thermicmmbb.com
mmbb.com 时间:2021-03-21 阅读:(
)
AppliedWaterScience(2019)9:45https://doi.
org/10.
1007/s13201-019-0927-7REVIEWARTICLEFixedbedcolumnadsorptionstudy:acomprehensivereviewHimanshuPatel1,2Received:1June2018/Accepted:7March2019/Publishedonline:16March2019TheAuthor(s)2019AbstractPresentpaperinvolvedthereviewoffixed-bedcolumnstudiesforremovalofvariouscontaminantsfromsyntheticwastewater.
Basicconceptofadsorption,itstypes(i.
e.
,chemisorptionandphysisorption)anditsmechanism,adsorbentsandadsorbateswereincluded.
Comparisonofbatchandcolumnadsorptionstudyismentioned.
Completestudyofbreakthroughcurvefordesigningadsorptivecolumnisinterpreted.
Thispaperexplicatesthedetailedexplanationofvariousprocessparametersandisothermmodelsforcolumnstudy.
Fixed-bedadsorptionstudiesusingvariousadsorbates,i.
e.
,metal,ion,dyeandotherhazardousmaterials,arereviewed,inwhichadsorptionofchromiummetalismostexploitable.
Conclusionandsomechal-lengesforutilizationinrealworldarealsoexposed.
KeywordsAdsorption·Fixed-bedcolumn·Adsorbent·Adsorbate·Processparameters·IsothermmodelsIntroductionThe"adsorption"wassuggestedbyBois-ReymondbutgivenintotheworldbyKayser,whichisdefinedasanincreasingconcentrationofaspecificcompoundatthesurfaceofinter-faceofthetwophases.
Thesespecificcompoundsaretrans-portingfromonephasetoanotherandthereafteradheredintosurface.
Itisconsideredtobeacomplexphenomenonanddependsmostlyonthesurfacechemistryornatureofthesorbent,sorbateandthesystemconditionsinbetweenthetwophases.
Itisthemostinexpensiveandefficientprocessfortreatmentofwaterorwastewater;therefore,ithasbeenwidelyusedfortheremovalofsolutesfromsolutionsandharmfulchemicalsfromenvironment.
Itrequiredlessinvest-mentintermsoftheinitialcostandland,simpledesign,noothertoxiceffectandsuperiorremovaloforganicwasteconstituent,comparedtotheotherconventionaltreatmentinwaterpollutioncontrol(Dabrowski2001;Selimetal.
2014).
Inadsorptionprocess,thereishigherconcentrationofmaterialsatthesurfaceorinterfacebetweenthetwophases,itiscalledinterphaseaccumulation.
Thesubstancewhichisbeingadsorbedonthesurfaceofanothersubstanceiscalledadsorbate.
Thesubstance,presentinbulk,onthesurfaceofwhichadsorptionistakingplaceiscalledadsorbent.
Theinterfacemaybeliquid–liquid,liquid–solid,gas–liquidorgas–solid.
Ofthesetypesofadsorption,onlyliquid–solidadsorptioniswidelyusedinwaterandwastewatertreat-ment.
Followingfourstepsareconsidered,inwhichsolute(adsorbate)ismovedtowardtheinterfacelayerandattachedintoadsorbent.
(1)Advectivetransport:soluteparticlesaremovedfrombulksolutionsontoimmobilefilmlayerbymeansofadvectivefloworaxialdispersionordiffusion,(2)filmtransfer:soluteparticleispenetratedandattachedinimmobilewaterfilmlayer,(3)masstransfer:attachmentofsoluteparticleontothesurfaceoftheadsorbentandfinally(4)intraparticlediffusion:Movementofsoluteintotheporesofadsorbent(Vasanthetal.
2004).
Mainlytwotypesofadsorptionareoccurred.
PhysicalsorptionisoccurredduetoweakVanderWaalsattrac-tionforces.
Thissorptionisreversibleinnaturewithlowenthalpyvalues,about20kJ/mol.
Here,wearattractiveforcesareavailablebetweenadsorbedmoleculesandthesolidsurfaceweakinnature.
Therefore,adsorbedmoleculesareliberatedtotraveloverthesurface,asthesemoleculesarenotstucktoaparticlesideontheadsorbentsurface.
Theelectrostaticforcesincludedipole–dipoleinteractions,dis-persioninteractionsandhydrogenbondingavailableamongtheadsorbate–adsorbentinphysicalsorption.
