Praseodymiumjjcao.com

jjcao.com  时间:2021-03-21  阅读:()
Ultrafastlasersmode-lockedbynanotubesandgrapheneZ.
Sunn,T.
Hasan,A.
C.
FerrariDepartmentofEngineering,UniversityofCambridge,9JJThomsonAvenue,CambridgeCB30FA,UKarticleinfoArticlehistory:Received16January2012Accepted17January2012Availableonline25January2012abstractUltrafastlasersplayanincreasinglyimportantroleinmanyapplications.
Nanotubesandgraphenehaveemergedaspromisingnovelsaturableabsorbersforpassivemode-locking.
Here,wereviewrecentprogressontheexploitationofthesetwocarbonnanomaterialsinultrafastphotonics.
&2012ElsevierB.
V.
Allrightsreserved.
1.
IntroductionUltrafastlasersareusedinavarietyofapplications,rangingfromopticalcommunications[1]tomedicaldiagnostics[2]andindustrialmaterialsprocessing[3].
Developmentofnewgainmedia(e.
g.
Ti:sapphire[1–4]),andmode-lockingtechnologies(e.
g.
Kerr-lensmode-locking[1–4]andSemiconductorSaturableAbsorberMirrors(SESAMs)[4–6])havechangedtheoutlookofultrafastlasersoverthepasttwodecades.
Theseadvances,inparticulartherealizationofnewmode-lockingtechnologies,havepushedtheapplicationsofultrafastpulsestoarealmbroaderthaneverbefore.
Nevertheless,currentmode-lockingtechnolo-giesstillsufferfromdrawbacks,e.
g.
,Kerr-lensmode-lockedlasersusuallyrequireexternalperturbationsinordertostart[1,3,5]andareextremelysensitivetomisalignment[1,3].
SESAMsarecomplexquantumwelldevices,typicallyfabricatedbymolecularbeamepitaxyondistributedBraggreectors[4–8].
Post-growthprocessing[4–7](e.
g.
ionimplantation[4–7])isnormallyrequiredtoreducetheirresponsetime[4–7].
Theselimitat-ionsmotivateresearchonnewmaterials,noveldesignsandtechnologies.
Conventionallasers,includingion-dopedsolid-state,ber,semiconductor,liquidandgasbased,intrinsicallyhavealimitedwavelengthrangeofoperation[9],duetothelimitedtransitionsofthegainmedia[9].
Forexample,Ti:sappirelasersonlyworkbetween0.
65and1:1mm[9].
Nonlineareffects(e.
g.
opticalparametricgeneration[10,11]andRamanscattering[11,12])havebeenwidelyusedforlightamplication,inparticularforultrafastpulseamplication,duetobroad-bandgain,spectralrangeandgainbandwidththeyenable[11–13].
Forexample,Ramanampli-cation,wherebyasignalattheRamanStokes-shiftedwave-lengthexperiencesamplicationbystimulatedRamanscattering,isoftenemployedtoreachbeyondthespectrallimitsofrare-earthbers[9,14].
Ramanbasedamplicationcanpotentiallyallowbroadbandgainatanywavelengthacrossthetransparencywindowofsilica$3002300nm[9,14].
Withadvancesinhigh-powerber-laserpumptechnologyandincascadedRamanberlasers,highefcientpumpsystemsarenowavailableoverthisentireband,providingRamangaincoefcientsexceeding$70dB107[11].
Thesearchforalternativesaturableabsorber(SA)materials,essentialforpassivemode-locking[3–5,7],hasintensied,astraditionalSAs(e.
g.
organicdyes[15],colorlterglasses[16],ion-dopedcrystals[17])haveseverelimitationsintermsofstabilityandperformance(e.
g.
slowresponsetime[5],narrowoperationwavelength[7,18],expensivefabricationandintegra-tionmethods[5],lowdamagethreshold[5]).
Singlewallcarbonnanotubes(SWNTs)haveemergedasnewSAmaterialwithsuperiorperformance,suchassub-picosecondrecoverytime[18–25],mechanical[18,26]andenvironmentalrobustness[27,28].
SWNTmode-lockedultrafastlasershavebeendemon-stratedforvariousapplications(e.
g.
industrialmeasurements[29],materialprocessing[28],opticalsampling[30],data-patternrecovery[30],opticalfrequencymetrology[31,32],andopticalcoherencetomography[33]).
GraphenehasalsocometotheforeasanewSAwithultrafastrecoverytime[34–39]andultra-broadbandoperation(Fig.
1(a,b))[18,38–41].
2.
SWNTmode-lockedlasersSWNTbasedSAs(SWNT-SAs)havebeensuccessfullyimplemen-tedinavarietyoflaser:solid-state[42–48],ber[18,27,28,49–72],semiconductor[73]andwaveguide[74,75].
VariousstrategieshavebeenimplementedtofabricateSWNT-SAs,Table1.
Theseincludespraycoating[49,50,73,76–82],directgrowth/transfer[57,59,83–86],opticallydrivendeposition[27,28,51–53,61,62,68–70,74,87–90],polymercomposite(Fig.
1(a))[27,28,51–53,61,62,68–70,74,87–90],polymerber[91].
ContentslistsavailableatSciVerseScienceDirectjournalhomepage:www.
elsevier.
com/locate/physePhysicaE1386-9477/$-seefrontmatter&2012ElsevierB.
V.
Allrightsreserved.
doi:10.
1016/j.
physe.
2012.
01.
012nCorrespondingauthor.
E-mailaddress:zs244@cam.
ac.
uk(Z.
Sun).
PhysicaE44(2012)1082–1091DifferentapproacheshavebeenusedtointegrateSWNT-SAsinlasers,suchasfree-spacecoupling(Fig.
2(a))[49,50],depositiononberends[55,161]andinsidebers[67,92]aswellaseveanescenteldinteraction[56,66,81,84,93],Thusfar,themostpopularwaytointegrateSWNT-SAsintoberlasersistosandwichaSWNTpolymercompositebetweentwobercon-nectors(Fig.
2(b))[18,27,28,51–53,61,62,68–70,74,87–90],sincethisofferseaseofintegrationintovariouslightwavesystems[18,27,28,51–53,61,62,68–70,74,87–90].
Alargerangeofhostpolymers,e.
g.
polycarbonate(PC)[51,64,75,94,95],polyvinylalcohol(PVA)(Fig.
1(a))[27,28,52,53,61,62,68–70,74,87–90,96–98],Carboxymethylcellulose(CMC)[47,42,43,71,99–104],Polyimide(PI)[42,63,105,106],Polydimethylsiloxane(PDMS)[65,66,107–109],Polymethylmethacrylate(PMMA)[44–46,48,60,92,110–112]andpoly(3-hexylthiophene)(P3HT)[113–115],havebeenused.
SWNTsutilizedinSAshavebeenpreparedusingavarietyofgrowthtechniques,e.
g.
laserablation(LA)[27,28,42,49–51,61–64,68–70,74,75,90,94,96–98,102,105],arcdischarge(AD)[44,45,71,103,104,110,116,117]andvariousche-micalvapordeposition(CVD)methods[118,119](suchasCobalt–Molybdenumcatalyst(CoMoCAT)[42,52,53,87–89,115],HighPressureCarbonMonoxide(HiPCO)[43,46–48,55,60,65–67,76–78,81,86,92,95,99–101,107,108,111–114,120–125]andalco-holcatalyticchemical–vapordeposition(ACCVD)[59,83–85]),allow-ingtheselectionofdifferentdiametersanddiameterdistributions.
Sincetherstdemonstrationin2003[49],theperformanceofultrafastlasersmode-lockedbySWNTshassteadilyimproved.
Table1summarizesrepresentativeoutputperformances.
Forexample,theaverageoutputpowerhasincreasedfromfewhundredmw(e.
g.
$260mw[50])tofewWatts[28,108,126],withpeakpowersreachingafewhundredkW(e.
g.
200kWinRef.
[120]).
Alargerangeofoutputparameters,suchaswavelength,pulseduration,andrepetitionratehavebeenachieved.
Thusfar,thedemonstratedwavelengthsrangefrom0.
78[47,127]to2mm[57,71,110,128].
Theoutputpulsedurationsrangefromafewns[52,53]tosub-20fs[107].
TherepetitionratespansfromfewtenskHz[52,53,129]toafewtensGHz[73,130].
Wavelength-tunablelasersbasedonSWNTshavealsobeenreported[47,51,63,98,128,131–134].
2.
1.
SWNTmode-lockedsolid-statelasersSolid-statelasers,mainlyusingdopedglass[3,10]orcrystal-linehostmaterials[3,10]asgainmedia,arethemostcommonlyusedinvariousapplications(e.
g.
industry,researchandmilitary[3,10,11]).
Theytypicallyconsistofafree-spacecavity,formedbymirrorsandasolid-stategainmedium[178].
Avarietyofsolid-stategainmediahavebeencoupledwithSWNT-SAstomode-locksolid-statelasers.
TheseincludeNd:glass[42,43,152,157],Nd:GdVO4[99,135,171],Nd:YVO4[117,126,137,155,172],Nd:YAG[100,101,158],Nd:YLF[170],Nd:LuYVO4[136],Er:glass[42,82,122],Yb:Sc2SiO5[173],Yb:KLu(WO4)2[44,45],Yb:KYW[46],Yb:LuYSiO5[174,175],Yb:LuScO3[179],Cr:YAG[46,133],Cr:LiSAF[134],Cr:forsterite[46,48]andTm:KLu(WO4)2[110].
Inparticular,SWNT-SAshaverecentlybeenreportedtomode-locksolid-stateTi:sapphirelasers[47,127].
Thisisanimportantstep,sinceKerr-lensmode-lockedTi:sapphirelasersdominatethesub-200fsmarket.
However,Kerr-lensmode-lockingisnotself-starting[1,11]andusuallyrequirescriticalcavityalignment[1,3–5].
TheoutputspectraofSWNTmode-lockedsolid-statelasershavethusfarcovered0.
8[47,127,134],1[42–46,179,175],1.
2[46,48],1.
3[99–101,155],1.
5[42,46,82,122,133]and2mm[110].
SWNTsarenormallycoatedonhighreectivitymirrors[42,44,46,82,134],andthenemployedascavitymirror.
Hightransmittancesubstrates(e.
g.
purequartz[45,100])coatedwithSWNTs(Fig.
2(a))havealsobeenused[45,100,133,126].
Theshortestpulsedurationthusfarachievedis$60fs[42,127].
High-powerupto3.
6Wwasreportedat1:06mm[126,135].
Comparedtoberlasers,optimizationoftheSAnon-saturablelossesiscrucialtomode-locksolid-statelasers[3,46],sincetheirgainislower,mainlyduetothelimitedgainmediumlength(severalmm)[3,10].
Forwide-bandoperation,SWNTscoveringavarietyofdiametersneedbecombinedtoformtheSAdevice.
Thesetubes,however,tendtobundleandcurl[18,46],thuscontributingtohighnon-saturablelosses[18].
Recently,asingleSWNT-SAwasusedtomode-locksolid-statelasersat1,1.
2and1:5mm[46],showingthatnon-saturablelossesmaybedecreasedbyoptimizingtheSWNT-SAfabrication.
2.
2.
SWNTmode-lockedberlasersFiberlasersareattractivealternativestobulksolidstatelasersduetotheirefcientheatdissipation[3,13]andalignment-freeformat[3],thelatterbeingakeyadvantageforend-users.
Furthermore,theirtypicalgaincanreachseveraltensdB[11],afewordersofmagnitudehigherthansolidstatelasers[10,11].
Thus,theydonotneedparticularoptimizationofnon-saturablelossesfortheiroperation,asthelosscanbecompensatedbythelargegain.
