Kojjcao.com

jjcao.com  时间:2021-03-21  阅读:()
FatiguethresholdR-curvesforpredictingreliabilityofceramicsundercyclicloadingJ.
J.
Kruzica,*,R.
M.
Cannonb,J.
W.
AgerIIIb,R.
O.
Ritchieb,caDepartmentofMechanicalEngineering,OregonStateUniversity,204RogersHall,Corvallis,OR97331,USAbMaterialsSciencesDivision,LawrenceBerkeleyNationalLaboratory,Berkeley,CA94720,USAcDepartmentofMaterialsScienceandEngineering,UniversityofCalifornia,Berkeley,CA94720,USAReceived7December2004;receivedinrevisedform7December2004;accepted8February2005Availableonline2April2005AbstractFormonolithic,grain-bridgingceramics,thecrack-sizedependenceofthefatiguethresholdduringbridgingzonedevelopmentpresentsadicultyinitsapplicationindesign.
ThispaperdemonstrateshowafatiguethresholdR-curvemayexpressthiscrack-sizedependence,analogoustothetraditionalfracturetoughnessR-curve,andmaybeusedtopredicttheendurancelimitandretainedstrengthundercyclicloadingconditions.
Furthermore,thefatiguethresholdR-curvemaybededucedfromthebehav-iorofmillimeter-scale,through-thickness,fatiguecracksviaanaccuratelymeasuredcrackbridgingstressprole.
Bothanaluminaceramicwithlargesteady-statebridgingzones($2mm),wherethepredictedandexperimentallymeasuredfatiguethresholdR-curvesagreewelloverarangeofcracksizesfrom0.
06to7mm,anda(Y2O3-MgO)-dopedSi3N4ceramic,wherebridgingzonesaremuchshorter($100lm),areinvestigated.
Theapproachprovidesausefulalternativetoperformingdicultshort-crackfatigueexperiments,particularlyformaterialswithsmallbridgingzones.
2005ActaMaterialiaInc.
PublishedbyElsevierLtd.
Allrightsreserved.
Keywords:Ceramics;Mechanicalproperties(fatigue,R-curves,crackbridging)1.
IntroductionWhilegrainbridginghasprovedtobeapotentmech-anismforcreatingtoughceramics[1–9],undercyclicloadsthesematerialsaretypicallysusceptibletoprema-turefailurebysubcriticalcrackpropagationowingtodegradationofthebridges[9–18].
Moreover,asbridgingonlydevelopswithcrackextension,thereisaninherenteectofcracksizeonthematerialtoughness[1–5]and,aswell,onthecyclicfatigue-crackgrowthresistance[11]forcracksshorterthanthesteady-statebridging-zonelengths.
Suchcrack-sizeeectsonfracturetoughnessareexpressedintheformofaresistance-orR-curve,whichallowsforfailurepredictionsbasedontheloadingconditionsandinitialawsize[19].
Forbridgingceram-ics,methodshavebeendevelopedforpredictingsuchR-curvesbasedonmeasuredbridgingstressfunctionsforcrackswithsteady-statebridgingzones[2,20–22].
However,suchmethodsarenon-conservativeforpre-dictingreliabilityundercyclicloadingconditionsowingtodamageinthebridgingzone;andthereiscurrentlynoanalogousmethodologyforusewithfatigue.
Further-more,asbridgingisachievedwithweakgrainbound-ariesthatpermitintergranularfracture,theabsolutethresholdforinitialcrackextensionisreducedversusthatfornonbridgingmaterialsandisfartooconserva-tiveforanalternativedesigncriterion.
Accordingly,thegoalofthepresentpaperistodeve-lopaframeworkforthepredictionofreliabilityinbridgingceramicsundercyclicloadingconditionsbasedonafatiguethresholdR-curve[23–25],whichgivesthethresholdasafunctionofcrackextension.
The1359-6454/$30.
002005ActaMaterialiaInc.
PublishedbyElsevierLtd.
Allrightsreserved.
doi:10.
1016/j.
actamat.
2005.
02.
018*Correspondingauthor.
Tel.
:+15417377027;fax:+15417372600.
E-mailaddress:kruzicj@engr.
orst.
edu(J.
J.
Kruzic).
ActaMaterialia53(2005)2595–2605www.
actamat-journals.
comproposedmethodisanalogoustothetraditionalfrac-turetoughnessR-curveapproach,andisachievedusingmeasuredbridgingstressdistributions.
2.
BackgroundOneconsequenceofmakinghigh-toughnessceramicshasbeenthatsuchmaterialsbecomesusceptibletofati-guefailureduetoprogressivedegradationofthetough-eningundercyclicloading.
Thisisincontrasttountoughenedceramicswhichareessentiallyimmunetocyclicfatigue,withintheprovisothattheymayexperi-enceenvironmentallyassistedsub-criticalgrowthduringcyclicloading.
Fatigue-crackgrowthratesinceramicsataspecicloadratio(R=Kmin/Kmax)tendtofollowaclassicalParispower–lawrelationship:dadNADKm;1whereAandmarescalingconstants,da/dNisthegrowthrate,DKisthestress-intensityrange(KmaxKmin),andKmaxandKminare,respectively,themaxi-mumandminimumvaluesappliedduringaloadingcycle.
TheParislawexponentistypicallyverylargeforceramics,i.
e.