Whenthereisanetseparationofpositiveandnegativechargeswithinamolecule,itissaidtohaveadipolemoment.
Whereas,*HimanshuPatelhjpatel123@yahoo.
co.
in1AppliedScienceandHumanitiesDepartment,PacificSchoolofEngineering,KadodaraPalsanaRoad,Surat,India2Surat,IndiaAppliedWaterScience(2019)9:4545Page2of17chemicalbondingbetweensorbateandsorbentmoleculetakesplaceinchemisorption.
Therefore,thissorptionisirreversibleinnatureandhashighenthalpyofsorptionthanphysicalsorption200kJ/mol.
Strongerelectrostaticforcessuchascovalentorelectrostaticchemicalbondplayavitalroleinattractionbetweensorbentandsorbate.
Thisbondisshorterinbondlengthandhashigherbondenergy.
Therangesofenergyforeachreactionare:(1)VanderWaalsforce(460kJ/mol)(Montgomery1985;Sawyeretal.
1994;Atkins1994;Ghalyetal.
2016).
Theadsorbentisbroadlydividedintothreeclasses:(1)Syntheticadsorbent:Variousporousmaterialsaresynthe-sizedinlaboratoryusingdifferentprocesses,whichhavehighadsorptioncapacities.
Disadvantageisthatthispro-cessofmanufacturingiscomparativelycostly.
(2)Naturaladsorbent:Naturalmaterialslikeplantroot,leafandagri-culturalwastearedried,crushed,sieved,againwashedwithdistilledwaterandusedasadsorbentfortreatmentofrealaswellassyntheticwastewater.
Thisprocessischeap,butadsorptioncapacityiscomparativelylow.
(3)Semi-syntheticadsorbent:Naturalmaterialsundergochemicalaswellasphysicalactivationtodevelophighlyporoussurface.
Themajoradvantagesofthisadsorbentinclude:lowcost,highefficiency,minimizationofchemicalorbiologicalsludge,noadditionalnutrientrequirementandregenerationofabsor-bentandpossibilityofmetalrecovery.
Industrialadsorbentisalsoclassifiedintothreetypesaccordingtotheirconsti-tution:(1)oxygen-containingadsorbent,(2)carbon-basedadsorbentand(3)polymer-basedadsorbent(Sameeraetal.
2011;KratochvilandVolesky1998;Kumaretal.
2005).
Thepropertiesoftheadsorbentareidentifiedbydifferentanalyti-caltechniquessuchasFouriertransforminfraredspectros-copy(FT-IR),scanningelectronmicrocopy(SEM),X-raydiffraction(XRD),porosity,porediameter,porevolumeandsurfaceareaanalysis.
FT-IRtechniquedeterminesthechemicalcompositionbyinvestigatingthefunctiongroup.
SEMinvestigatesthemorphologyofadsorbent.
XRDpro-videsinformationonthecrystallographicstructureofthematerial(SathasivamandHaris2010;Esparzaetal.
2011;AhmadandKumar2011,AbdelRahmanetal.
2018).
Anadsorbateisanysubstancethathasundergoneadsorp-tiononthesurface.
Inenvironmentalchemistry,adsorbateisconsideredaspollutantorcompoundscontributingtothepollution,whichadheredinporousadsorbentandeasilyremoved.
Thevarioustypesofwaterpollutantscanbeclas-sifiedintofollowingmajorcategories:(1)organicpollutant,whichincludesoxygendemandingwaste,oil,sewageandagriculturalwaste,syntheticorganicwaste,diseasecausingwastes,(2)inorganicpollutant,whichcontainsinorganicsalts,mineralacids,finelydividedmetalcompounds,tracemetals,etc.
(3)sediments,whicharesoilandmineralsparti-clesthatarewashedawayfromlandbyfloodwaters(Yietal.
2008),(4)thermalpollution,inwhichhighertemperatureisconsideredaspollutantand(5)radioactivepollutantsarepollutantsthathavearadiologicalhazard,itssourcesmightbenatural,accidentalreleaseofradiocontaminant,histori-calreleasesduetomilitarytestsand/orhistoricaldischarge(AbdelRahmanetal.
2014).
Eachpollutanthasdifferentadverseeffect.
Thesepollutantsarehazardousintomankind,aquaticlifeandotherecologicalconstitutions(SharmaandSanghi2012).
