实数的概念。有理数与无理数总称为实数。 而无理数则不然,从它的发现到它的严格定义,是曲折而漫长的。所以研究实数理论主要是研究无理数理论。 到了19世纪70年代,著名的德国数学家外尔斯特拉斯 1815-1897 、康托尔 1845-1918 和法国的柯西 1789-1857 及戴德金 1831-1916 等都对实数理论进行了研究,获得了几种形异而实同的实数理论,其中以戴德金分割法 1872 ;康托尔的有理数「基本序列」法 1872...
常数、有理数、无理数、实数、的概念是什么?1、常数 常数是指固定不变的数值。如圆的周长和直径的比π﹑铁的膨胀系数为0.000012等。 常数是具有一定含义的名称,用于代替数字或字符串,其值从不改变。数学上常用大写的"C"来表示某一个常数。 2、有理数 有理数为整数(正整数、0、负整数)和分数的统称。 正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。 由于任何...
实数的定义实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,它们能把数轴“填满”。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数是什么意思?实数的概念?实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。 数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在...
什么是实数?实数的概念是什么有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。实数的概念是什么,实数包括0吗实数包括0。 实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的...
实数是怎么定义的?最土的就是:实数就是无限小数。 或者用戴德金分划来定义: 把有理数集Q分成两个非空集合A,B,使A∪B=Q,且对于任意的a∈A,b∈B,都有a<b,A无最大值,这样的分划就称为实数,如果B有最小值x,它就表示这个有理数x,如果B没有最小值,它就是一个无理数。实数的概念?实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。数学中的“...