,m$15–100;consequently,propagat-ingfatiguecracksquicklygrowtofailureunlesstheyareinadecayingDKsituation.
Becauseofthis,thefati-guethreshold,DKTH,belowwhichcracksarepresumednottopropagateundercyclicloadsisoftenconsideredasacriticalparameterinthefatigueofceramics.
1Inlightofthis,theprecisedenitionofthefatiguethresholdisacentralissue.
Themajorityoffatigue-crackgrowthtestsperformedtodateonceramicmaterialshaveusedmillimeter-scale(socalled''large'')cracksgrowinginstandardfracturemechanicsspecimens[9,12–16,29–31].
Theseexperimentstypicallyarebelievedtorepresentthebehaviorofcrackswithsteady-statebridgingzones,wherebridgesarecreatedanddestroyedataroughlyequalrateandthezonesizeisequilibratedateachKvalue.
Crack-sizeeectsonthefatiguethresholdarethusignoredinsuchexperiments,andthemeasuredfatiguethresholdsarenon-conservativewhencomparedtothosefromsmallercrackswithdeveloping,ortran-sient,bridgingzones[11].
Sincerelevantcracksizesinceramicsforstructuralusewilllikelybeseveralordersofmagnitudesmallerthanthoseinsuchtestspecimens,eectsofcracksizemustbeaddressedifthefatiguethresholdistobeusedasadesignparameter.
Oneapproachtoassessingtheeectsofdeveloping,ortransient,bridgingzonesonthefatiguethresholdistoconductdirectexperimentsonfunctionallysmallorshortcracks.
Inthecontextofthispaper,cracksareconsideredshortorsmallifcomparableinsizeto,orlessthan,oneofthreecharacteristicdimensions,namely,themicrostructure(microstructurally-small),theextentoflocalinelasticityaheadofacracktip(mechanically-short/small),and/ortheextentofthezonecausingcrack-tipshieldingorbridgingbehindacracktip(functionally-short/small)[32,33].
Shortcracksmeetsuchconditionsinonlyonedimension,i.
e.
,thecracklength,andsmallcracksmeetoneormoresuchconditionsinbothdimensions.
Afunctionally-shortcrackhaslimitedcrack-tipshielding,yetsamplesthemicrostructurestatisticallybecauseofitsextensivecrackfront[34].
Conversely,functionally-smallcracksaresmallinalldimensions,astypiedbyasmall,semi-ellipticalsurfaceaw.
Whensmallcracksarecompara-bleinsizetomicrostructuralentities,inadditiontoreducedshielding,biasedsamplingofmicrostructurallyweakpathsmayoccur.
Duetotheserestrictionsinshieldingandmicrostructuralsampling,thecrack-growthresistancesofmicrostructurallysmallcracksgenerallytendtobemorevariablebutattheextremeareamongthelowest.
Inaddition,residualstresseseitherfromcontactdamageorfromthermalexpansionmismatchmayactmorestronglyonsmallcracks;ifunappreciatedorunaccounted,theylowertheeectiveoroperationalR-curveforsmallcracks[35–37].
Whiledirectshortorsmallcracktestingseemsattractive,therearemanyexperimentaldicultiesincreating,propagat-ing,andmonitoringverysmallfatiguecracksinceram-ics.
Indeed,formaterialswithsteeplyrisingR-curves,mostattemptsatsuchexperimentshavefoundthatthepracticalcracksizesfortestingweretoolongcom-paredtothebridging-zonelengthtonoticeanysmall-crackeects[27,38–40].
Recently,wehaveproposedanalternativeapproach[11]whichrstinvolvesdeterminingthesteady-statecontributionofbridging,KSS,br,inreducingtheappliedstressintensity;superpositionisthenusedtosubtractthisbridgingstressintensityfromthemeasuredsteady-statethreshold,KTHSS;max,toobtainanintrinsicthresholdforthetipofanunbridgedcrack,KTHo;max,using[11]:KTHo;maxKTHSS;maxKSS;br:2Inceramicsthethresholddependsmorestronglyonthevalueofthemaximumstressintensity,Kmax,asopposedtothestress-intensityrange,DK,perse[9,12–14,41];consequently,fatiguethresholdsareexpressedhereintermsofKTHmax,notingthatthismayeasilyberelatedtoDKthroughtheloadratio,R=Kmin/Kmax.
Also,sincethereisnocyclicfatigueeectintheabsenceofbridgingforthemostbrittleceramics,KTHo;maxmaybethoughtofastheintrinsictoughnessofthematerial,Ko,viz.
:KTHo;maxKo:31Alternatively,thefatiguethresholdcanbedescribedintermsofthemaximumstressintensity,KTHmax,asEq.
(1)canberewrittenasda/dN=A0(DK)p(Kmax)nwhereA0=A(1R)nand(n+p)=m[26,27].
Withbrittlematerialssuchasceramics,n)p[28].
2596J.
J.
Kruzicetal.
/ActaMaterialia53(2005)2595–2605Thisapproachgivesaworst-casefatiguethreshold,Koforabridgingmaterialbelowwhichcracksofallsizesshouldnotpropagate,providedtheyarelargeenoughtostatisticallysamplethe''continuum''microstructure.
Adisadvantageofdesigningwiththismethod,however,isthatitistooconservative.