Batch,continuousmovingbed,continuousfixedbed(upflowordownflow),continuousfluidizebedandpulsedbedarevarioustypesoftechniquebywhichthecontactbetweenadsorbateandadsorbentismainlyoccurredintheadsorptionsystem.
Eachmethodhasmeritsanddemerits,whicharementionedinTable1.
Thistablerevealsthatfixed-bedcolumnismorepreferableandindustriallyfeasibleforremovalofvariouscontaminationsfromsyntheticaswellasrealwastewater.
Theperformanceoffixed-bedcolumnisstudiedbybreakthroughcurves,i.
e.
,arepresentationofthepollutant-effluentconcentrationversustimeprofileinafixed-bedcolumn.
Themechanismofthisadsorptionisbasedondifferentphenomena,likeaxialdispersion,filmdiffusionresistance,intraparticlediffusionresistance(bothporeandsurfacediffusion)andsorptionequilibriumwiththesorbent(Kafshgarietal.
2013;Mirallesetal.
2010).
Therelationbetweenthenatureofbreakthroughcurvesandfixed-bedadsorptionwasasadequatelyexpressedusingmasstransferzone(MTZ)orprimarysorptionzone(PSZ).
AsperFig.
1,feedwater(wastewater)isinsertedthroughtheinletofthecolumn,theadsorbateisadsorbedmostrapidlyandeffectivelybytheupperfewlayersofthefreshadsor-bentduringtheinitialstageoftheoperations.
Thisisduetohigheramountofadsorbentandsmalllevelsofadsorbateavailableattheseupperlayers,sothatadsorbateisread-ilyescapedinthelowerstrataofthebedandnoadsorbate(pollutants)runofffromtheadsorbentatthefirststage.
So,primaryadsorptionzoneorMTZisattainednearthetoporinfluentendofthecolumn.
Atthispoint,concentrationofadsorbate(C)iszero,andthus,ratioofeffluentandini-tialconcentration(C/C0)iszero.
Thereafter,upperlayerofadsorbentisgraduallysaturated,withfeedingthepollutedwater(adsorbate)intothecolumn,whichbecomesadsorbentlessefficientprogressively.
Thus,theprimarysorptionzonealsotravelsdescendingtofresherorun-adsorbedpartofadsorbentinthecolumn.
Further,withmovementofthiszone,tendencyisthatmoreandmoreadsorbatecomesoutintheeffluentasperpointsC1/C0,C2/C0,C3/C0andC4/C0.
Themovementofthiszoneismainlyincreasingwithincreas-inginitialconcentrationcomparedtolinearvelocityofthefeedwater.
Aftersometime(Cs),thecolumniscompletelyAppliedWaterScience(2019)9:45Page3of1745Table1Featuresandlimitationofvarioussorptionprocesses(MonashandPugazhenthi2010;CavalcanteJr2000;USEPA1983)ParticularBatchsorptionContinuousfixed-bedsorptionContinuousmovingbedsorptionContinuousfluidizedbedsorp-tionPulsedbedsorptionIntroductionAdsorbentandadsorbatearewellmixedindilutedsolutionatconstantvolumeinwell-mixedsystemFixed-bedsystemconsistsofaadsorbentinwhichadsorbateiscontinuouslyflowedthroughabedofadsorbentatconstantrateContinuousmovingbedsorptionissteady-statesystem,wherebothadsorbentandadsorb-ateareinmotion,andbedofadsorbentsectionremainsatconstant,butnotinequalconditionInthissorption,adsorbateisincontactwithfluidizedbedofadsorbentwithsufficientorinsufficientflowInpulsedbedsorption,adsorbateiscontactedwithsameadsorbentinbed,untildesiredresultsarenotachievedFeaturesVeryeasyandcheaptechniqueVeryeasyandcheaptechniqueComplicatedandveryexpensivetechniqueComplicatedandveryexpensivetechniqueVeryeasyandcheaptechniqueMostoftheresearchersareusingthistechniquetoanalyzefeasi-bilityofadsorbent—adsorbatesystemUsedforhigherquantityofwastewaterhavinghigherpol-lutionloadAlso,widelyusedforindustrialpurpose,becausetheadsorb-ateiscontinuouslyincontactwithagivenquantityoffreshadsorbentinfixed-bedcolumnsystemAsadsorbentiscontinuouslyreplacedandfreshadsorbentisconstantcontactwithadsorbateUsedforhigherquantityofwastewaterhavinghigherpol-lutionloadAlso,applicableforindustriesbecauseitallowsrapidmixingofadsorbent—adsorbateandalso,adsorbateiscontinu-ouslyflowautomaticallywithcontrolledoperationandeasyhandingItisveryeasilycontrolledauto-maticallyoperatedsystemAlso,itrequiredlowerdosageofadsorbent.