Indeed,therehasbeenafargreaterresearcheffortonexploitingSWNT-SAsinberlasers,asevidentfromTable1,withasteadyimprovementinperformance.
Atypicalmode-lockedberlasersetupisshowninFig.
2(c).
Thisunidirectionalringcavitydesignallowseasyself-startingduetodecreasedspuriousreections[180].
Themaximumreportedaverageoutputpoweris$250mW[84],with6.
5nJoutputpulseenergyat$1:5mm[84].
InRef.
[84]SWNTsweretransferredonaD-shapedbertoenableevanescenteldinteraction,atechniquealsoreportedinRefs.
[56,66,81,93].
Normal-dispersionberlasers[28,52,53,88,145,112]havealsobeendemonstrated,Fig.
1.
(a)AbsorptionofSWNTandgraphenepolymercompositeSA.
Inset:micrographofagraphenepolymercomposite.
(b)TypicalGSAtransmittanceasafunctionofinputpoweratdifferentwavelengths,adaptedfromRef.
[38].
Z.
Sunetal.
/PhysicaE44(2012)1082–10911083Table1PulsedlasersexploitingSWNT-SAs.
l:wavelength;t:pulsewidth;f:repetitionrate;P:averageoutputpower.
SAsSWNTtypesLasertypesLaserparametersl(nm)tf(MHz)P(mW)PolymercompositesPCLA[51,64,75],HiPCO[95]EDFL[51,64,95],waveguidelaser[75]1518–1558tunable[51],1560[64,75,95]115fs[95],2.
4ps[51]15[51],39[95]0.
36[51],3.
4[95]PVACoMoCAT[52,53,87,88],LA[27,28,61,62,68–70,74,90,96–98],AD[135,136],HiPCO[125]Nd:YVO4[137],Nd:GdVO4[135],Nd:LuYVO4[136],YDFL[52,53,87,138],BDFL[88],EDFL[27,28,61,62,68–70,90,96–98,125,139–142],Waveguidelaser[74]1058–1060[52,53,138],1530–1563tunable[98],1532–1563[27,28,61,62,68,69,74,90,96,97,125,139,140,142],1601[70]113fs[69],20ps–2nsselective[52,53,87]0.
177–21selective[52,53,87],328[141]0.
1[74,90],3.
6W[135]CMCCoMoCAT[42],HiPCO[43,47,99–101,143,144],LA[102],AD[71,103,104,145,146]Ti:sapphire[47,143],Nd:glass[42,43],Nd:GdVO4[99],Nd:YAG[100,101],YDFL[144–146],EDFL[102–104,144,146–149],TDFL[71]780–820tunable[47,143],1000–1068[42,43,144–146],1320–1340[99–101],1550–1565[102,104,144,146–149],1930[71]177fs[104],1.
15ns[145]37[71],110[47]3.
4[71],450[47]PILA[42,63,105,106,150],HiPCO[65]Er:glass[42],EDFL[63,105,106,118,119,150]1532–1562tunable[63],1532and1557Switchable,1545–1570[42,105,106,119,150]68fs[42],6.
2ps[150]0.
13[150],85[42]0.
4[150],114[106]PDMSHiPCO[32,66,107–109,128,151]EDFL[32,66,93,107–109,151],YDFL[56],TDFL[72,128]1035[56],1530–1565[66,93,107,108,151],1885[72],1866–1916tunable[128],1000–1750[107,108]14fs[107],1.
5ps[56]13.
3[66],4GHz[109]1[93],11.
5[108]PMMAAD[44,45,110,152],HiPCO[46,48,60,92,111,112,127,134,153–155]EDFL[60,91,92,111,112,154],Yb:KLuW[44,45],Yb:KYW[46,131],Nd:BaYF[156],Nd:Glass[152,157],Nd:YVO4[155],Cr:forsterite[48,46,153],Cr:LiSAF[134],Ti:sappire[127],Cr:YAG[46,133],Tm:KLuW[110]780–825tunable[127],868–882tunable[134],1035–1045tunable[131],1061–1075tunable[157],1048–1080[44,131,152,156],1240–1250[48,153],1342[155],1435–1505[133],1560–1567[60,91,92,111,112,154],1944[110]62fs[127],9.
7ps[110]5.
3[111],1.
69GHz[112]50mw[60],800[155]P3HTHiPCO[113,114]CoMoCAT[115]EDFL[113,114],YDFL[115]1070[115],1560[113,114]113fs[114]51[113]5[114]PFO//Nd:YAG[158]1064[158]8.
3ps[158]90[158]275[158]PSHiPCO[60]EDFA[60]1560[60]171fs[60]7.
63[60]0.
050[60]SU8HiPCO[159]EDFA[159]1571[159]871fs[159]21.
27[159]1[159]Grown/deposited/transferredSWNTsOpticallydrivendepositionHiPCO[55,120,121,160],CoMoCaT[55]YDFL[55],EDFL[55,120,121,160–163]1070[55],1532–1567[55,120,121,160–162]124fs[163],1.
14ps[121]5.
2[160]0.
1[55],1.
5W[120]Spray-coatingHiPCO[76–78,81,130],LA[49,50]PDFL[76],TDFL[80],EDFL[30,49,50,77,78,80,81,132,164],EYDFL[79,130],Er:Yb:glass[82],Semiconductorlaser[73]1294[76],1506[80],1550–1571[30,49,50,73,77–82,130],1605[80]190fs[164],14ps[73]3.
18[76],19.
4GHz[130]16mw[73],63[82]Grown/transferredACCVD[59,83–85],HiPCO[57,86,165–168]YDFL[57],EDFL[31,57,59,83–86,165–168],TDFL[57,167]1050[57],1550–1565[31,57,59,83–86,165,167,168],1990[57,167]30fs[31],1.
14ps[85]6.
62[85],50[59]22mw[85],250[84]Drop-castingAD[117,126,169–171],CVD[172–174]Nd:YLF[170],Nd:YVO4[117,126,172],Nd:GdVO4[171],Yb:SSO[173],Yb:LuYSiO5[174,175]1045/1059[174],1047–1064[126,169–171,173,175]1.
1ps[169],15ps[173]79.
7[117]280[170],3.
6W[126]Sol–gelglass//EDFL[176,177]1559–1563[176,177]0.
57ps[177],2.
3ps[176]2.
96[176]2[177]SolutionCellHiPCO[122,123]Er:glass[122],F2:LiF[123]1150[123],1540[122]o1ns[122]////Micro-channelHiPCO[67,124]EDFL[67,124]1566[67]0.
9ps[124],2.
3ps[67]2.
56[67],5.
26[124]15[124],22.
4[67]Z.
Sunetal.
/PhysicaE44(2012)1082–10911084with155mWaverageoutputpowerand3nJpulseenergyat$1:03mm[56].
Ref.
[102]reported63nJpulsegeneration,thehighesttodatefromaSWNT-SAenabledultrafastlaser.
Ref.
[181]theoreticallypredictedthatSWNTmode-lockedberlasercouldachieveupto330nJ.
TheshortestpulseachievedthusfarfromSWNT-SAmode-lockedberlasersis$84fs[182],byusingastretched-pulsedesign[69],i.
e.
alternatingnormalandanomalousdispersion,toobtainperiodicstretchingandcompressionoftheintracavitypulsesintheresonator[69,183].
Thus,theaveragepulsewidthinonecavityroundtripcanincreasebyanorderofmagnitudecomparedtothetypicalsolitiondesign[69,183],andultrafast(e.
g.
77fsfromanonlinearpolarizationevolution(NPE)mode-lockedErbium(Er)dopedberlaser(EDFL)[183])pulsesareachievableduetothereducednonlineareffects[69,183].
Atypicalautocorrelationtraceofastretched-pulseberlaserisshowninFig.
3(a).
Selectablepulseduration,from20psto2ns,wasalsodemonstratedbychangingcavitylength(showninFig.
3(b))[52,53].
Ashortcavitydesign[79,130]andharmonicmode-locking(wheremultiplepulsescirculateinthelaserresonatoratanintegermultipleofthefundamentalfrequency[11])canallowhighrepetitionrate.
Ref.
[130]reportedSWNTmode-lockedpulsesupto$20GHz,usingacavityformedbya$5mmbersandwichedbetweentwomirrors.
Severalgainbreshavebeenusedtodate,includingYtterbium(Yb)doped(YDFL)[52–57,146],EDFL[27,28,54,55,57,59,61,62,64,67–69,109,112,125,146,184],ErandYbco-doped(EYDFL)[54,130],Bismuth(Bi)doped(BDFL)[88,89],Praseodymium(Pr)doped(PDFL)[76]andThulium(Th)doped(TDFL)[57,71,72].
Amongstthem,EDFLsarethemostpopular,sincetheyalloweasyexcitationofsolitonpulsesinsinglemodebers[3],andallnecessarycomponentsareeconomicallyavailablefromtheber-telecommarket[3].
Theachievedwavelengthrangecovers1[52–57],1.
1[88,89],1.
3[76],1.
5[27,28,49,50,57–69],1.
6[70],and2mm[57,71,72].
Ref.
[51]rstdemonstratedwavelength-tunabledevices.
Later,byusingasingleSWNT-SAdevice,Ref.
[57]achievedmode-lockingat1,1.
5and2mm,inYDFL,EDFLandTDFL,respectively.
Wide-bandoperationrequiresthecombina-tionofSWNTswithdifferentdiameters[18,51,57].
Ref.
[146]demonstratedthesynchronizationoftwoall-bermode-lockedlasers,operatingat$1and1:54mm,coupledthroughasharedSWNT-SA.
Refs.
[185–188]reportedRamanberlasersmode-lockedbynanotubesat1.
1[187,188]and1:6mm[185,186],whenpumpedat1and1:5mm,respectively.
PulsesfromSWNTmode-lockedberlasershavealsobeenusedforfurtherinvestigations,e.
g.
nonlinearcompression[65],amplication[28,31,32,108,120]andsuper-continuumgenera-tion[31,107,108,130,189].
Anoutputaveragepowerofupto1.
6WhasbeenachievedbyusingdirectamplicationofaSWNTenabledchirp-pulseoscillator[28],withthepotentialforfurtherscalingofoutputpower/pulseenergy[28].
11.
5Wpulseswerereportedwiththreecascadedampliers[108].
Afterthegratingcompressor,135fspulsesweregeneratedwith5.
7Woutputpowerand160nJpulseenergyinRef.
[108].
Notethatintheseamplicationexperiments[28,108],theoutputpowerisjustlimitedbythepumppower,i.
e.
evenhigherpowercouldbepossiblebyincreasingthepumppower.
Ref.
[31]seededtheoutputpulsesfromaSWNTmode-lockedoscillatorintoanFig.
2.
(a)Graphenepolymercompositecoatedonaquartzsubstrate.
Itstransparencytolight(indicativeoflowloss)makesthissuitableforintegrationinsolid-stateandwaveguidelasers(b)Integrationofagraphenesaturableabsorberpolymer-compositelmbetweentwoberconnectorsforberlasers.
Notethattheseintegrationmethods(asshownin(a)and(b))alsoapplytoSWNT-SAintegration.
(c)Typicalpassivelymode-lockedberlasersetup.
WDM:wavelengthdivisionmultiplexer;ISO:isolator.
Fig.
3.
(a)AutocorrelationtraceofoutputpulseswithGaussiant.
(b)Outputpulsedurationasafunctionofcavitylength,adaptedfromRef.
[52].
(c)Tunablemode-lockedberlaserspectra,adaptedfromRef.
[40].
Z.
Sunetal.
/PhysicaE44(2012)1082–10911085amplier,followedbyahighlynonlinearber,tobuildaberlaserbasedfrequencycomb(i.
e.
alightsourcewithopticalspectrumconsistingofequidistantlines[11]).