Inrealitymostshort/smallcrackswillarrestafterashortamountofsubcriticalgrowthduetotheincreasedbridging[11];accordinglyamethodologyisneededthatpredictstheconditionsun-derwhichshort/smallfatiguecrackswillarrestversusgrowtofailure.
Inordertoaddresstheseproblems,inthepresentworkweproposetheuseofafatiguethresh-oldR-curveanddemonstratehowthismaybederivedfromtraditionallong-crackfatigueexperimentsbydeterminingthebridgingstressesfornear-thresholdsteady-statefatiguecracks.
3.
Procedures3.
1.
MaterialsAcommercial99.
5%purealumina(AD995,CoorsTechnicalCeramicsCo.
,OakRidge,TN)waschosenasamodelmaterialduetothefactthatitexhibitslargesteady-statebridgingzones($2mm)nearthefatiguethreshold[11].
Thispermitteddirectmeasurementsoffatiguethresholdsoverarangeofcracksizesthatwereundertransientconditions,i.
e.
,wherethebridgingzonewasstillbeingdeveloped.
SuchexperimentsprovideddataforthefatiguethresholdR-curvewhichwasthencomparedwithpredictionsderivedfromadeducedbridgingstressdistribution.
Thealuminahadawidegrainsizedistribution,withanominal,averagesizeof$25lm;morecompleteinformationonthematerialmaybefoundinRef.
[11].
Additionally,agaspressuresintered,self-reinforcedSi3N4(with5wt%Y2O3and2wt%MgO,added,designatedYM-Si3N4)ceramicwasusedtodemonstratemethodsforpredictingthefatiguethresholdR-curveinamaterialwithsmallbridg-ingzones($100lm)whereshort/smallcracktestingisprohibitivelydicult.
Thereinforcinggrainshadameandiameterof0.
28lmwithanaspectratioof$7;detailsontheprocessingandmicrostructureofthismaterialcanbefoundelsewhere[42–44].
3.
2.
FatiguethresholdexperimentsFatigue-crackgrowthexperimentswereconductedonstandardcompact-tension,C(T),specimens(width,W%17and19mmfortheAl2O3andSi3N4,respec-tively;thickness,B%3–3.
5mm)ingeneralaccordancewithASTMstandardE647.
Completedetailsofthefa-tigue-crackgrowthproceduresareinRef.
[11];abriefsummaryofissuespertinenttothemeasurementoffati-guethresholdsispresentedhere.
Fatiguecrackswereini-tiatedfromstraightmachinednotches(lengthao%4–5mm)undercyclicloadingconditions(25Hzsinewave,loadratio,R=0.
1),afterwhichthecracksweregrowntoaspeciedlength,asmonitoredusingback-facestraincompliancemethods[45].
Notchrootradii,q,rangedfrom$15to150lm,withthesharpestnotchesusedforthesmallestcracksizes.
Inallcases,datacollectiondidnotbeginuntiltheamountoffatigue-crackexten-sionfromthenotch,Daf,exceededq,atwhichpointtheinuenceofthenotcheldonthestressintensitycouldbeconsideredtobenegligible[46,47].
Inordertomeasurethefatiguethreshold,theappliedstress-intensityrangewasreducedataroughlyconstantDK-gradient(=[dDK/da]/DK)of0.
08mm1.
Basedonpreviousresults[11],thisDK-gradientwaslowen-oughinAD995aluminatoachievesteady-statebridgingzonesforcrackswithDaf>2mmintherangeofgrowthratesfrom$108to1010m/cycle.
Usingthreemeth-ods,thefatiguethresholdwasmeasuredasafunctionofcrackextensionforDafrangingfrom60lmto6.
5mm,withthethresholdoperationallydenedasthelow-eststressintensityatwhichthefatigue-crackgrowthratecouldbemeasuredanddoesnoteverexceed$1010m/cycle.
FortheSi3N4,whichhasmorethananorderofmagnitudesmallerbridgingzone($100lm),onlythesteady-state(i.
e.
,long-crack)fatiguethresholdwasobtained.
3.
3.
QuanticationofbridgingstressesinAD995-Al2O3Asthebridgingstressdistribution,rbr(x),foranear-thresholdsteady-statefatiguecrackinAD995aluminawasdeterminedinapreviousstudy[11],themethodsareonlyoutlinedhere.
First,afatiguecrackwasgrownfor$3mm,i.
e.
,throughtheentirebridging-zonelength,nearthefatiguethreshold(da/dNL,integratingEq.
(7)givesthesteady-statebridgingcontribution,KSS,br,whichpertainsatKmaxandisinsensitivetocracklength,whileforDaL=2mm.
Becausetypicalfatiguethresholdsaremeasuredonnominallysteady-statecrackswhicharegenerallymanymillimetersinlength,Fig.
1(a)illustratesthenecessityofconsideringthefatiguepropertiesforrealisticawsizesinceramics,i.
e.
,inthetenstohundredsofmicrometers.
OneapproachtothisproblemistheuseofafatiguethresholdR-curve,showninFig.
2intermsofKTHmaxforAD995alumina.
ThedatapointsinFig.
2representmeasuredfatiguethresholdsplottedasafunctionofthefatiguecrackextension,Daf,fromthestarternotchwhenthethresholdwasmeasured.