Thistypehasanadvantageofbetterutilizationofadsorbentbecausetheadsor-bentswerekeptforregenerationassoonastheadsorbentgetssaturatedDisadvantagesUsedforsmallquantityofwastewaterhavingminimumpollutionload;therefore,thisoperationisthatitisscarcelyfoundinthemajorityofpracti-cal(industrial)applicationsTheproblemsassociatedwiththissorptionareadsorbentattrition,feedchanneling,andnon-uniformflowofadsorbentparticlesThelargeamountofadsorbentisrequiredtocompletesorptionFlowofadsorbateisnotmeas-uredwithlargedeviationfromplugflowandbubblingorfeedchanneling,whichleadstoinsufficientcontactofadsor-bent—adsorbateUsedforsmallquantityofwaste-waterhavingminimumpollutionloadespeciallylowersuspectedsolidAdsorbentisremovedfromthesystembysimplefiltrationmethodForcefulinteractioniscon-ductedincontinuousfixed-bedsystemstoreducespaceandtime.
Asaresult,itisdifficulttocarryoutaprioridesignandoptimizationoffixed-bedcolumnswithoutaquantitativeapproachContinuousregenerationofadsorbentandadsorbentstor-ageisessentialTherapidmixingofadsorbent–adsorbatesystemleadstonon-uniformresidencetimeAdsorbentisnotunfilledinnormaloperationsAppliedWaterScience(2019)9:4545Page4of17saturatedorexhaustedandthereafter,adsorptiondoesnotoccur.
Atthispoint,theratioofC/C0is1(one).
Inmostofthecasesofthesorptionbycolumnmethodoperationofwaterandwastewater,breakthroughcurvesexhibitachar-acteristic'S'shapebutwithvaryingdegreeofsteepness(Chowdhuryetal.
2013;Shafeeyanetal.
2014;Hasanzadehetal.
2016).
AsFig.
2shows,initiallysorbentisregardedtobeexhaustedeasily,breakthroughpointisselectedarbitrarilyatlowervalueofbreakpointconcentration(Cb)fortheefflu-entconcentrationandexhaustionpointconcentration(Cx)closelyimminentinfluentconcentrationofadsorbate.
HereVbandVxarethevolumeofeffluentcorrespondingtobreakpointconcentration(Cb)andexhaustionpointconcentra-tion(Cx),respectively.
Theprimarysorptionzone(PSZ)istheportionbetweenexhaustionpoint(Cx)andbreakthroughpointconcentrationofadsorbate(Cb).
IfPSZisassumedtohaveaconstantlengthordepth(δ),someimportantparam-eterssuchastotaltimetakenfortheprimarysorptionzonetoestablishitself(tx),timerequiredfortheexchangezonetomovethelengthofitsownheightup/downthecolumn(tδ),rateatwhichtheexchangezoneismovingupordownthroughthebed(Uz),fractionofadsorbatepresentintheadsorptionzone(F)andpercentageofthetotalcolumnsaturatedatbreakthrougharecalculatedusingsimpleequa-tions.
Theseparametersplayvitalroleforcolumndesigning(GuptaandAli2012;CrittendenandThomas1998).
TimeorVolumeofwatertreatedC/CoC/Co=1BreakthroughtpointFeed(Co)Outlel(C)C1CoCoCoCoC2C3Cs=CoSaturationPointC4CoMTZC3/CoC4/CoC1/CoC2/CoFreshColumnSaturatedColumnExhausepointC/Co=0Fig.
1RepresentationofbreakthroughcurvebymovementofMTZFig.
2IdealbreakthroughcurveAppliedWaterScience(2019)9:45Page5of1745ProcessparameterforcolumnstudyMostoftheadsorptionstudieswereconductedonsyn-theticwastewaterasadsorbate,inwhichmetalordyesolutionispreparedandtreatedwithadsorbent.
Effectofvariousprocessparametersliketheinitialadsorbatecon-centration,flowrateofadsorbateincolumn,bedheightofcolumn,pHofadsorbate,particlesizeofadsorbentandtemperatureofsystemwereperformedandbreakthroughandexhaustpointsweremeasured.