Supercontinuumgeneration(anonlinearprocesstostronglybroadenthespectrumoflight[11])hasbeendemonstratedwith30-fsoutputpulses[31].
Usingsupercontinuumgeneration,Ref.
[107]reported14fspulsesbyseedingaSWNTmode-lockedberlaserintoanon-linearber,withoutputspectrumcoveringfrom1to1:75mm.
2.
3.
SWNTmode-lockedsemiconductorlaserSemiconductorlasersusuallyexploitdirectbandgapsemiconduc-torsasgainmedium[11].
Sincesuchlaserscanbeelectricallypumped[11],theyhavebeenwidelyemployedinarangeofcommondevices,fromhomeentertainment[190](e.
g.
CD/DVDplayers)totelecommunications[11].
Furthermore,semiconductorlasersareattractivealsobecauseoftheirinherentsimplicityandcompactness[11].
Theoutputpulserepetitionrate(frep)islinkedtothecavitylength(L)byfrepc=2nL,wherecisthespeedoflight,andnistherefractiveindexofthecavitymaterial[1].
Therefore,mode-lockedsemiconductorlaserstypicallyofferhigh4GHzrepetitionrateduetotheirrelativelyshort($afewmm)cavitylength.
Consequently,mode-lockedsemiconductorlasersareparticularlysuitableforhigh-speedopticalcommunications[1].
Ref.
[73]rstdemonstratedaSWNT-SAmode-lockedsemiconductorlaserwithrepetitionrateupto17.
2GHz,usingasemiconductoropticalampliertoprovidegainat$1:5mm.
Thefullwidthathalfmaximum(FWHM)ofthepulseswas0.
73nmat$1570nm,withaduration$14ps[73].
2.
4.
SWNTmode-lockedwaveguidelasersSolid-statewaveguidelasersarebuiltonplanarorchannelwaveguidesinpolymer,glassorcrystallinesubstrates[11].
Passivemode-lockingofwaveguidelasersisalsoinherentlysimpleandcompact.
Comparedtotraditionalsemiconductorlasers(havinganupper-statelifetimeintheorderofns[190]),solid-statewaveguidelasersaremoresuitableforhigh-energypulsegeneration,becausethegainmaterialstypicallyhavelongerupper-statelifetime($ms)[11].
Therefore,moreenergycanbestoredinsidethegainmaterialforhigh-energypulsegeneration[10,11].
Avarietyofdevices,suchaswaveguides[191],couplers[192],gratings[193],opticalampliers[194]andoscillators[194]havebeenfabricatedbyultrafastinscriptionintransparentsubstrates,atechniquenotneedinganyphotolithographicpro-cess,andallowingthree-dimensionaldevicefabrication[194].
Ref.
[74]rstdemonstratedmode-lockingwithaSWNT-SAinanactivewaveguidelaserfabricatedbyultrafastlaserinscription.
AnErandYbco-dopedphosphateglasswaveguidewasused,providingnetgainoverthewholetelecomCBandand7.
3dB$5:4peakgainat1535nm[74].
Thelasergenerated1.
76pstransform-limitedpulses[74].
Recently,bismuthateglasseshavebeenemployedaswave-guidegainmedia,astheycanbedopedwithsufcientconcen-trationsofEr-ionsforhighgain.
Ref.
[195]reportedthatabismuthatewaveguideampliercanexhibitapeaknetgain$16dB$40at1533nmandawideandatgainspectrum[195],favorableforultrafastpulsegeneration[11].
Ref.
[75]achieved320fspulsesinanEr-dopedbismuthateglasswave-guidelasermode-lockedbyaSWNT-SA,withanoutputspectralwidth$8:9nmat1:55mm[75].
3.
Graphenemode-lockedlasersGrapheneisatthecenterofanevergrowingresearcheffortduetoitsuniqueelectronicproperties[230–236].
Near-ballistictransportatroomtemperature[231,237]andhighmobility[234–238]makeitapotentialmaterialfornanoelectronics[238–241],especiallyforhighfrequencyapplications[238–241].
Furthermore,itsopticalpropertiesareidealfortransparentconductinglms[39,242,243]andelectrodes[39,244],photode-tectors[39,245,246]andopticalmodulators[39,247,248].
Theultrafastnonlinearpropertiesofgraphenehavebeeninten-sivelyinvestigated[34–37].
Tworelaxationtimescalesaretypicallyobserved.
Afasteroneo100fs,usuallyassociatedwithcarrier–carrierintra-bandcollisionsandphononemission[34,36,37],andaslowerone$ps,correspondingtoelectroninter-bandrelaxationandcoolingofhotphonons[34–37,39,249].
GrapheneisthusanultrafastSAmaterial[18,38,39].
Ref.
[18]rstreportedaGSAmode-lockedlaser.
Subsequently,avarietyoflasersmode-lockedbygrapheneweredemonstrated[38–41,200,201,203–205,207,208,214,216,226],asshowninTable2.
Graphenehasbeensourcedinvariousways,suchasliquidphaseexfoliation[18,38,40,199],CVD[200,201,203–205],carbonsegregation[218],grapheneoxide,GO,[39,208,221]),reducedGO[214,216]andmicro-mechanicalcleavage[39,209–211].
AsshowninTable2,severalapproaches(e.
g.
sandwiching[18,38],free-spacecoupling[216,227],placementinsidePhotonicCrystalFibers(PCFs)[215],evanescenteldinteraction[214])havebeenusedtointegrateGSAsintocavities,mostlyfollowingpreviousapproachesusedforSWNT-SAs.
SandwichingaGSAbetweentwoberconnectors(Fig.
2(b))isthusfarthemostcommonapproachforGSAintegration[18,38,40,41,200,201,203–205,207,208,210].
ComparedtotraditionalSAs(e.
g.
SESAMs)andSWNT-SAs,themajoradvantageofusinggrapheneistheintrinsicwide-bandoperation.
Thusfar,GSAshavebeenusedtoproducepulsesat1[216],1.
25[226],1.
5[18,38–41,199–201,203–205,207,208,210,214],and2mm[225,250].
SimilartoSWNT-SAs,GSAshavebeenmostlycombinedwithEDFLs[18,38,40,41,199–201,203–205,207,208,210,214],notbecauseGSAshaveanypreferenceforaparticularwavelength,butbecauseEDFLscaneasilyproducesolitonpulsesinsinglemodebers[3],andallnecessarycomponentsareeconomic-allyavailablefromtheopticaltelecommarket[3].
Ref.
[40]reportedGSAmode-lockedberlaserstunableinthe1525–1559nmrange(Fig.
3(c)),onlylimitedbythelterusedinthecavity[39,40].
Ref.
[205]reported$240fstunablepulsegenerationusingberlasersunderdifferentoperationregimes(e.
g.
fromall-anomaloustoall-normaldispersion).
Stretched-pulsedesignwasemployed,generatingsub-200fspulses[196].
Ref.
[251]reported163nJpulsegenera-tion.
Refs.
[216,221,220,224–227]alsoreportedpulsesusingsolid-statelasersmode-lockedbyGSAs.
94-fstunable$1:221:27mmpulseshavebeenachievedwithaGSAmode-lockedsolid-stateCr:forsteritelaser[226].
High-power$1WpulseshavebeendemonstratedwithaGSAmode-lockedNd:YVO4solid-statelaser[220,221].
4.
OutlookCurrently,solid-stateandberlasersarethemostcommonforhighoutputpower/pulseenergyapplications[1,3].
Amongstvarioussolid-statelasercongurations,athin-diskdesigncansignicantlyreducethermaleffectsandnonlinearities[252],enablinghighaveragepowerandenergypulses[252,253].
SWNT-SAsandGSAscouldbeusedinthin-diskdesignsforthispurpose.
Themainchallengeistherelativelylargenon-saturablelossoftheseSAs,whichcanbeaddressedbyfurtherdeviceoptimization(e.
g.
enrichmentinsemiconductingnanotubes[18]).
Theoutputpeakpowerofberlasersisrestrainedbyenhancednonlineareffects[1,3,254].
Recently,large-mode-areaberbasedultrafastlasersworkinginadissipativesolitonregimehavebeendemonstratedforhighaveragepowerpulses[255,256],Z.
Sunetal.
/PhysicaE44(2012)1082–10911086Table2PulsedlasersusingGSAs.
LPE:liquidphaseexfoliation;GO:grapheneoxide;FG:functionalizedgraphene.
CS:carbonsegregation.
MMC:micro-mechanicalcleavage.
RGO:reducedGO.
LasertypeCouplingmeansFabricationmethodLaserparametersRef.
l(nm)tf(MHz)P(mw)EDFLSandwichingLPE1557800fs////[18]1559464fs19.
9//[38]1525–1559tunable1ps81[40]1560174fs27.
41.
2[196]1562630fs19.
9//[41]1522–1555tunable2ms0.
036–0.
13.
4[197]1519–1569tunable4:6ms0.
008–0.
0292.
4[198]1532850fs5.
27//[160]1565190fs42.
80.
4[199]CVD1565756fs1.
792[200]1576415fs6.
8450[201]15611.
23ps33[202]15942.
1,71ps////[203]1570–1600tunable40–140ps1.
5//[204]1570–1600tunable240–655fs,70–150ps////[205]1538206ns0.
031–0.
2367.
8[206]FG1559743fs////[39]1590700fs6.
9550[207]1570–1600tunable1.
08ps6.
95//[208]MMC//3.
2ps10.
93[209]15660.
88ps6.
22//[210]1561480fs7//[211]RGO1566.
1/1566.
33:718ms0.
003–0.
0651.
1[212]1572.
6//91.
5//[213]Evanescenteld15611.
3ps6.
9915.
5[214]PCFFG15614.
85ns7.
684.
3[215]Nd:YAGFree-spaceRGO10644ps88100[216]RGO1064260ns0.
1671389[217]CS1064161–400ns0.
3–0.
66105[218]Nd:LuVO4106456–131ns0.
89474[219]Nd:YVO4GO1063//751000[220]////881200[221]Nd:GdVO41064105–1435ns0.
3–0.
72300[222]106516ps43360[223]Yb:KGW1031428fs86504[224]Tm:YAlO32023$10ps71.
8268[225]Cr:forsteriteCVD1222–1227tunable94fs74.
6230[226]Er:Yb:glass1552260fs884.
5[227]YDFLSandwiching1069580ps0.
90.
37[228]LPE106470–250ns0.
14–0.
25712[229]Z.
Sunetal.
/PhysicaE44(2012)1082–10911087reachingMWpeakpowers[257].
Inprinciple,large-mode-areaberlasersmode-lockedwithSWNTsandgraphenemaydeliverbetterperformances(e.
g.
highaveragepower,highpeakpower,systemsimplicity).
Forexample,coatingSWNT-SAsandGSAsonthebersurfacestoenableevanescent-waveinteraction[56,84]orinsidethebers[67](e.
g.
holesofPCFs[92,215])canpreservethealignment-freewaveguideformatofsuchberlasers,byremovingthefree-spacecomponents,whicharenecessaryfortraditionalSA(e.
g.
SESAMs[257])coupling.
Theseintegrationstrategiescanbeappliedtovariouslaserdesigns,suchaswaveguide(e.
g.
laserinscribed[194]orpolymer[258])andsemiconductor(e.
g.
verticalexternalcavitysurface-emittingsemiconductorlasers[259]andopticallypumpedsemiconductordisklasers[260])forhighpower/energypulsegeneration.
ThistechnologycanalsoenablecompactlaserswithrepetitionratesuptohundredsofGHz[29,130].
Anotheroptiontoincreaserepetitionrateisviaharmonicmode-locking[1].
Thecombinationofwide-bandgainmaterials(forexampleTi:sapphire)andSWNT/grapheneSAscouldproducenovelbroad-bandtunableultrafastsources.