ForcracksizeswhereDaf>L,thesefatiguethresholdscorrespondtosteady-statefatiguecracks,wherebridgesarecreatedandex-haustedatroughlyequalratesandthenatureofthebridgingzoneuniquelycorrespondstotheappliedDKlevel.
Suchsteady-statefatiguethresholdsshouldnotbehistory-orsize-dependent,meaningthatsteady-stateconditionsarealwaysmaintainedwhileapproachingthefatiguethreshold(aconditionmoreoftenassumedthanproven[11]).
Fortransientcracks(Daf102lm.
J.
J.
Kruzicetal.
/ActaMaterialia53(2005)2595–26052601plotted(Fig.
6)forstrengthversusinitialawsize,aicomputedusing:rKRpap;9adKappdadKRda:9bHereandinFig.
6,theawsize,a,referstothefulllengthofasurfaceaw,orhalf-lengthofasubsurfaceaw;theinitialawistakentobefreeofbridging.
Fig.
6demonstratestheutilityofthefatiguethresholdR-curvesbyplottingthepredictedmaximumcyclicstress,rmax,justsucienttocausefatiguefailure,essen-tiallythefatigueendurancestrengthforR=0.
1,versustheinitialawsize,ai.
Theendurancestrengthwascal-culatedanalogouslytothewaymonotonicstrengthispredictedfromfracturetoughnessR-curves:rmaxKTHmaxpap;9cdKmaxdaappdKTHmaxda;9dasshownschematicallyinFig.
7.
Usingsuchrelation-ships,predictionsofreliabilityrelevanttocyclicloadingconditionscanbereadilydeterminedintheformoftheendurancestrengthasafunctionofawsizeandcom-paredwithstrengthsformonotonicloading;thisisshowninFig.
6.
Formaximumapplied(cyclic)stressesbelowthislevel,crackswouldeithernotpropagate,orarrestaftersomeamountofcrackextension,whileforstressesabovethispredictedendurancestrength,thestructureshouldfailaftersomeamountofcycling.
DuetothehighParisexponentsinceramics,thenumberofcyclestofailurewouldbeexpectedtobesmall,whichprovidesthemotivationforreliabilitypredictionsbasedonfatiguethresholds.
Forcomparisontwovaluesof02468CRACKEXTENSION,a,af(mm)0246MAXIMUMSTRESSINTENSITY,Kmax(MPa√m)intrinsictoughnessfatiguethresholdR-curve(Kmax)R=0.
1fracturetoughnessR-curve(KR)R=1.
0unstablefracturestableformonotonicloadingunstableforcyclicloadingstableforcyclicandmonotonicloadingAD995alumina04080FATIGUECRAC(a)(b)KEXTENSION,af(m)12002468MAXIMUMSTRESSINTENSITY,Kmax,(MPa√KoYM-Si3N4estimatedfracturetoughnessR-curve(KR)R=1.
0fatiguethresholdR-curve(Kmax)R=0.
1stableforcyclicandmonotonicloadingstableformonotonicloadingunstableforcyclicloadingunstablefracturem)Fig.
5.
PlotofthefatiguethresholdR-curveandfracturetoughnessR-curvefor(a)AD995aluminaand(b)YM-Si3N4,illustratingregimesofstablebehaviorforbothmonotonicandcyclicloadingconditions.
110100100010000INITIALFLAWSIZE,ai(m)10100100010000STRENGTH,σmax(MPa)AD995aluminafatigueR=0.
1typicalsapphirefractureR=1YM-Si3N4fatigueR=0.
1AD995aluminafractureR=1YM-Si3N4fractureR=1transgranularSi3N4fractureR=1virginretainedvirginretainedFig.
6.
PredictedendurancestrengthsasafunctionofinitialawsizeforAD995aluminaandYM-Si3N4basedonthefatiguethresholdR-curvesinFig.
4.
Forcomparison,thepredictedoverloadfailurestrengthsforAD995Al2O3,basedonmeasuredR-curvedatafromFig.
5[11],andforsapphirearealsoshownbothforvirginmaterialandfortheas-retainedstrengthforawsgrowntoarrestundercyclicloading.
SimilarstrengthsareshownfortheYM-Si3N4,basedontheestimatedR-curvefromFig.
5andforaSi3N4thatexperiencestransgranularfracture.
Finally,retainedoverloadstrengthsarepredictedforbothAD995aluminaandYM-Si3N4,representativeofsamplesthatwerefatiguecycledattheendurancestrengthandwhichexperiencedsomecrackextensionpriortoarrest,givinglowerstrengththanvirginmaterial.
2602J.
J.
Kruzicetal.
/ActaMaterialia53(2005)2595–2605strengthundermonotonicloadingareshown:oneforvirginmaterialandthesecondforthecaseinwhichaninitialawhasrstgrownundercyclicloadinguntilar-restatthefatiguethresholdcondition,termedthere-tainedstrength.
Forthelatter,thestartingcracksizeforthemonotonicreloadingisconservativelytakenastheinitialawsizeplustheincrementofcrackextensionundercyclicloadingattheendurancestrength(i.
e.
,afinFig.
7),butforbothpartsallbridgingisdiscounted.
AlsoshowninFig.
6aretheexpectedpropertiesforsapphirebasedondatafromRefs.
[58–61],andfortransgranularSi3N4[57].