Alltheseparametersareimportanceforevaluatingtheefficiencyofadsorbentinacontinuoustreatmentprocessofeffluentsonthepilotorindustrialscale(Yangetal.
2015).
Table2showstheeffectofprocessparametersonbreakthroughandexhaustpointwithitsfeaturesandexplanation.
Outoftheseparame-ters,initialadsorbateconcentration,bedheightandflowratearemostfeasibleparameters,asmostofresearchersarerecentlyworkingontheseparametersandutilizedtoremovevarioustypesofpollutantslikedyes,metal,haz-ardouswaste,etc.
usingnaturalandsyntheticadsorbents.
AdsorptionmodelsforcolumnstudyVariouspracticalfeaturessuchassorbentcapacity,operat-inglifespan,regenerationtimeandpredictionofthetimenecessaryplayavitalroleduringtheoperationofcolumnusingadsorptiondynamicsacquaintanceandmodeling.
Also,thesemodelsprovidedetailedconclusionsaboutthemechanismoftheprocess.
Theadsorptioncolumnissubjectedtoaxialdispersion,externalfilmresistanceandintraparticlediffusionresistance.
So,themathemati-calcorrelationsforadsorptioninfixed-bedcolumnsarebasedontheassumptionofaxialdispersion,externalmasstransfer,intraparticlediffusionandnonlinearisotherms.
Anumberofmathematicalmodelshavebeendevelopedfortheevaluationofefficiencyandapplicabilityofthecolumnmodelsforlarge-scaleoperations.
TheThomas,beddepthservicetime,theAdamsandBohartmodel,Yoon–Nel-son,Clark,Wolborskaandmodifieddose–responsemodelaremostcommonlyusedtoanalyzethecolumnbehaviorofadsorbent–adsorbatesystem.
MostgeneralandwidelyusedforcolumnstudiesisThomasmodel(TM).
Maximumsolid-phaseconcentrationofadsorbateonadsorbentandrateconstantisdeterminedusingdataobtainedfromcol-umncontinuousstudiesbyThomasadsorptionmodel.
TheThomasmodelisproposedonassumptionofLangmuirkineticsofadsorption–desorptionthatratedrivingforcesfollowsecond-orderreversiblereactionkineticsandalsonoaxialdispersion.
Thebeddepthservicetime(BDST)modelisbasedontheBohartandAdamsquasi-chemicalratelaw.
Rationalofthismodelisthatequilibriumisnotimmediateinbed,andtherefore,therateofthesorptionprocessisdirectlyproportionaltothefractionofsorptioncapacitystillremainingonthemedia.
Thismodelispro-videdbytherelationshipbetweenbeddepthandservicetimeintermsofprocessconcentrationsandadsorptionparameters.
Thismodelisbasedonthehypothesisthattheadsorptionrateismaintainedbythesurfacereactionbetweenadsorbateandtheunusedcapacityoftheadsor-bent.
ThevaluesofbreakthroughtimeobtainedforvariousbedheightsusedinthisstudywereintroducedintotheBDSTmodel.
Therefore,sorbentquantityisbeingprefera-blyused,insteadofthebedheight(WanNgahetal.
2012).
Scientists,namelyBohartandAdams,investigatedtheequationforrelationshipbetweenCt/Coandtimeinacon-tinuoussystem,whichisknownasAdam–Bohartmodel(ABM).
Basically,innovativestudieswerecarriedoutbyAdamandBohartusinggas–charcoaladsorptionsystem,andthereafter,itsequationcanbeusefulforothercon-tinuousadsorptionsystem.
Thismodelproposedthatrateofadsorptiondependsuponconcentrationofthesorbingspeciesandresidualcapacityofadsorption(Doradoetal.
2014).
Yoon–Nelsonmodel(YNM)issimpletheoreticalassumption,whichdoesnotconcentrateduponpropertiesofadsorbate,typeofadsorbentandanyphysicalfeaturesoftheadsorptionbed.
Thismodelisgivenprobablestatementthatdecreasingrateofadsorptionisdirectlyproportionaltoadsorbateadsorptionandbreakthroughontheadsorbent.
Scientist,namelyClark,proposedmodelforbreakthroughcurves,whichbasedsuggestionsthat(1)columnadsorptionismass-transferconceptwithcombinationofFreundlichisothermand(2)behaviorofflowincolumnisofpistontype.
Byusingthelawsofmasstransferandbyneglectingthephenomenonofdispersion,Clarksolvedthesystemofequationsofmasstransfer.