NotethatGSAscanintrinsicallyoperateat''full''bandwidth[18,38,39],whiletheoutputwave-lengthortuningspectralrangeofatraditionallaserwillbeultimatelyconstrainedbythegainmedium.
Nonlineareffects(e.
g.
opticalparametricgeneration[261,262]andRamanscatter-ing[9,14])canbeusedtobroadenthespectralrange.
Theycanprovidebroadbandgain,potentiallycoveringfromultraviolet[263]toterahertz[264].
TherecentdemonstrationofbroadbandRamangain[185–188]andbroadbandSWNT-SAs/GSAsshowsthepossibilityofgettingbroaderoutputspectrathaneverbefore.
ExternalamplicationofSWNTandgraphenemode-lockedlasers[28,31,108,120]orcoherentcombinationofvariouslasers[265–267]couldboostoutputpowerandenergy.
Nonlinearfrequencyconver-sion(e.
g.
harmonicfrequencygeneration[1,268–271],parametricoscillation[261,272,273]andamplication[1,262],four-wavemixing[11],supercontinuumgeneration[31,107,108,263,189,130])isalsoanusefulwaytoexpandthewavelengthaccessibilityaftertheoscillator.
External-cavitypulsecompression(e.
g.
nonlinearcompression[11,31,65,107,108])couldbeusedtogenerateshorterpulsedowntoafewopticalcycles(e.
g.
4.
3-fs[274]).
AcknowledgmentsWethankF.
Hennrich,F.
Wang,D.
Popa,F.
Torrisi,W.
B.
Cho,A.
Rozhin,V.
Scardaci,F.
Bonaccorso,Z.
Jiang,R.
Going,I.
H.
White,S.
J.
Beecher,R.
R.
Thomson,A.
K.
Kar,E.
J.
R.
KelleherandJ.
R.
Taylorforusefuldiscussions.
WeacknowledgefundingfromtheERCgrantsNANOPOTS,EUgrantsRODINandGENIUS,EPSRCgrantsEP/GO30480/1andEP/G042357/1,King'scollegeCambridge,theRoyalAcademyofEngineering,aRoyalSocietyWolfsonResearchMeritAward,andtheCambridgeNokiaResearchCentre.
References[1]C.
Rulliere,FemtosecondLaserPulses,Springer,2005.
[2]F.
Dausinger,F.
Lichtner,H.
Lubatschowski,FemtosecondTechnologyforTechnicalandMedicalApplications,Springer,2004.
[3]M.
E.
Fermann,A.
Galvanauskas,G.
Sucha,UltrafastLasersTechnologyandApplications,MarcelDekker,Inc.
,2003.
[4]U.
Keller,AppliedPhysicsB100(2010)15.
[5]U.
Keller,UltrafastSolid-StateLasers,Elsevier,2004.
[6]U.
Keller,Nature424(2003)831.
[7]O.
Okhotnikov,A.
Grudinin,M.
Pessa,NewJournalofPhysics6(2004)177.
[8]L.
Guo,W.
Hou,H.
B.
Zhang,Z.
P.
Sun,D.
F.
Cui,Z.
Y.
Xu,Y.
G.
Wang,X.
Y.
Ma,OpticsExpress13(2005)4085.
[9]M.
J.
Weber,HandbookofLaserWavelengths,CRC,1999.
[10]W.
Koechner,Solid-StateLaserEngineering,Springer,2006.
[11]R.
Paschotta,EncyclopediaofLaserPhysicsandTechnology,WileyVCH,2008.
[12]A.
E.
Siegman,Lasers,UniversityScience,1986.
[13]G.
P.
Agrawal,ApplicationsofNonlinearFiberOptics,AcademicPress,2001.
[14]R.
H.
Stolen,E.
P.
Ippen,AppliedPhysicsLetters22(1973)276.
[15]N.
Sarukura,Y.
Ishida,H.
Nakano,Y.
Yamamoto,AppliedPhysicsLetters56(1990)814.
[16]E.
Snitzer,R.
Woodcock,IEEEJournalofQuantumElectronics2(1966)627.
[17]S.
A.
Zolotovskaya,V.
G.
Savitski,M.
S.
Gaponenko,A.
M.
Malyarevich,K.
V.
Yumashev,M.
I.
Demchuk,H.
Raaben,A.
A.
Zhilin,K.
Nejezchleb,OpticalMaterials28(2006)919.
[18]T.
Hasan,Z.
Sun,F.
Wang,F.
Bonaccorso,P.
H.
Tan,A.
G.
Rozhin,A.
C.
Ferrari,AdvancedMaterials21(2009)3874.
[19]Y.
-C.
Chen,N.
R.
Raravikar,L.
S.
Schadler,P.
M.
Ajayan,Y.
-P.
Zhao,T.
-M.
Lu,G.
-C.
Wang,X.
-C.
Zhang,AppliedPhysicsLetters81(2002)975.
[20]J.
S.
Lauret,C.
Voisin,G.
Cassabois,C.
Delalande,P.
Roussignol,O.
Jost,L.
Capes,PhysicalReviewLetters90(2003)057404.
[21]X.
C.
Liu,J.
H.
Si,B.
H.
Chang,G.
Xu,Q.
G.
Yang,Z.
W.
Pan,S.
S.
Xie,P.
X.
Ye,J.
H.
Fan,M.
X.
Wan,AppliedPhysicsLetters74(1999)164.
[22]S.
Tatsuura,M.
Furuki,Y.
Sato,I.
Iwasa,M.
Tian,H.
Mitsu,AdvancedMaterials15(2003)534.
[23]A.
Gambetta,G.
Galzerano,A.
G.
Rozhin,A.
C.
Ferrari,R.
Ramponi,P.
Laporta,M.
Marangoni,OpticsExpress16(2008)11727.
[24]H.
Nong,M.
Gicquel,L.
Bramerie,M.
Perrin,F.
Grillot,C.
Levallois,A.
Maalouf,S.
Loualiche,AppliedPhysicsLetters96(2010)061109.
[25]F.
Wang,D.
Popa,Z.
Sun,T.
Hasan,F.
Torrisi,A.
C.
Ferrari,in:TheConferenceonLasersandElectro-Optics(CLEO),JWA96,2010.
[26]J.
N.
Coleman,U.
Khan,W.
J.
Blau,Y.
K.
Gunko,Carbon44(2006)1624.
[27]V.
Scardaci,A.
G.
Rozhin,F.
Hennrich,W.
I.
Milne,A.
C.
Ferrari,PhysicaE37(2007)115.
[28]Z.
Sun,A.
G.
Rozhin,F.
Wang,T.
Hasan,D.
Popa,W.
O'Neill,A.
C.
Ferrari,AppliedPhysicsLetters95(2009)253102.
[29]S.
Yamashita,JournalofLightwaveTechnology30(2012)427.
[30]S.
Y.
Set,C.
S.
Goh,D.
Wang,H.
Yaguchi,S.
Yamashita,JapaneseJournalofAppliedPhysics47(2008)6809.
[31]J.
K.
Lim,K.
Knabe,K.
A.
Tillman,W.
Neely,Y.
S.
Wang,R.
Amezcua-Correa,F.
Couny,P.
S.
Light,F.
Benabid,J.
C.
Knight,K.
L.
Corwin,J.
W.
Nicholson,B.
R.
Washburn,OpticsExpress17(2009)14115.
[32]T.
-H.
Wu,K.
Kieu,N.
Peyghambarian,R.
J.
Jones,OpticsExpress19(2011)5313.
[33]K.
Kieu,J.
Klein,A.
Evans,J.
Barton,N.
Peyghambarian,in:ConferenceonLasersandElectro-Optics(CLEO),CWB2,2011.
[34]M.
Breusing,C.
Ropers,T.
Elsaesser,PhysicalReviewLetters102(2009)086809.
[35]S.
Winnerl,M.
Orlita,P.
Plochocka,P.
Kossacki,M.
Potemski,T.
Winzer,E.
Malic,A.
Knorr,M.
Sprinkle,C.
Berger,W.
A.
deHeer,H.
Schneider,M.
Helm,PhysicalReviewLetters107(2011)237401.
[36]H.
Choi,F.
Borondics,D.
A.
Siegel,S.
Y.
Zhou,M.
C.
Martin,A.
Lanzara,R.
A.
Kaindl,AppliedPhysicsLetters94(2009)172102.
[37]S.
Kumar,M.
Anija,N.
Kamaraju,K.
S.
Vasu,K.
S.
Subrahmanyam,A.
K.
Sood,C.
N.
R.
Rao,AppliedPhysicsLetters95(2009)191911.
[38]Z.
Sun,T.
Hasan,F.
Torrisi,D.
Popa,G.
Privitera,F.
Wang,F.
Bonaccorso,D.
M.
Basko,A.
C.
Ferrari,ACSNano4(2010)803.
[39]F.
Bonaccorso,Z.
Sun,T.
Hasan,A.
C.
Ferrari,NaturePhotonics4(2010)611.
[40]Z.
Sun,D.
Popa,T.
Hasan,F.
Torrisi,F.
Wang,E.
Kelleher,J.
Travers,V.
Nicolosi,A.
Ferrari,NanoResearch3(2010)653.
[41]T.
Hasan,F.
Torrisi,Z.
Sun,D.
Popa,V.
Nicolosi,G.
Privitera,F.
Bonaccorso,A.
C.
Ferrari,PhysicaStatusSolidi(b)247(2010)2953.
[42]T.
R.
Schibli,K.
Minoshima,H.
Kataura,E.
Itoga,N.
Minami,S.
Kazaoui,K.
Miyashita,M.
Tokumoto,Y.
Sakakibara,OpticsExpress13(2005)8025.
[43]D.
V.
Khudyakov,A.
S.
Lobach,V.
A.
Nadtochenko,AppliedOptics48(2009)1624.
[44]A.
Schmidt,S.
Rivier,G.
Steinmeyer,J.
H.
Yim,W.
B.
Cho,S.
Lee,F.
Rotermund,M.
C.
Pujol,X.
Mateos,M.
Aguilo,F.
Diaz,V.
Petrov,U.
Griebner,OpticsLetters33(2008)729.
[45]J.
H.
Yim,W.
B.
Cho,S.
Lee,Y.
H.
Ahn,K.
Kim,H.
Lim,G.
Steinmeyer,V.
Petrov,U.
Griebner,F.
Rotermund,AppliedPhysicsLetters93(2008)161106.
[46]W.
B.
Cho,J.
H.
Yim,S.
Y.
Choi,S.
Lee,A.
Schmidt,G.
Steinmeyer,U.
Griebner,V.
Petrov,D.
-I.
Yeom,K.
Kim,F.
Rotermund,AdvancedFunctionalMaterials20(2010)1937.
[47]D.
V.
Khudyakov,A.
S.
Lobach,V.
A.
Nadtochenko,OpticsLetters35(2010)2675.
[48]W.
B.
Cho,J.
H.
Yim,S.
Y.
Choi,S.
Lee,U.
Griebner,V.
Petrov,F.
Rotermund,OpticsLetters33(2008)2449.
[49]S.
Y.
Set,H.
Yaguchi,Y.
Tanaka,M.
Jablonski,Y.
Sakakibara,A.
Rozhin,M.
Tokumoto,H.
Kataura,Y.
Achiba,K.
Kikuchi,in:OpticalFiberCommunica-tionConference(OFC),PD44,2003.
[50]S.
Y.
Set,H.
Yaguchi,Y.
Tanaka,M.
Jablonski,IEEEJournalofSelectedTopicsinQuantumElectronics10(2004)137.
[51]F.
Wang,A.
G.
Rozhin,V.
Scardaci,Z.
Sun,F.