ThestrengthsofbothsinglecrystalandpolycrystallineAl2O3arereducedbytestinginmoistenvironments,whicheveninuencestheR-curves,asshownrecentlyinRef.
[56].
Tomakecom-parisonsmoremeaningful,strengthsforsapphirewerecomputedusingatoughnessof0.
75Kc;thisisusedasslowcrackgrowthcurvesshowthatthesubcriticalcrack-growththresholdsoccuratabout0.
5Kc,whereKcisforfractureininertconditionsorathighervelocity[59,62–64],andthepresenttestingisatintermediatevelocities.
NotethatalthoughbothAD995aluminaandYM-Si3N4havesimilarintrinsicfatiguethresholds,KTHo;max,andlongcracktoughnesses,theSi3N4-basedceramichasmuchhigherpredictedmonotonicstrengthsandendurancelimitsatrelevantawsizesduetothemoresteeplyrisingR-curves.
Thisdemonstrateshowsimplyusingtheintrinsicfatiguethresholdasadesignparame-terwouldbeoverlyconservativesincesubcriticallygrowingcrackswilloftenarrestinmaterialswithrisingfatiguethresholdR-curves.
ItisalsoevidentfromthesecurvesthatamaterialwiththerapidlyrisingandrobustR-curvecanprovidesignicantadvantageovertheuntoughenedmaterialinbothmonotonicandfatiguesituations.
Incontrast,forthisAl2O3material,theben-etsoftougheningarevirtuallyeliminatedforanyawsizesofinterestbycomparisonwiththebehaviorofsap-phireundercyclicloading.
Toreinforcethesecompari-sonsitisnotedthattheunreinforcedmaterialsarenotexpectedtoexhibitcrackgrowthinducedbycyclicfati-gue,sothatthecurvesshownasvirginstrengthessen-tiallyalsodenotetheenduranceandretainedstrengths.
5.
2.
EectsofloadratioWhenconsideringtheexpectedeectofloadratioonthefatiguethresholdR-curvesseeninFig.
4,itisnotedthatthefracturetoughnessR-curve,whichexperiencesnocyclicloading,isessentiallydeterminedataloadra-tioofR=1,i.
e.
,theminimumandmaximumloadsareequal(Fig.
5).
ItisbeexpectedthenthattheR=0.
1fa-tiguethresholdR-curveshouldbeconservativeforloadratioshigherthan0.
1sincethefatiguebehaviorshouldapproachmonotonicfractureastheloadratioisin-creased.
Thisisbecauseastheloadratioisincreased,thevalueofDK,whichdeterminestheamountofbridg-ingdegradation,fallsforagivenvalueofKTHmax[41].
In-deed,thisnotionissupportedbyfatiguedataforbridgingceramicswhichshowanincreaseintheKTHmaxfa-tiguethresholdwithincreasingloadratiooverarangeofRfrom0.
1to0.
9[14,65,66].
Thus,forpositiveloadra-tioslessthanone(i.
e.
,tension–tensionloading),itisex-pectedthatmeasurementsattheminimumexpectedserviceloadratiowouldresultinaconservativefatiguethresholdR-curveformakingpredictionsofreliability.
Itthenfollowsthatpredictionsforpositiveloadra-tiosmaybenon-conservativeforreversedloading(i.
e.
,negativeloadratios)sinceatagivenKmaxvalue,DKwouldbehigherandtheamountofbridgedegradationwouldbeexpectedtobemoresevere.
Unfortunately,experimentaldataforR<0islimited(e.
g.
,Refs.
[67,68])anddirectcomparisonstodatafor0However,thisnotionwouldbeinagree-mentwithcompression-compressionfatigueresultswhereRvaluesexceedone;here,thefatigueresistanceislowerathigherloadratios(rangingfrom2to8)[69],suggestingthatcompressivecyclingisprogressivelymoredamagingwithincreasingloadratio.
5.
3.
FinalcommentsOnlyonesampleoftheSi3N4wasusedinthepresentworkandservedtodemonstratetheapplicabilityofthe0FATIGUECRACKEXTENSION,afMAXIMUMSTRESSINTENSITY,Kmaxσmax<σenduranceσmax=σenduranceaiaffatiguethresholdR-curveFig.
7.
SchematicillustratinghowthefatigueendurancestrengthmaybefoundusingthefatiguethresholdR-curveforaawwithinitiallength,ai.
Additionally,thenalcracklengthaftercrackarrest,af,maybedetermined,whichmaybeusedtosubsequentlyestimatetheretainedfracturestrengthusingthefracturetoughnessR-curve.
J.
J.
Kruzicetal.
/ActaMaterialia53(2005)2595–26052603proposedmethods.
ToobtainaconservativefatiguethresholdR-curvefordesignpurposes,however,moreexperimentswouldbeneededtoaccountforscatterinthefatiguethreshold,asseenforAD995aluminainFigs.
1(a)and2.
Moreover,aswithAD995alumina,caremustbetakentodeterminethepredictedfatiguethresholdR-curveusingconservativevalues.
Themethodspresentedherearestrictlyonlyapplica-bletofunctionally-short/smallcracks,andtheintegralinEq.
(7)shouldberedonetoreectthepertinentgeome-try.
Wherecracksizesapproachthescaleofcharacteris-ticmicrostructuralfeatures,additionaleectsduetolimitedsamplingofthemicrostructureandresidualstressesmayplaymoredominantroles.