ThismodeliscalledClarkmodel(CM).
Wolborskamentionedtherelationshipthatdescribestheconcentrationdistributioninabedforthelow-concen-trationrangeofthebreakthroughcurve,whichisreferredasWolborskamodel(WM).
Anothersimplifiednumericalmodelusedtodescribefixed-bedcolumnadsorptiondataisthemodifieddoseresponsemodel(MDRM).
ThismodelbasicallydiminishestheerrorresultingfromtheuseoftheThomasmodel,particularlyatlowerorhighertimeperi-odsofthebreakthroughcurve(Leeetal.
2015;BiswasandMishra2015).
Adsorptioncapacityofeachmodelfordifferentpro-cessparameterssuchasinitialconcentrationofadsorbate,bedheight,flowrate,etc.
iscalculatedandmentionedbyvariousscientistsfordesigningthecolumn.
Table3depictstheequation,plotandparametersofeachmodel.
Italsomentionedthevariation,i.
e.
,increasingordecreas-ingincolumnadsorptionmodelparameterswithrespecttoincreasingoperationparameters.
VeryimportantAppliedWaterScience(2019)9:4545Page6of17Table2EffectofprocessparameteronbreakthroughandexhaustionpointProcessparameterFeaturesExplanationInitialadsorbateconcentration(IAC)Breakthroughandexhaustionpointsareoccurredearlierwithincreasinginfluentconcentration.
AndthereafterbreakpointtimedecreasedwithincreasingtheinletconcentrationInitially,adsorptionwasrapidbecauseoftheavailabilityoflargenumberofvacantsites.
Andthereafter,increasinginitialadsorbateconcentrationresultsinagreaterdrivingforcetoovercomemass-transferresistanceintheliquidphaseandthesitesareexhaustedquickly,sothevolumeofefflu-enttreatedalsodecreases(Moyoetal.
2017;Saravananetal.
2018)Flowrateofadsorbate(FRA)Breakthroughpointsgenerallyoccurfasterwithhigherflowrate.
SaturationofbreakthroughtimeisincreasedsignificantlywithadecreaseintheflowrateTherateofmasstransfergetsincreased,i.
e.
,theamountofadsorbateadsorbedontounitbedheight(mass-transferzone)getsincreasedwithincreasingflowrateleadingtofastersaturation(Lopez-Cervantesetal.
2017).
Andlowerflowrate,adsorbatehasmoretimetocontactwithadsor-bentthatresultedinhigherremovalofadsorbateincolumn(AhmadandHameed2009;Shengetal.
2018)Bedheightofcolumn(BHC)Breakthroughandexhaustiontimesareslowerwithincreasingbeddepth.
Also,itwasfoundthatthevolumeofeffluenttreatedincreasedwithincreasingthebeddepthThiswasattributedtoanincreaseinthesurfaceareaandthenumberofbind-ingsitesavailableforadsorption.
Thetimeforinteractionofadsorbateandadsorbentalsoincreasedwithincreasingamountofadsorbent(Fathietal.
2014;Teutscherovaetal.
2018)pHofadsorbate(pH)Insomecase,highestremovalsarefoundatacidicpHandmaximumremovalsofsomeadsorbatearefoundatalkalinepHItdependeduponthenatureofadsorbentandadsorbate(BanerjeeandChat-topadhyaya2013;AhmedandHameed2018)Particlesizeofadsorbent(PSA)Breakthroughandexhaustiontimesareslowerwithincreasingparticlesizeofadsorbent.
Maximumparticlesizeisfavoredtogetbetteradsorptioncapacity.
But,moderateflowrateispreferredforindustrialapplicationsAdsorptionisasurfacephenomenonandtheextentofadsorptionisexpectedtobeproportionaltothespecificsurface.
However,verysmallparticlesizeisnotstudiedtoavoidproblemassociatedwithsolid–liquidsepara-tion.
Further,smallerparticlesdevelophigh-pressuredropinthefixed-bedcolumnadsorbent(Ungeretal.
2008;Zouetal.
2013)Temperature(T)Breakthroughandexhaustiontimesareslowerwithincreasingtempera-tureofsystem.
But,adsorptioncapacitydecreaseswiththeincreasingtemperatureItmightbeduetothathighoperatingtemperaturefavoredadsorbatediffus-ingfasterintotheadsorbent,givingalowbreakthroughandexhausttime.
