器在各地区、各线...

舍利云30元/月起;美国CERA云服务器,原生ip,低至28元/月起

目前舍利云服务器的主要特色是适合seo和建站,性价比方面非常不错,舍利云的产品以BGP线路速度优质稳定而著称,对于产品的线路和带宽有着极其严格的讲究,这主要表现在其对母鸡的超售有严格的管控,与此同时舍利云也尽心尽力为用户提供完美服务。目前,香港cn2云服务器,5M/10M带宽,价格低至30元/月,可试用1天;;美国cera云服务器,原生ip,低至28元/月起。一、香港CN2云服务器香港CN2精品线...

rrqqq.com为你推荐
硬盘工作原理硬盘是如何工作的www.522av.com我的IE浏览器一打开就是这个网站http://www.522dh.com/?mu怎么改成百度啊 怎么用注册表改啊www.baitu.com谁有免费的动漫网站?www.kaspersky.com.cn卡巴斯基中国总部设立在?m88.comm88.com现在的官方网址是哪个啊 ?m88.com分析软件?pp43.com登录www.bdnpxzl.com怎么进入网站后台啊dpscyclewow3.13术士的PVE的命中多少够了?彪言彪语寻找一个电影和里面的一首歌,国产的,根据真实故事改编的校园爱情电影,里面的男主角是个屌丝但很会弹钢百度关键字百度推广关键词匹配方式有哪些?ww.43994399在线单机小游戏
上海虚拟主机 域名升级访问中 欧洲免费vps 美国独立服务器 国内免备案主机 kvmla 台湾服务器 la域名 国外私服 服务器cpu性能排行 美国php空间 建站代码 52测评网 河南m值兑换 河南移动网 鲁诺 vip域名 支付宝扫码领红包 阿里云邮箱登陆地址 徐州电信 更多