Lawnandcoworkers[35–37]haverecognizedandmodeledtheef-fectsoftheadditionaldrivingforcesduetoresidualstresses,e.
g.
,fromthermalexpansionmismatch.
Tensilestressesthatactaroundagrainunderresidualcompres-sionaidinitialextensionofasmalladjacentaw,withthiseectdecayingasthecrackgrowsoutoftheresidualeld.
Ifunaccounted,thiscanreducetheeectiveR-curveforextensionoverdimensionsoftheorderofthesizeofthestressedgrain,eventotheextentofallow-ingsomespontaneousfracture.
However,asthecrackgrowsbeyondthisresidualeld,theeectiveR-curvecanriseveryrapidlyandmayquicklyapproachthatforashortcrack.
Inthatinstance,theeectistocausealimitingstrengthatsmallawsizesratherthantheusualcontinuedriseinthestrength-awsizecurve.
Sucheectscouldbeaddedanalyticallyincombinationwiththeexperimentally-derived,short-crackR-curves.
AlsochemicalormicrostructuralheterogeneitiesmayreduceearlypartsofanR-curveandsimilarlylimittheachiev-ablestrengthatsmallsizes.
Finally,theprinciplesdescribedheremaybeex-tendedtootherbridgingmaterialsandshouldnotbelimitedtoceramics.
Forbrittleandsemi-brittlematerialssuchasbridgingintermetalliccompoundsandbrittlemetalalloys(e.
g.
,belowtheductile-brittletransitiontemperature)whichhavesimilarlyhighParisexponents(e.
g.
,seeRefs.
[70,71]),thefatiguethresholdshouldalsobethemostrelevantdesignparameterforcyclicloadingconditions,andasimilarmethodologycouldeasilybeadoptedprovidedaccuratebridgingstressprolescanbedetermined.
Furthermore,somehigh-cyclefatiguesituations,e.
g.
,bladesingas-turbineengines,involveveryhighcyclingfrequenciessuchthatevenrelativelyductilemetalssuchastitanium-andnickel-basealloyswillfailquicklyifthefatiguethresholdisexceeded,pro-vidinglimitedusefulservicelife.
Formaterialsusedinthesehigh-cyclefatigueapplicationsthatexperiencecrackbridging,methodssimilartothosedescribedherecouldbeapplied.
Itisimportanttonote,however,thatasmaterialsbecomemoreductiletherewillbeanincreasingroleofcrackclosureinaectingthefatiguethresholdwhichmustbeconsideredaswell.
6.
ConclusionsBasedonanexperimentalstudyoffatigue-crackgrowththresholdsingrain-bridgingceramics(Al2O3andSi3N4),thefollowingconclusionsaremade:1.
Theeectofcracksizeonthethresholdforfatigue-crackgrowthmaybeexpressedintermsofafatiguethresholdR-curve,whichisanalogoustotheclassicalfracturetoughnessR-curveandmaybeusedforpre-dictionsoftheendurancestrengthundercyclicload-ingconditions.
2.
Usingmeasuredbridgingstressproles,thefatiguethresholdR-curveforshortcracksmaybepredictedbasedsolelyonresultsfrommanymillimeterlong,through-thickness,fatiguecracks.
Directcompari-sonsofpredictionstoexperimentallymeasuredfati-gue-crackgrowththresholdsinAD995Al2O3overarangeofcracksizesdemonstratetheaccuracyofsuchmethods.
3.
Themethodspresentedhereoerabasisforanalter-nativetodicultandcostlyshort/smallcrackfatigueexperimentsneededtodeterminethefatiguebehav-ior,i.
e.
,thethresholdforcrackgrowthandtheretainedstrengthafterfatiguecrackarrest,atrelevantcracksizesforceramicmaterials.
However,workremainstoassessmodicationsproposedforapplica-tiontomicrostructurally-smallcracks.
4.
Thesemethodsprovideatangiblemeanstoassesstheexpecteddegradationoftougheningmechanismsforcracksinceramicssubjectedtocyclicloading.
Althoughthecrackingresistanceisinvariablydegradedbycyclicloading,insomeinstancessuchdegradationosetsanybenetsoftougheningforawsizesofanyinterest;whereas,insituationswithsucientlyrapidlyrisingandresilientR-curves,thenevenwiththedegradedbridging,shortcrackswillarrestafterasmallamountofgrowth,leavingsignif-icantusefulresidualstrength.
Suchbehaviorcanbequantitativelydescribedbasedonrelativelyaccessi-blemeasurementsofeitherthresholdR-curvesdirectlyorbridgingfunctionsfromlong,near-thresholdfatiguecracks,andthesemethodsmaybeextendedtobridgingmaterialsotherthanceram-icsaswell.
AcknowledgmentsThisworkwassupportedbytheDirector,OceofScience,OceofBasicEnergySciences,DivisionofMaterialsSciencesandEngineeringoftheUSDepart-mentofEnergyunderContractNo.
DE-AC03-76SF00098.
TheauthorsgratefullyacknowledgeDrs.
M.
J.
HomannandR.
L.
Satet(UniversityofKar-2604J.
J.
Kruzicetal.
/ActaMaterialia53(2005)2595–2605lsruhe)forprovidingtheSi3N4materialandMs.