Further,lessadsorbatewasrequiredtosatisfythemaximumadsorptioncapacityofadsorbentathighadsorptiontemperatures,indicatinganexo-thermicprocess.
Forindustrialapplications,roomtemperatureadsorptionispreferredtoreduceheatingoperationsetupcost(GirishandMurty2014;Yeetal.
2018)AppliedWaterScience(2019)9:45Page7of1745parametersofThomasmode,i.
e.
,qTHincreasedwiththeincreaseininitialconcentrationofadsorbent,bedheightandtemperatureandcorrespondingKTHvaluesdecreased.
Also,qTHdecreasedwithincreaseinflowrateandcor-respondingKTHvaluesincreased.
Further,correlationcoefficientvalue(r2)fromstraightlinegraphofallmod-elsiscalculatedandmentionedinmostoftheresearchpapers.
Thecoefficientofdeterminationisusefulbecauseitgivestheproportionofthevariance(fluctuation)ofonevariablethatispredictablefromtheothervariables.
Itisameasurethatallowsustodeterminehowcertainonecanbeinmakingpredictionsfromacertainmodel.
Thisvalueplaysimportantroleforanyadsorptionisotherm.
Ifcoefficientvalueisclosertounity(1),thenitindicatesthemostsuitableisothermmodel(Zhangaetal.
2011).
AdsorptivecolumnVarietyofadsorbentsandadsorbatesarestudiedusingdifferentprocessparametersandisothermmodelsinrecentyears.
Inthisreviewpaper,columnadsorptionstudyisisolatingusingdifferentadsorbatesasfollows.
AdsorptionofmetalandionEarth'scrustisconstituentofmetalandotherparts,butrandomhumanactivitieshavesignificantlychangedtheirgeochemicalcyclesandbiochemicalbalance.
Thisresultsinaccumulationofmetalsinplantpartshavingsecondarymetabolites,whichisresponsibleforaparticularphar-macologicalactivity.
Prolongedexposuretoheavymet-alssuchascadmium,copper,lead,nickelandzinccancausedeleterioushealtheffectsinhumans(Singhetal.
2011).
Variousscientistshavebeingtriedtoremovemetalsanditsionsusingadsorptivecolumntreatment.
Syntheticadsorbents,namelypolyacrylonitrile–potassiumcobalthexacyanoferratesandpolyacrylonitrile–potassiumnickelhexacyanoferrates,weresynthesized,andadsorptionofcesiumwasinvestigated.
Theeffectsofliquidflowrate,bedheightandpresenceofothercationsontheadsorp-tionofcesiumwereperformed.
Thebeddepthservicetime(BDST)modelandtheThomasmodelwereusedtoanalyzetheexperimentaldata,andthemodelparameterswereevaluated(Duetal.
2014).
Alihadsynthesizedeco-nomicaladsorbent,i.
e.
,carbonnanotubeusingNi/MgOmetaloxideformicrowaveexposureforthermaldisinte-grationat550°C.
Thismicrowave-assistednanotubehadundergonecolumnstudiesforremovalofarseniteandTable3Detailsofcolumnadsorptionmodelsanditsparametersvariationincolumnadsorptionmodelw.
r.
t.
increasingoperationparameters(Leeetal.
2015;BiswasandMishra2015)N.
A.
DatanotavailableColumnadsorp-tionmodelLinearequationPlotParameterofmodelOperationparametersInitialconc.
FlowrateBedheightTemperatureThomasmodel(TM)lnCOCt1=kTHqomQkTHCoVeQlnCo∕Ct1versustimekTHDecreasedIncreasedDecreasedDecreasedq0IncreasedDecreasedIncreasedIncreasedBeddepthservicetimemodel(BDST)t=NOC0FZ1kBDSTC0lnC0Ct1BedheightversustimeNoIncreasedIncreasedN.
A.
IncreasedkBDSTIncreasedIncreasedN.
A.
IncreasedAdamandBohartmodel(ABM)lnCOCt1=KABNOZuKABCttlnCo∕Ct1versustimekABIncreasedIncreasedDecreasedDecreasedNoDecreasedDecreasedIncreasedIncreasedYoon–Nelsonmodel(YNM)lnCtCoCt=kYNtkYNlnCtC0CtversustimekYNIncreasedIncreasedDecreasedN.
A.
ΤDecreasedDecreasedIncreasedN.