Hennrich,I.
H.
White,W.
I.
Milne,A.
C.
Ferrari,NatureNanotechnology3(2008)738.
[52]E.
J.
R.
Kelleher,J.
C.
Travers,Z.
Sun,A.
G.
Rozhin,A.
C.
Ferrari,S.
V.
Popov,J.
R.
Taylor,AppliedPhysicsLetters95(2009)111108.
[53]E.
J.
R.
Kelleher,J.
C.
Travers,E.
P.
Ippen,Z.
Sun,A.
C.
Ferrari,S.
V.
Popov,J.
R.
Taylor,OpticsLetters34(2009)3526.
[54]S.
Yamashita,S.
Y.
Set,C.
S.
Goh,K.
Kikuchi,ElectronicsandCommunicationsinJapan90(2)(2007)17.
[55]J.
W.
Nicholson,R.
S.
Windeler,D.
J.
DiGiovanni,OpticsExpress15(2007)9176.
Z.
Sunetal.
/PhysicaE44(2012)1082–10911088[56]K.
Kieu,F.
W.
Wise,OpticsExpress16(2008)11453.
[57]S.
Kivisto,T.
Hakulinen,A.
Kaskela,B.
Aitchison,D.
P.
Brown,A.
G.
Nasibulin,E.
I.
Kauppinen,A.
Harkoen,O.
G.
Okhotnikov,OpticsExpress17(2009)2358.
[58]S.
Y.
Set,H.
Yaguchi,Y.
Tanaka,M.
Jablonski,JournalofLightwaveTechnol-ogy22(2004)51.
[59]S.
Yamashita,Y.
Inoue,S.
Maruyama,Y.
Murakami,H.
Yaguchi,M.
Jablonski,S.
Y.
Set,OpticsLetters29(2004)1581.
[60]M.
Nakazawa,S.
Nakahara,T.
Hirooka,M.
Yoshida,T.
Kaino,K.
Komatsu,OpticsLetters31(2006)915.
[61]A.
G.
Rozhin,Y.
Sakakibara,S.
Namiki,M.
Tokumoto,H.
Kataura,Y.
Achiba,AppliedPhysicsLetters88(2006)051118.
[62]A.
G.
Rozhin,V.
Scardaci,F.
Wang,F.
Hennrich,I.
H.
White,W.
I.
Milne,A.
C.
Ferrari,PhysicaStatusSolidi(b)(2006)3551.
[63]Y.
Senoo,N.
Nishizawa,Y.
Sakakibara,K.
Sumimura,E.
Itoga,H.
Kataura,K.
Itoh,OpticsExpress17(2009)20233.
[64]V.
Scardaci,Z.
Sun,F.
Wang,A.
G.
Rozhin,T.
Hasan,F.
Hennrich,I.
H.
White,W.
I.
Milne,A.
C.
Ferrari,AdvancedMaterials20(2008)4040.
[65]N.
Nishizawa,Y.
Seno,K.
Sumimura,Y.
Sakakibara,E.
Itoga,H.
Kataura,K.
Itoh,OpticsExpress16(2008)9429.
[66]K.
Kieu,M.
Mansuripur,OpticsLetters32(2007)2242.
[67]A.
Martinez,K.
Zhou,I.
Bennion,S.
Yamashita,OpticsExpress16(2008)15425.
[68]F.
Wang,A.
G.
Rozhin,Z.
Sun,V.
Scardaci,I.
H.
White,A.
C.
Ferrari,PhysicaStatusSolidi(b)(2008)2319.
[69]Z.
Sun,T.
Hasan,F.
Wang,A.
G.
Rozhin,I.
H.
White,A.
C.
Ferrari,NanoResearch3(2010)404.
[70]Z.
Sun,A.
G.
Rozhin,F.
Wang,V.
Scardaci,W.
I.
Milne,I.
H.
White,F.
Hennrich,A.
C.
Ferrari,AppliedPhysicsLetters93(2008)061114.
[71]M.
A.
Solodyankin,E.
D.
Obraztsova,A.
S.
Lobach,A.
I.
Chernov,A.
V.
Tausenev,V.
I.
Konov,E.
M.
Dianov,OpticsLetters33(2008)1336.
[72]K.
Kieu,F.
W.
Wise,IEEEPhotonicsTechnologyLetters21(2009)128.
[73]Y.
W.
Song,S.
Yamashita,C.
S.
Goh,S.
Y.
Set,OpticsLetters32(2007)430.
[74]G.
DellaValle,R.
Osellame,G.
Galzerano,N.
Chiodo,G.
Cerullo,P.
Laporta,O.
Svelto,U.
Morgner,A.
G.
Rozhin,V.
Scardaci,A.
C.
Ferrari,AppliedPhysicsLetters89(2006)231115.
[75]S.
J.
Beecher,R.
R.
Thomson,N.
D.
Psaila,Z.
Sun,T.
Hasan,A.
G.
Rozhin,A.
C.
Ferrari,A.
K.
Kar,AppliedPhysicsLetters97(2010)111114.
[76]Y.
W.
Song,S.
Y.
Set,S.
Yamashita,C.
S.
Goh,T.
Kotake,IEEEPhotonicsTechnologyLetters17(2005)1623.
[77]Y.
W.
Song,S.
Yamashita,JapaneseJournalofAppliedPhysics146(2007)3111.
[78]Y.
W.
Song,K.
Morimune,S.
Y.
Set,S.
Yamashita,AppliedPhysicsLetters90(2007)021101.
[79]S.
Yamashita,Y.
Inoue,K.
Hsu,T.
Kotake,H.
Yaguchi,D.
Tanaka,M.
Jablonski,S.
Y.
Set,IEEEPhotonicsTechnologyLetters17(2005)750.
[80]S.
Yamashita,Y.
Inoue,H.
Yaguchi,M.
Jablonski,S.
Y.
Set,in:EuropeanConferenceonOpticalCommunication(ECOC),2004,pp.
796–797.
[81]Y.
W.
Song,S.
Yamashita,C.
S.
Goh,S.
Y.
Set,OpticsLetters32(2007)148.
[82]K.
H.
Fong,K.
Kikuchi,C.
S.
Goh,S.
Y.
Set,R.
Grange,M.
Haiml,A.
Schlatter,U.
Keller,OpticsLetters32(2007)38.
[83]Y.
W.
Song,S.
Yamashita,E.
Einarsson,S.
Maruyama,OpticsLetters32(2007)1399.
[84]Y.
W.
Song,S.
Yamashita,S.
Maruyama,AppliedPhysicsLetters92(2008)021115.
[85]S.
Yamashita,Y.
Inoue,S.
Maruyama,Y.
Murakami,H.
Yaguchi,T.
Kotake,S.
Y.
Set,JapaneseJournalofAppliedPhysics45(2006)L17.
[86]Y.
Kurashima,Y.
Yokota,I.
Miyamoto,H.
Kataura,Y.
Sakakibara,AppliedPhysicsLetters94(2009)223102.
[87]E.
J.
R.
Kelleher,J.
C.
Travers,Z.
Sun,A.
C.
Ferrari,S.
V.
Popov,J.
R.
Taylor,in:TheConferenceonLasersandElectro-Optics(CLEO),CThI4,2010.
[88]E.
J.
R.
Kelleher,J.
C.
Travers,Z.
Sun,A.
C.
Ferrari,K.
M.
Golant,S.
V.
Popov,J.
R.
Taylor,LaserPhysicsLetters7(2010)790.
[89]E.
J.
R.
Kelleher,J.
C.
Travers,Z.
Sun,A.
C.
Ferrari,K.
M.
Golant,S.
V.
Popov,J.
R.
Taylor,in:TheConferenceonLasersandElectro-Optics(CLEO),CTuII4,2010.
[90]V.
Scardaci,A.
G.
Rozhin,P.
H.
Tan,F.
Wang,I.
H.
White,W.
I.
Milne,A.
C.
Ferrari,PhysicaStatusSolidi(b)(2007)4303.
[91]S.
Uchida,A.
Martinez,Y.
-W.
Song,T.
Ishigure,S.
Yamashita,OpticsLetters34(2009)3077.
[92]S.
Y.
Choi,F.
Rotermund,H.
Jung,K.
Oh,D.
-I.
Yeom,OpticsExpress17(2009)21788.
[93]K.
Kieu,M.
Mansuripur,OpticsLetters33(2008)64.
[94]S.
J.
Beecher,R.
R.
Thomson,N.
D.
Psaila,A.
K.
Kar,Z.
Sun,T.
Hasan,A.
Rozhin,A.
C.
Ferrari,in:TheConferenceonLasersandElectro-Optics(CLEO),CThI6,2010.
[95]F.
Shohda,T.
Shirato,M.
Nakazawa,K.
Komatsu,T.
Kaino,OpticsExpress16(2008)21191.
[96]Y.
Sakakibara,A.
G.
Rozhin,H.
Kataura,Y.
Achiba,M.
Tokumoto,JapaneseJournalofAppliedPhysics144(2005)1621.
[97]F.
Wang,A.
Rozhin,Z.
Sun,V.
Scardaci,R.
Penty,I.
White,A.
C.
Ferrari,TheInternationalJournalofMaterialForming1(2008)107.
[98]R.
Going,D.
Popa,F.
Torrisi,Z.
Sun,T.
Hasan,F.
Wang,E.
J.
R.
Kelleher,J.
C.
Travers,J.
R.
Taylor,F.
Hennrich,A.
C.
Ferrari,PhysicaE,doi:10.
1016/j.
physe.
2012.
01.
014,inpress.
[99]S.
V.
Garnov,S.
A.
Solokhin,E.
D.
Obraztsova,A.
S.
Lobach,P.
A.
Obraztsov,A.
L.
Chernov,V.
V.
Bukin,A.
A.
Sirotkin,Y.
D.
Zagumennyi,Y.
D.
Zavartsev,S.
A.
Kutovoi,I.
A.
Shcherbakov,LaserPhysicsLetters4(2007)648.
[100]P.
A.
Obraztsov,S.
V.
Garnov,E.
D.
Obraztsova,A.
A.
Sirotkin,D.
A.
Lyashenko,Y.
P.
Svirko,JournalofNanoelectronicsandOptoelectronics4(2009)227.
[101]P.
A.
Obraztsov,A.
A.
Sirotkin,E.
D.
Obraztsova,Y.
P.
Svirko,S.
V.
Garnov,OpticalReview17(2010)290.
[102]D.
Popa,Z.
Sun,F.
Torrisi,T.
Hasan,F.
Wang,A.
C.
Ferrari,in:TheConferenceonLasersandElectro-Optics(CLEO),JTuD50,2010.
[103]A.
V.
Tausenev,E.
D.
Obraztsova,A.
S.
Lobach,A.
I.
Chernov,V.
I.
Konov,A.
V.
Konyashchenko,P.
G.
Kryukov,E.
M.
Dianov,QuantumElectronics37(2007)205.
[104]A.
V.
Tausenev,E.
D.
Obraztsova,A.
S.
Lobach,A.
I.
Chernov,V.
I.
Konov,P.
G.
Kryukov,A.
V.
Konyashchenko,E.
M.
Dianov,AppliedPhysicsLetters92(2008)171113.
[105]Y.
Sakakibara,K.
Kintaka,A.
G.
Rozhin,T.
Itatani,W.
M.
Soe,H.
Itatani,M.
Tokumoto,H.
Kataura,in:31stEuropeanConferenceonOpticalCommu-nication,2005,pp.
37–38.
[106]N.
Nishizawa,Y.
Nozaki,E.
Itoga,H.
Kataura,Y.
Sakakibara,OpticsExpress19(2011)21874.
[107]K.
Kieu,R.
J.
Jones,N.
Peyghambarian,IEEEPhotonicsTechnologyLetters22(2010)1521.