K.
L.
BreedenforaidinanalyzingtheRamanspectra.
References[1]SwansonPL,FairbanksCJ,LawnBR,MaiY-W,HockeyBJ.
JAmCeramSoc1987;70:279.
[2]MaiY-W,LawnBR.
JAmCeramSoc1987;70:289.
[3]VekinisG,AshbyMF,BeaumontPRW.
ActaMetallMater1990;38:1151.
[4]GilbertCJ,CaoJJ,DeJongheLC,RitchieRO.
JAmCeramSoc1997;80:2253.
[5]LiC-W,LeeD-J,LuiS-C.
JAmCeramSoc1992;75:1777.
[6]HayJC,WhiteKW.
JAmCeramSoc1993;76:1849.
[7]PadtureNP.
JAmCeramSoc1994;77:519.
[8]PadtureNP,LawnBR.
JAmCeramSoc1994;77:2518.
[9]GilbertCJ,CaoJJ,MoberlyChanWJ,DeJongheLC,RitchieRO.
ActaMetallMater1996;44:3199.
[10]LathabaiS,Ro¨delJ,LawnB.
JAmCeramSoc1991;74:1348.
[11]KruzicJJ,CannonRM,RitchieRO.
JAmCeramSoc2004;87:93.
[12]GilbertCJ,DauskardtRH,RitchieRO.
JAmCeramSoc1995;78:2291.
[13]GilbertCJ,PetranyRN,RitchieRO,DauskardtRH,SteinbrechRW.
JMaterSci1995;30:643.
[14]GilbertCJ,RitchieRO.
FatigueFractEngMaterStruct1997;20:1453.
[15]OkazakiM,McEvilyAJ,TanakaT.
MetallTrans1991;22A:1425.
[16]GuiuF,LiM,ReeceMJ.
JAmCeramSoc1992;75:2976.
[17]DauskardtRH.
ActaMetallMater1993;41:2765.
[18]DauskardtRH,RitchieRO.
ClosedLoop1991;17:7.
[19]AndersonTL.
Fracturemechanicsfundamentalsandapplica-tions.
2nded.
CRCPress;1995.
p.
688.
[20]FettT,MunzD,DaiX,WhiteKW.
IntJFract2000;104:375.
[21]LawnB.
Fractureofbrittlesolids.
CambridgeUniversityPress;1993.
p.
378.
[22]FettT,MunzD,SeidelJ,StechM,Ro¨delJ.
JAmCeramSoc1996;79:1189.
[23]PippanR,BergerM,Stu¨weHP.
MetallTrans1987;18A:429.
[24]TanakaK,AkiniwaY.
EngFractMech1988;30:863.
[25]TabernigB,PippanR.
EngFractMech2002;69:899.
[26]ChenI-W,LiuS-Y.
JAmCeramSoc1991;74:1197.
[27]DauskardtRH,JamesMR,PorterJR,RitchieRO.
JAmCeramSoc1992;75:759.
[28]RitchieRO.
IntJFract1999;100:55.
[29]ChenD,ShiratoK,BarsoumMW,El-RaghyT,RitchieRO.
JAmCeramSoc2001;84:2914.
[30]HuhY-H,SongJ-H.
FatigueFractEngMaterStruct1998;21:1575.
[31]ChenD,GilbertCJ,ZhangXF,RitchieRO.
ActaMater2000;48:659.
[32]RitchieRO,LankfordJ.
MaterSciEngA1986;84:11.
[33]SureshS,RitchieRO.
IntMetalsRev1984;29:445.
[34]RitchieRO,YuW.
In:RitchieRO,LankfordJ,editors.
Smallfatiguecracks.
Warrendale,PA:TMS-AIME;1986.
p.
167.
[35]BennisonSJ,LawnBR.
ActaMetall1989;37:2659.
[36]ChantikulP,BennisonSJ,LawnBR.
JAmCeramSoc1990;73:2419.
[37]LathabaiS,LawnBR.
JMaterSci1989;24:4298.
[38]MutohY,MiyashitaY,ZhuS.
In:RavichandranKS,RitchieRO,MurakamiY,editors.
Smallfatiguecracks:mechanics,mechanisms,andapplications.
Oxford,UK:Else-vier;1999.
p.
259.
[39]GilbertCJ,HanYS,KimDK,RitchieRO.
CeramInt2000;26:721.
[40]HanYS,KimDK,GilbertCJ,RitchieRO.
JAmCeramSoc2001;84:551.
[41]ChenI-W,EngineerM.
JAmCeramSoc1999;82:3549.
[42]SatetRL,HomannMJ.
JEuroCeramSoc2004;24:3437.
[43]SatetRL,HomannMJ.
JAmCeramSoc2005[inpress].
[44]SatetRL.
Ph.
D.
,UniversityofKarlsruhe,Karlsruhe,2003.
[45]DeansWF,RichardsCE.
JTestEval1979;7:147.
[46]DowlingNE.
FatigueEngMaterStruct1979;2:129.
[47]PalazottoAN,MercerJG.
EngFractMech1990;37:473.
[48]WittmannFH,HuX.
IntJFract1991;51:3.
[49]FettT,MunzD.
Stressintensityfactorsandweightfunc-tions.
ComputationalMechanicsPublications;1997.
p.
408.