[108]K.
Kieu,R.
J.
Jones,N.
Peyghambarian,OpticsExpress18(2010)21350.
[109]I.
Hernandez-Romano,J.
Davila-Rodriguez,D.
Mandridis,J.
Sanchez-Mon-dragon,D.
A.
May-Arrioja,P.
J.
Delfyett,JournalofLightwaveTechnology29(2011)3237.
[110]W.
B.
Cho,A.
Schmidt,J.
H.
Yim,S.
Y.
Choi,S.
Lee,F.
Rotermund,U.
Griebner,G.
Steinmeyer,V.
Petrov,X.
Mateos,M.
C.
Pujol,J.
J.
Carvajal,M.
Aguil,F.
Diaz,OpticsExpress17(2009)11007.
[111]A.
Martinez,S.
Uchida,Y.
W.
Song,T.
Ishigure,S.
Yamashita,OpticsExpress16(2008)11337.
[112]J.
H.
Im,S.
Y.
Choi,F.
Rotermund,D.
-I.
Yeom,OpticsExpress18(2010)22141.
[113]F.
Shohda,T.
Shirato,M.
Nakazawa,J.
Mata,J.
Tsukamoto,OpticsExpress16(2008)20943.
[114]F.
Shohda,M.
Nakazawa,J.
Mata,J.
Tsukamoto,OpticsExpress18(2010)9712.
[115]F.
Shohda,Y.
Hori,M.
Nakazawa,J.
Mata,J.
Tsukamoto,OpticsExpress18(2010)11223.
[116]A.
V.
Tausenev,E.
D.
Obraztsova,A.
S.
Lobach,V.
I.
Konov,A.
V.
Konyashchenko,P.
G.
Kryukov,E.
M.
Dianov,QuantumElectronics37(2007)847.
[117]C.
Li,Y.
Wang,K.
Liu,C.
Tian,Q.
Peng,Z.
Xu,LaserPhysics21(2011)2059.
[118]X.
Zhao,Z.
Zheng,L.
Liu,Y.
Liu,Y.
Jiang,X.
Yang,J.
Zhu,OpticsExpress19(2011)1168.
[119]L.
Gui,X.
Yang,G.
Zhao,X.
Yang,X.
Xiao,J.
Zhu,C.
Yang,AppliedOptics50(2011)110.
[120]J.
C.
Jasapara,A.
DeSantolo,J.
W.
Nicholson,A.
D.
Yablon,Z.
Varallyay,OpticsExpress16(2008)18869.
[121]K.
Kashiwagi,S.
Yamashita,OpticsExpress17(2009)18364.
[122]N.
N.
Il'ichev,E.
D.
Obraztsova,S.
V.
Garnov,S.
E.
Mosaleva,QuantumElectro-nics34(2004)572.
[123]N.
N.
Il'ichev,E.
D.
Obraztsova,P.
P.
Pashinin,V.
I.
Konov,S.
V.
Garnov,Quan-tumElectronics34(2004)785.
[124]A.
Martinez,K.
Zhou,I.
Bennion,S.
Yamashita,OpticsExpress18(2010)11008.
[125]C.
Mou,S.
Sergeyev,A.
Rozhin,S.
Turistyn,OpticsLetters36(2011)3831.
[126]Y.
Liu,Y.
Wang,J.
Liu,C.
Liu,AppliedPhysicsB104(2011)835.
[127]I.
H.
Baek,S.
Y.
Choi,H.
W.
Lee,W.
B.
Cho,V.
Petrov,A.
Agnesi,V.
Pasiskevicius,D.
-I.
Yeom,K.
Kim,F.
Rotermund,OpticsExpress19(2011)7833.
[128]Q.
Fang,K.
Kieu,N.
Peyghambarian,IEEEPhotonicsTechnologyLetters22(2010)1656.
[129]H.
G.
Rosa,E.
A.
d.
Souza,in:ConferenceonLasersandElectro-Optics(CLEO),JWA29,2011.
[130]A.
Martinez,S.
Yamashita,OpticsExpress19(2011)6155.
[131]A.
Schmidt,S.
Rivier,W.
B.
Cho,J.
H.
Yim,S.
Y.
Choi,S.
Lee,F.
Rotermund,D.
Rytz,G.
Steinmeyer,V.
Petrov,U.
Griebner,OpticsExpress17(2009)20109.
[132]G.
Qin,T.
Suzuki,Y.
Ohishi,OpticalReview17(2010)97.
[133]W.
BaeCho,A.
Schmidt,S.
YoungChoi,V.
Petrov,U.
Griebner,G.
Steinmeyer,S.
Lee,D.
-I.
Yeom,F.
Rotermund,OpticsLetters35(2010)2669.
[134]A.
Agnesi,F.
Pirzio,E.
Ugolotti,S.
Y.
Choi,D.
Yeom,II,F.
Rotermund,OpticsCommunications285(2012)742.
[135]H.
-R.
Chen,Y.
-G.
Wang,C.
-Y.
Tsai,K.
-H.
Lin,T.
-Y.
Chang,J.
Tang,W.
-F.
Hsieh,OpticsLetters36(2011)1284.
[136]K.
Yang,S.
Zhao,G.
Zhang,K.
Cheng,B.
Zhao,J.
Xu,J.
He,Y.
Wang,OpticsCommunications285(2011)158.
[137]P.
-T.
Tai,S.
DiPan,Y.
-G.
Wang,J.
Tang,OpticsCommunications284(2011)1303.
[138]S.
M.
Kobtsev,S.
V.
Kukarin,Y.
S.
Fedotov,LaserPhysics21(2011)283.
[139]J.
-C.
Chiu,Y.
-F.
Lan,C.
-M.
Chang,X.
-Z.
Chen,C.
-Y.
Yeh,C.
-K.
Lee,G.
-R.
Lin,J.
-J.
Lin,W.
-H.
Cheng,OpticsExpress18(2010)3592.
[140]K.
Wu,J.
H.
Wong,P.
Shum,D.
R.
C.
S.
Lim,V.
K.
H.
Wong,K.
E.
K.
Lee,J.
Chen,OpticsLetters35(2010)1085.
[141]K.
Jiang,S.
Fu,P.
Shum,C.
Lin,IEEEPhotonicsTechnologyLetters22(2010)754.
[142]J.
-C.
Chiu,C.
-M.
Chang,B.
-Z.
Hsieh,S.
-C.
Lin,C.
-Y.
Yeh,G.
-R.
Lin,C.
-K.
Lee,J.
-J.
Lin,W.
-H.
Cheng,OpticsExpress19(2011)4036.
[143]D.
V.
Khudyakov,A.
S.
Lobach,V.
A.
Nadtochenko,HighEnergyChemistry44(2010)530.
Z.
Sunetal.
/PhysicaE44(2012)1082–10911089[144]J.
C.
Travers,J.
Morgenweg,E.
D.
Obraztsova,A.
I.
Chernov,E.
J.
R.
Kelleher,S.
V.
Popov,LaserPhysicsLetters8(2010)144.
[145]M.
Zhang,E.
J.
R.
Kelleher,E.
D.
Obraztsova,S.
V.
Popov,J.
R.
Taylor,IEEEPhotonicsTechnologyLetters23(2011)1379.
[146]M.
Zhang,E.
J.
R.
Kelleher,A.
S.
Pozharov,E.
D.
Obraztsova,S.
V.
Popov,J.
R.
Taylor,OpticsLetters36(2011)3984.
[147]C.
Ouyang,P.
Shum,H.
Wang,J.
HaurWong,K.
Wu,S.
Fu,R.
Li,E.
J.
R.
Kelleher,A.
I.
Chernov,E.
D.
Obraztsova,OpticsLetters35(2010)2320.
[148]K.
Wu,J.
H.
Wong,P.
Shum,S.
Fu,C.
Ouyang,H.
Wang,E.
J.
R.
Kelleher,A.
I.
Chernov,E.
D.
Obraztsova,J.
Chen,OpticsExpress18(2010)16663.
[149]J.
H.
Wong,K.
Wu,H.
H.
Liu,C.
Ouyang,H.
Wang,S.
Aditya,P.
Shum,S.
Fu,E.
J.
R.
Kelleher,A.
Chernov,E.
D.
Obraztsova,OpticsCommunications284(2011)2007.
[150]Y.
Senoo,N.
Nishizawa,Y.
Sakakibara,K.
Sumimura,E.
Itoga,H.
Kataura,K.
Itoh,OpticsExpress18(2010)20673.
[151]I.
Hernandez-Romano,J.
Davila-Rodriguez,D.
A.
May-Arrioja,J.
J.
Sanchez-Mondragon,P.
J.
Delfyett,JournalofPhysics:ConferenceSeries274(2011)012118.
[152]A.
Agnesi,A.
Greborio,F.
Pirzio,G.
Reali,S.
Y.
Choi,F.
Rotermund,U.
Griebner,V.
Petrov,AppliedPhysicsExpress3(2010)112702.
[153]W.
-B.
Cho,S.
-Y.
Choi,J.
-W.
Kim,D.
-I.
Yeom,K.
-H.
Kim,F.
Rotermund,H.
-J.
Lim,JournaloftheOpticalSocietyofKorea15(2011)56.
[154]C.
S.
Jun,J.
H.
Im,S.
H.
Yoo,S.
Y.
Choi,F.
Rotermund,D.
-I.
Yeom,B.
Y.
Kim,OpticsExpress19(2011)19775.
[155]H.
Iliev,I.
Buchvarov,S.
Choi,K.
Kim,F.
Rotermund,U.
Griebner,V.
Petrov,AppliedPhysicsB106(2012)1.
[156]A.
Agnesi,L.
Carra,F.
Pirzio,G.
Reali,A.
Toncelli,M.
Tonelli,S.
Y.
Choi,F.
Rotermund,U.
Griebner,V.
Petrov,JournaloftheOpticalSocietyofAmericaB27(2010)2739.
[157]A.
Agnesi,A.
Greborio,F.
Pirzio,E.
Ugolotti,G.
Reali,S.
Choi,F.
Rotermund,U.
Griebner,V.
Petrov,IEEEJournalofSelectedTopicsinQuantumElectro-nics18(2012)74.
[158]W.
DeTan,F.
Chen,R.
J.
Knize,J.
Zhang,D.
Tang,L.
-J.
Li,OpticalMaterials33(2011)679.
[159]I.
Hernandez-Romano,D.
Mandridis,D.
A.
May-Arrioja,J.
J.
Sanchez-Mondra-gon,P.
Delfyett,OpticsLetters36(2011)2122.
[160]A.
Martinez,K.
Fuse,B.
Xu,S.
Yamashita,OpticsExpress18(2010)23054.
[161]K.
Kashiwagi,S.
Yamashita,S.
Y.
Set,JapaneseJournalofAppliedPhysics46(2)(2007)L988.
[162]K.
Kashiwagi,S.
Yamashita,S.
Y.
Set,OpticsExpress16(2008)2528.
[163]J.
W.
Nicholson,D.
J.
DiGiovanni,IEEEPhotonicsTechnologyLetters20(2008)2123.
[164]S.
Chu,W.
-S.
Han,I.
-D.
Kim,Y.
-G.
Han,K.
Lee,S.
B.
Lee,Y.
-W.
Song,AppliedPhysicsLetters96(2010)051111.
[165]Y.
Kurashima,K.
Mimura,S.
Hagiwara,E.
Itoga,H.
Kataura,Y.
Sakakibara,MicroelectronicEngineering88(2011)2304.
[166]A.
G.
Nasibulin,A.
Kaskela,K.
Mustonen,A.
S.
Anisimov,V.
Ruiz,S.
Kivisto,S.
Rackauskas,M.
Y.
Timmermans,M.
Pudas,B.
Aitchison,M.
Kauppinen,D.
P.
Brown,O.
G.
Okhotnikov,E.
I.
Kauppinen,ACSNano5(2011)3214.
[167]Y.
Tian,M.
Timmermans,S.
Kivist¨o,A.
Nasibulin,Z.
Zhu,H.
Jiang,O.
Okhotnikov,E.
Kauppinen,NanoResearch4(2011)807.
[168]R.
Gumenyuk,O.
Okhotnikov,JournaloftheOpticalSocietyofAmericaB29(2012)1.
[169]C.
Liu,Y.
Wang,J.
Liu,L.
Zheng,L.
Su,J.
Xu,AppliedOptics50(2011)3229.
[170]S.
Pan,Y.
Wang,LaserPhysics21(2011)1353.
[171]Cheng,Y.
Wang,P.
Yu,Y.
Cheng,J.
Tang,H.
Chen,W.
Hsieh,LaserPhysics22(2012)54.
[172]S.
Y.
Cheng,Y.
G.
Wang,J.
Tang,L.
Zhang,L.
Sun,X.
C.
Lin,J.
M.
Li,Optik,doi:10.
1016/j.
ijleo.
2011.
02.
036,inpress.
[173]L.
M.
Su,Y.
G.
Wang,J.
Liu,L.
H.
Zheng,L.
B.
Su,J.
Xu,LaserPhysicsLetters,doi:10.
1002/lapl.
201110107,inpress.
[174]Q.
Yang,Y.
G.
Wang,D.
H.
Liu,J.
Liu,L.
H.
Zheng,L.
B.
Su,J.
Xu,LaserPhysicsLetters,doi:10.
1002/lapl.
201110111,inpress.
[175]Q.
Yang,D.
H.
Liu,J.
Liu,Y.
G.
Wang,J.
Tang,L.
H.
Zheng,L.
B.
Su,J.
Xu,OpticalEngineering50(2011)114202.
[176]Y.
-W.
Song,K.
H.
Fong,S.
Y.
Set,K.
Kikuchi,S.
Yamashita,OpticsCommu-nications283(2010)3740.
[177]H.
-J.
Kim,H.
-J.
Choi,S.
-M.
Nam,Y.
-W.
Song,OpticsExpress19(2011)4762.
[178]O.
Svelto,PrinciplesofLasers,Springer,1998.
[179]A.
Schmidt,V.
Petrov,U.
Griebner,R.
Peters,K.
Petermann,G.
Huber,W.
B.
Cho,J.
H.
Yim,S.
Lee,F.
RotermundandIeee,in:ConferenceonLasersandElectro-Optics(CLEO),CFO4(2009).
[180]L.
E.
Nelson,D.
J.
Jones,K.
Tamura,H.
A.
Haus,E.
P.
Ippen,AppliedPhysicsB65(1997)277.
[181]A.
A.
Voronin,A.
M.
Zheltikov,LaserPhysics18(2008)1459.
[182]D.
Popa,Z.
Sun,T.
Hasan,F.
Torrisi,F.
Wang,A.
C.
Ferrari,in:ConferenceonLasersandElectro-Optics(CLEO),CMK6,2011.
[183]K.
Tamura,E.
P.
Ippen,H.
A.
Haus,L.
E.
Nelson,OpticsLetters18(1993)1080.
[184]H.
F.
Li,S.
M.
Zhang,J.
Du,Y.
C.
Meng,Y.
P.
Hao,X.
L.
Li,OpticsCommunications285(2012)1347.
[185]C.
E.
S.
Castellani,E.
J.
R.
Kelleher,J.
C.
Travers,D.
Popa,T.
Hasan,Z.
Sun,A.
C.
Ferrari,S.
V.
Popov,J.
R.
Taylor,OpticsLetters36(2011)3996.
[186]C.
E.
S.
Castellani,E.
J.
Kelleher,J.
C.
Travers,D.
Popa,Z.
Sun,T.
Hasan,A.
C.
Ferrari,S.
Popov,J.
R.
Taylor,in:ConferenceonLasersandElectro-Optics(CLEO),CMK7,2011.
[187]C.
E.
S.
Castellani,E.
J.
R.
Kelleher,J.
C.
Travers,D.
Popa,T.
Hasan,Z.
Sun,A.
C.
Ferrari,S.
V.
Popov,J.
R.
Taylor,inpress.
[188]C.
E.
S.
Castellani,E.
J.
R.
Kelleher,D.
Popa,Z.
Sun,T.
Hasan,A.
C.
Ferrari,S.
V.
Popov,J.
R.
Taylor,in:TheEuropeanConferenceonLasersandElectro-Optics,JSII2,2011.
[189]N.
Shahabuddin,H.
Mohamad,M.
Mahdi,Z.
Yusoff,H.
Ahmad,S.
Harun,LaserPhysics22(2012)212.
[190]E.
Kapon,SemiconductorLasersI:Fundamentals,AcademicPress,1999.
[191]K.
M.
Davis,K.
Miura,N.
Sugimoto,K.
Hirao,OpticsLetters21(1996)1729.
[192]W.
Watanabe,T.
Asano,K.
Yamada,K.
Itoh,J.
Nishii,OpticsLetters28(2003)2491.
[193]L.
Sudrie,M.
Franco,B.
Prade,A.
Mysyrowicz,OpticsCommunications171(1999)279.
[194]M.
Ams,G.
D.
Marshall,P.
Dekker,J.
A.
Piper,M.
J.
Withford,Laser&PhotonicsReviews3(2008)535.
[195]R.
R.
Thomson,N.
D.
Psaila,S.
J.
Beecher,A.
K.
Kar,OpticsExpress18(2010)13212.
[196]D.
Popa,Z.
Sun,F.
Torrisi,T.
Hasan,F.
Wang,A.
C.
Ferrari,AppliedPhysicsLetters97(2010)203106.
[197]D.
Popa,Z.
Sun,T.
Hasan,F.
Torrisi,F.
Wang,A.
C.
Ferrari,AppliedPhysicsLetters98(2011)073106.
[198]W.
J.
Cao,H.
Y.
Wang,A.
P.
Luo,Z.
C.
Luo,W.
C.
Xu,LaserPhysicsLetters9(2012)54.
[199]B.
V.
Cunning,C.
L.
Brown,D.
Kielpinski,AppliedPhysicsLetters99(2011)261109.
[200]Q.
Bao,H.
Zhang,Y.
Wang,Z.
Ni,Y.
Yan,Z.
X.
Shen,K.
P.
Loh,D.
Y.
Tang,AdvancedFunctionalMaterials19(2009)3077.
[201]H.
Zhang,D.
Y.
Tang,L.
M.
Zhao,Q.
L.
Bao,K.
P.
Loh,OpticsExpress17(2009)17630.
[202]Q.
Bao,H.
Zhang,Z.
Ni,Y.
Wang,L.
Polavarapu,Z.
Shen,Q.
-H.
Xu,D.
Tang,K.
P.
Loh,NanoResearch4(2011)297.
[203]H.
Zhang,D.
Tang,L.
Zhao,Q.
Bao,K.
P.
Loh,OpticsCommunications283(2010)3334.
[204]H.
Zhang,D.
Tang,R.
J.
Knize,L.
Zhao,Q.
Bao,K.
P.
Loh,AppliedPhysicsLetters96(2010)111112.
[205]H.
Zhang,D.
Y.
Tang,L.
M.
Zhao,Q.
L.
Bao,K.
P.
Loh,B.
Lin,S.
C.
Tjin,LaserPhysicsLetters7(2010)591.
[206]L.
Wei,D.
Zhou,H.
Fan,W.
Liu,IEEEPhotonicsTechnologyLetters24(2012)309.
[207]H.
Zhang,Q.
L.
Bao,D.
Y.
Tang,L.
M.
Zhao,K.
Loh,AppliedPhysicsLetters95(2009)141103.
[208]Q.
Bao,H.
Zhang,J.
-x.
Yang,S.
Wang,D.
Y.
Tang,R.
Jose,S.
Ramakrishna,C.
T.
Lim,K.
P.
Loh,AdvancedFunctionalMaterials20(2010)782.
[209]Y.
M.
Chang,H.
Kim,J.
H.
Lee,Y.
-W.
Song,AppliedPhysicsLetters97(2010)211102.
[210]A.
Martinez,K.
Fuse,S.
Yamashita,AppliedPhysicsLetters99(2011)121107.
[211]G.
R.
Lin,Y.
C.
Lin,LaserPhysicsLetters8(2011)880.
[212]Z.
Luo,M.
Zhou,J.
Weng,G.
Huang,H.
Xu,C.
Ye,Z.
Cai,OpticsLetters35(2010)3709.
[213]H.
Kim,J.
Cho,S.
-Y.
Jang,Y.
-W.
Song,AppliedPhysicsLetters98(2011)021104.
[214]Y.
-W.
Song,S.
-Y.
Jang,W.
-S.
Han,M.
-K.
Bae,AppliedPhysicsLetters96(2010)051122.
[215]Z.
-b.
Liu,X.
He,D.
Wang,OpticsLetters36(2011)3024.
[216]W.
D.
Tan,C.
Y.
Su,R.
J.
Knize,G.
Q.
Xie,L.
J.
Li,D.
Y.
Tang,AppliedPhysicsLetters96(2010)031106.
[217]M.
Jiang,Z.
Ren,Y.
Zhang,B.
Lu,L.
Wan,J.
Bai,OpticsCommunications284(2011)5353.
[218]H.
Yu,X.
Chen,H.
Zhang,X.
Xu,X.
Hu,Z.
Wang,J.
Wang,S.
Zhuang,M.
Jiang,ACSNano4(2010)7582.
[219]H.
Yu,X.
Chen,X.
Hu,S.
Zhuang,Z.
Wang,X.
Xu,J.
Wang,H.
Zhang,M.
Jiang,AppliedPhysicsExpress4(2011)022704.
[220]Z.
Sun,X.
C.
Lin,H.
J.
Yu,T.
Hasan,F.
Torrisi,L.
Zhang,L.
Sun,L.
Guo,W.
Hou,J.
M.
Li,A.
C.
Ferrari,in:TheConferenceonLasersandElectro-Optics(CLEO),JWA79,2011.
[221]L.
Zhang,Y.
Wang,H.
Yu,S.
Zhang,W.
Hou,X.
Lin,J.
Li,LaserPhysics21(2011)2072.
[222]X.
-l.
Li,J.
-l.
Xu,Y.
-z.
Wu,J.
-l.
He,X.
-p.
Hao,OpticsExpress19(2011)9950.
[223]J.
-L.
Xu,X.
-L.
Li,Y.
-Z.
Wu,X.
-P.
Hao,J.
-L.
He,K.
-J.
Yang,OpticsLetters36(2011)1948.
[224]J.
Xu,X.
Li,J.
He,X.
Hao,Y.
Wu,Y.
Yang,K.
-J.
Yang,AppliedPhysicsLetters99(2011)261107.
[225]J.
Liu,Y.
G.
Wang,Z.
S.
Qu,L.
H.
Zheng,L.
B.
Su,J.
Xu,LaserPhysicsLetters9(2012)15.
[226]W.
B.
Cho,J.
W.
Kim,H.
W.
Lee,S.
Bae,B.
H.
Hong,S.
Y.
Choi,I.
H.
Baek,K.
Kim,D.
-I.
Yeom,F.
Rotermund,OpticsLetters36(2011)4089.
[227]C.
-C.
Lee,G.
Acosta,J.
S.
Bunch,T.
R.
Schibli,JournalofNonlinearOpticalPhysics&Materials19(2010)767.
[228]L.
M.
Zhao,D.
Y.
Tang,H.
Zhang,X.
Wu,Q.
Bao,K.