[50]FettT,MattheckC,MunzD.
EngFractMech1987;27:697.
[51]SergoV,PezzottiG,KatagiriG,MurakiN,NishidaT.
JAmCeramSoc1996;79:781.
[52]PezzottiG.
JRamanSpectrosc1999;30:867.
[53]PezzottiG,MurakiN,MaedaN,SatouK,NishidaT.
JAmCeramSoc1999;82:1249.
[54]PezzottiG,IchimaruH,FerroniLP,HiraoK,SbaizeroO.
JAmCeramSoc2001;84:1785.
[55]BuecknerHF.
ZAngewMathMech1970;50:529.
[56]KruzicJJ,CannonRM,RitchieRO.
JAmCeramSoc2005[inpress].
[57]SatetRL,KruzicJJ,HomannMJ,CannonRM,RitchieRO.
JAmCeramSoc2005[tobesubmitted].
[58]WiederhornSM.
JAmCeramSoc1969;52:485.
[59]WiederhornSM,HockeyBJ,RobertsDE.
PhilosMag1973;28:783.
[60]BecherPF.
JAmCeramSoc1976;59:59.
[61]IwasaM,BradtRC.
StructureandpropertiesofMgOandAl2O3ceramics.
In:KingeryWD,editor.
AmericanCeramicSociety,Columbus,OH;1984.
p.
767.
[62]EvansAG.
JMaterSci1972;7:1137.
[63]WiederhornSM.
IntJFractMech1968;4:171.
[64]DeAzaAH,ChevalierJ,FantozziG,SchehlM,TorrecillasR.
Biomaterials2002;23:937.
[65]ZhanG-D,ReeceMJ,LiM,Calderon-MorenoJM.
JMaterSci1998;33:3867.
[66]UenoA,KishimotoH,KawamotoH,AsakuraM.
EngFractMech1991;40:913.
[67]FettT,MartinG,MunzD,ThunG.
JMaterSci1991;26:3320.
[68]ReeceMJ,GuiuF,SammurMFR.
JAmCeramSoc1989;72:348.
[69]SabadellJM,AngladaM.
JMaterSciLett1990;9:964.
[70]KruzicJJ,CampbellJP,RitchieRO.
ActaMater1999;47:801.
[71]KruzicJJ,SchneibelJH,RitchieRO.
ScriptaMater2004;50:459.
J.
J.
Kruzicetal.
/ActaMaterialia53(2005)2595–26052605

天上云月付572元,起香港三网CN2直连,独立服务器88折优惠,香港沙田机房

天上云怎么样?天上云隶属于成都天上云网络科技有限公司,是一家提供云服务器及物理服务器的国人商家,目前商家针对香港物理机在做优惠促销,香港沙田机房采用三网直连,其中电信走CN2,带宽为50Mbps,不限制流量,商家提供IPMI,可以自行管理,随意安装系统,目前E3-1225/16G的套餐低至572元每月,有做大规模业务的朋友可以看看。点击进入:天上云官方网站天上云香港物理机服务器套餐:香港沙田数据中...

HostKvm5.95美元起,香港、韩国可选

HostKvm发布了夏季特别促销活动,针对香港国际/韩国机房VPS主机提供7折优惠码,其他机房全场8折,优惠后2GB内存套餐月付仅5.95美元起。这是一家成立于2013年的国外主机服务商,主要提供基于KVM架构的VPS主机,可选数据中心包括日本、新加坡、韩国、美国、中国香港等多个地区机房,均为国内直连或优化线路,延迟较低,适合建站或者远程办公等。下面分享几款香港VPS和韩国VPS的配置和价格信息。...

2021年7月最新洛杉矶CN2/香港CN2 vps套餐及搬瓦工优惠码 循环终身优惠6.58%

搬瓦工怎么样?2021年7月最新vps套餐推荐及搬瓦工优惠码整理,搬瓦工优惠码可以在购买的时候获取一些优惠,一般来说力度都在 6% 左右。本文整理一下 2021 年 7 月最新的搬瓦工优惠码,目前折扣力度最大是 6.58%,并且是循环折扣,续费有效,可以一直享受优惠价格续费的。搬瓦工优惠码基本上可能每年才会更新一次,大家可以收藏本文,会保持搬瓦工最新优惠码更新的。点击进入:搬瓦工最新官方网站搬瓦工...

jjcao.com为你推荐
m.kan84.net经常使用http://www.feikan.cc看电影的进来帮我下啊javbibi日文里的bibi是什么意思lcoc.topeagle solder stop mask top是什么层66smsm.comffff66com手机可以观看视频吗?www.15job.com广州天河区的南方人才市场www.1diaocha.com哪个网站做调查问卷可以赚钱 啊www.147qqqcom求女人能满足我的…175qq.comhttp://www.qq10008.com/这个网页是真的吗?蜘蛛机器人汤姆克鲁斯主演,有巴掌大小的蜘蛛机器人,很厉害的,科幻片吧,是什么电影ww.43994399在线单机小游戏
泛域名绑定 x3220 liquidweb 国外服务器 京东云擎 好看的桌面背景图片 免费博客空间 dropbox网盘 免费活动 河南移动网 in域名 超级服务器 便宜空间 美国凤凰城 免费ftp smtp服务器地址 华为k3 hostease 睿云 镇江高防服务器 更多