P.
Loh,OpticsLetters35(2010)3622.
[229]J.
Liu,S.
Wu,Q.
-H.
Yang,P.
Wang,OpticsLetters36(2011)4008.
[230]K.
S.
Novoselov,A.
K.
Geim,S.
V.
Morozov,D.
Jiang,Y.
Zhang,S.
V.
Dubonos,I.
V.
Grigorieva,A.
A.
Firsov,Science306(2004)666.
[231]A.
K.
Geim,K.
S.
Novoselov,NatureMaterials6(2007)183.
[232]A.
H.
C.
Neto,F.
Guinea,N.
M.
R.
Peres,K.
S.
Novoselov,A.
K.
Geim,ReviewsofModernPhysics81(2009)109.
Z.
Sunetal.
/PhysicaE44(2012)1082–10911090[233]J.
C.
Charlier,P.
C.
Eklund,J.
Zhu,A.
C.
Ferrari,ElectronandPhononPropertiesofGraphene:TheirRelationshipwithCarbonNanotubes,Springer,2008.
[234]K.
S.
Novoselov,A.
K.
Geim,S.
V.
Morozov,D.
Jiang,M.
I.
Katsnelson,I.
V.
Grigorieva,S.
V.
Dubonos,A.
A.
Firsov,Nature438(2005)197.
[235]Y.
B.
Zhang,Y.
W.
Tan,H.
L.
Stormer,P.
Kim,Nature438(2005)201.
[236]A.
K.
Geim,Science324(2009)1530.
[237]K.
S.
Novoselov,Z.
Jiang,Y.
Zhang,S.
V.
Morozov,H.
L.
Stormer,U.
Zeitler,J.
C.
Maan,G.
S.
Boebinger,P.
Kim,A.
K.
Geim,Science315(2007)1379.
[238]X.
Du,I.
Skachko,F.
Duerr,A.
Luican,E.
Y.
Andrei,Nature462(2009)192.
[239]M.
Y.
Han,B.
Ozyilmaz,Y.
B.
Zhang,P.
Kim,PhysicalReviewLetters98(2007)206805.
[240]M.
C.
Lemme,T.
J.
Echtermeyer,M.
Baus,H.
Kurz,IEEEElectronDeviceLetters28(2007)282.
[241]Y.
-M.
Lin,C.
Dimitrakopoulos,K.
A.
Jenkins,D.
B.
Farmer,H.
-Y.
Chiu,A.
Grill,P.
Avouris,Science327(2010)662.
[242]G.
Eda,G.
Fanchini,M.
Chhowalla,NatureNanotechnology3(2008)270.
[243]S.
Bae,H.
Kim,Y.
Lee,X.
Xu,J.
-S.
Park,Y.
Zheng,J.
Balakrishnan,T.
Lei,H.
RiKim,Y.
I.
Song,Y.
-J.
Kim,K.
S.
Kim,B.
Ozyilmaz,J.
-H.
Ahn,B.
H.
Hong,S.
Iijima,NatureNanotechnology5(2010)574.
[244]X.
Wang,L.
Zhi,K.
Mullen,NanoLetters8(2007)323.
[245]F.
Xia,T.
Mueller,Y.
-m.
Lin,A.
Valdes-Garcia,P.
Avouris,NatureNanotech-nology4(2009)839.
[246]T.
J.
Echtermeyer,L.
Britnell,P.
K.
Jasnos,A.
Lombardo,R.
V.
Gorbachev,A.
N.
Grigorenko,A.
K.
Geim,A.
C.
Ferrari,K.
S.
Novoselov,NatureCommu-nications2(2011)458.
[247]F.
Wang,Y.
B.
Zhang,C.
S.
Tian,C.
Girit,A.
Zettl,M.
Crommie,Y.
R.
Shen,Science320(2008)206.
[248]M.
Liu,X.
Yin,E.
Ulin-Avila,B.
Geng,T.
Zentgraf,L.
Ju,F.
Wang,X.
Zhang,Nature474(2011)64.
[249]M.
Lazzeri,S.
Piscanec,F.
Mauri,A.
C.
Ferrari,J.
Robertson,PhysicalReviewLetters95(2005)236802.
[250]F.
Wang,F.
Torrisi,Z.
Jiang,D.
Popa,Z.
Sun,T.
Hasan,W.
B.
Cho,A.
C.
Ferrari,submittedforpublication.
[251]J.
Liu,S.
Wu,Q.
Yang,Y.
Song,Z.
Wang,P.
Wang,in:ConferenceonLasersandElectro-Optics(CLEO),JWA23,2011.
[252]A.
Giesen,J.
Speiser,IEEEJournalofSelectedTopicsinQuantumElectronics13(2007)598.
[253]C.
R.
E.
Baer,C.
Kr¨ankel,C.
J.
Saraceno,O.
H.
Heckl,M.
Golling,R.
Peters,K.
Petermann,T.
S¨udmeyer,G.
Huber,U.
Keller,OpticsLetters35(2010)2302.
[254]M.
E.
Fermann,A.
Galvanauskas,G.
Sucha,D.
Harter,AppliedPhysicsB65(1997)259.
[255]F.
W.
Wise,A.
Chong,W.
H.
Renninger,Laser&PhotonicsReviews2(2008)58.
[256]B.
Orta,M.
Baumgartl,J.
Limpert,A.
Tunnermann,OpticsLetters34(2009)1585.
[257]C.
Lecaplain,B.
Ortac-,G.
Machinet,J.
Boullet,M.
Baumgartl,T.
Schreiber,E.
Cormier,A.
Hideur,OpticsLetters35(2010)3156.
[258]J.
Clark,G.
Lanzani,NaturePhotonics4(2010)438.
[259]U.
Keller,A.
C.
Tropper,PhysicsReports429(2006)67.
[260]E.
J.
Saarinen,J.
Puustinen,A.
Sirbu,A.
Mereuta,A.
Caliman,E.
Kapon,O.
G.
Okhotnikov,OpticsLetters34(2009)3139.
[261]A.
P.
Piskarskas,OpticsandPhotonicsNews8(1997)24.
[262]Z.
Sun,M.
Ghotbi,M.
Ebrahim-Zadeh,OpticsExpress15(2007)4139.
[263]Z.
Sun,A.
C.
Ferrari,NaturePhotonics5(2011)446.
[264]I.
T.
Soro,K.
L.
Vodopyanov,Solid-StateMid-InfraredLaserSources,Springer,2003.
[265]T.
Y.
Fan,IEEEJournalofSelectedTopicsinQuantumElectronics11(2005)567.
[266]Q.
J.
Peng,Z.
P.
Sun,Y.
H.
Chen,L.
Guo,Y.
Bo,X.
D.
Yang,Z.
Y.
Xu,OpticsLetters30(2005)1485.
[267]Q.
Peng,Y.
Zhou,Y.
Chen,Z.
Sun,Y.
Bo,X.
Yang,Z.
Xu,Y.
Wang,K.
Li,W.
Zhao,ElectronicsLetters41(2005)171.
[268]Z.
Sun,R.
N.
Li,B.
Yong,X.
D.
Yang,Z.
Ying,G.
L.
Wang,W.
L.
Zhao,H.
B.
Zhang,H.
Wei,D.
F.
Cui,Z.
Y.
Xu,OpticsCommunications241(2004)167.
[269]M.
Ghotbi,Z.
Sun,A.
Majchrowski,E.
Michalski,I.
V.
Kityk,M.
Ebrahim-Zadeh,AppliedPhysicsLetters89(2006)173124.
[270]G.
L.
Wang,A.
C.
Geng,Y.
Bo,H.
Q.
Li,Z.
P.
Sun,Y.
Bi,D.
F.
Cui,Z.
Y.
Xu,X.
Yuan,X.
Q.
Wang,G.
Q.
Shen,D.
Z.
Shen,OpticsCommunications259(2006)820.
[271]A.
C.
Geng,Y.
Bo,X.
D.
Yang,H.
Q.
Li,Z.
P.
Sun,Q.
J.
Peng,X.
J.
Wang,G.
L.
Wang,D.
F.
Cui,Z.
Y.
Xu,OpticsCommunications255(2005)248.
[272]H.
Q.
Li,H.
B.
Zhang,Z.
Bao,J.
Zhang,Z.
P.
Sun,Y.
P.
Kong,Y.
Bi,X.
C.
Lin,A.
Y.
Yao,G.
L.
Wang,W.
Hou,R.
N.
Li,D.
F.
Cui,Z.
Y.
Xu,OpticsCommunica-tions232(2004)415.
[273]G.
K.
Samanta,G.
R.
Fayaz,Z.
Sun,M.
Ebrahim-Zadeh,OpticsLetters32(2007)400.
[274]G.
Krauss,S.
Lohss,T.
Hanke,A.
Sell,S.
Eggert,R.
Huber,A.
Leitenstorfer,NaturePhotonics4(2010)33.
Z.
Sunetal.
/PhysicaE44(2012)1082–10911091

HostWebis:美国/法国便宜服务器,100Mbps不限流量,高配置大硬盘,$44/月起

hostwebis怎么样?hostwebis昨天在webhosting发布了几款美国高配置大硬盘机器,但报价需要联系客服。看了下该商家的其它产品,发现几款美国服务器、法国服务器还比较实惠,100Mbps不限流量,高配置大硬盘,$44/月起,有兴趣的可以关注一下。HostWebis是一家国外主机品牌,官网宣称1998年就成立了,根据目标市场的不同,以不同品牌名称提供网络托管服务。2003年,通过与W...

buyvm迈阿密机房VPS国内首发测评,高性能平台:AMD Ryzen 9 3900x+DDR4+NVMe+1Gbps带宽不限流量

buyvm的第四个数据中心上线了,位于美国东南沿海的迈阿密市。迈阿密的VPS依旧和buyvm其他机房的一样,KVM虚拟,Ryzen 9 3900x、DDR4、NVMe、1Gbps带宽、不限流量。目前还没有看见buyvm上架迈阿密的block storage,估计不久也会有的。 官方网站:https://my.frantech.ca/cart.php?gid=48 加密货币、信用卡、PayPal、...

青云互联19元/月,美国洛杉矶CN2GIA/香港安畅CN2云服务器低至;日本云主机

青云互联怎么样?青云互联美国洛杉矶cn2GIA云服务器低至19元/月起;香港安畅cn2云服务器低至19元/月起;日本cn2云主机低至35元/月起!青云互联是一家成立于2020年的主机服务商,致力于为用户提供高性价比稳定快速的主机托管服务。青云互联本站之前已经更新过很多相关文章介绍了,青云互联的机房有香港和洛杉矶,都有CN2 GIA线路、洛杉矶带高防,商家承诺试用7天,打死全额退款点击进入:青云互联...

jjcao.com为你推荐
有机zz怎么看不了呢youj1zz不能看还有什么网站原代码求数字代码大全?www.haole012.com012.qq.com是真的吗porntimesexy time 本兮 MP3地址www.gegeshe.com《我的电台fm》 she网址是多少?javmoo.comjavbus上不去.怎么办yinrentangWeichentang正品怎么样,谁知道?机器蜘蛛《不思议迷宫》四个机器蜘蛛怎么得 获得攻略方法介绍盗车飞侠侠盗飞车罪恶都市警车任务怎么做b.faloo.com求本好看妖尾同人的小说,最好是后宫和完结了的。
重庆虚拟主机 org域名 美国服务器租用 韩国服务器租用 阿里云邮箱登陆首页 mach5 英文简历模板word ubuntu更新源 免费博客空间 e蜗牛 上海域名 hktv 卡巴斯基免费试用版 空间登录首页 架设邮件服务器 免费asp空间申请 lamp兄弟连 创速 蓝队云 phpinfo 更多