A.
qOYN=q(total)X=C0Q1000X=12CO[(Q∕1000)X2]XClarkmodel(CM)CtCO=1(1+Aert)1∕(n1)Ct/C0versustimeADecreasedDecreasedIncreasedIncreasedRIncreasedIncreasedDecreasedDecreasedWolborskamodel(WM)lnCtCO=COtNOZUln(Ct/C0)versustimeΒDecreasedIncreasedDecreasedDecreasedNoIncreasedDecreasedIncreasedIncreasedModifieddoseresponsemodel(MDRM)lnCtC0Ct=alnC0QtalnqmdrmlnCtC0CtversuslnC0QtADecreasedIncreasedIncreasedN.
A.
BIncreasedIncreasedIncreasedN.
A.
AppliedWaterScience(2019)9:4545Page8of17arsenateusingprocessvariableslikeinitialconcentration,flowrateandbedheight.
ThedatawereanalyzedusingTomasandAdambohartmodels,andmaximumremov-alswerefoundtobe13.
5and14.
0mg/gforarseniteandarsenate,respectively(Ali2018).
Novel3Dyttrium-basedgrapheneoxide–sodiumalginatehydrogelwaspreparedbysol–gelprocessforremovaloffluorideviacontinuousfil-tration.
DatawereanalyzedbyThomasmodel,andmaxi-mumuptakecapacitywasachievedtobe4.
00mg/g(Heetal.
2018).
Verticalcolumnexperimentsusingsugarcanebagassewereconductedforremovalofmanganese(II),andthehighestremovalefficiencywasfoundtobe51.
95%(Zainietal.
2018).
Newchelatingcellulose-basedadsor-bent,i.
e.
,N-methyl-d-glucamine(NMDG)-typefunc-tionalgroupattachedtoanovelboronselectivechelat-ingfiber,wasprepared,characterizedandutilizedforboronremoval.
Yoon–Nelson,Thomasandmodifieddoseresponsemodelwereevaluatedusingdataofvariousflowrates.
MaximumboronadsorptioncapacityrelatedtoThomasmodelwasobtainedupto22.
06mg/g(Recepogluetal.
2018).
Freitasandtheirco-scientistswereexperi-mentedforbinaryadsorptionofsilverandcopperontobentonite(Verde-lodoclay),inwhichfirstflowratewasoptimized.
Thereafter,effectsofinitialconcentrationandmolarfractionwereinvestigatedusingthisoptimumflowrate(Freitasetal.
2018).
Comparisonstudiesofunmodifiedandmodifiedjorda-niankaoliniteclayusinghumicacidwereaccomplishedforremovalofheavymetalssuchaslead(II),cadmium(II)andzinc(II).
Variousprocessvariablesforbatch(contacttime,adsorbentdose,initialmetalionconcentration,pHandtemperature)aswellascolumn(initialconcentration,flowrateandbedheight)wereevaluated.
Resultsindicatedthatmodifiedclaywasmoredominantthanunmodifiedclay;andadsorptionofthemetalionsbybothmodifiedkaoliniteclayfollowedtheorder:Pb>Cd>Zn(Al-EssaandKhalili2018).
Colorfromrealtextileeffluentwasremovedinfixed-bedcolumnofmodifiedzeolite(SMZ),inwhichsurfaceofnatu-ralzeolitewasmodifiedwithaquaternaryaminesurfactanthexadecyltrimethylammoniumbromide(HTAB).
Break-throughcurvesofdifferentflowrate(0.
015–0.
075l/min)andbedheight(12.
5–50cm)atoriginalaswellasdilutedwastewater(ratioof25,50and75%)wereplotted,andbreakthroughandexhaustpointswerecalculatedforeachandeveryparameter.
Also,experimentsforregenerationofSMZusingNaClandNaOHsolutionwerecarriedout.
DatawereanalyzedbyBDSTisotherm(Ozdemiretal.
2009).
Dif-ferentexperimentsofpackedbedcolumnweredemonstratedforadsorptionofhexavalentchromiumfromitssyntheticsolution(RangabhashiyamandSelvaraju2015a)andelec-troplatingindustrieseffluent(Rangabhashiyametal.
2016)usingchemicallymodifiedswieteniamahagonishell.
Also,caryotaurensinflorescencewastebiomasswasutilizedasadsorbentforadsorptionofhexavalentchromium(Rangab-hashiyamandSelvaraju2015b).
Comparisonofbatchandcolumntreatmentforremovalofnickel(II)andcopper(II)usingchemicallymodifiedCucurbitamoschatawasexploited,whichindicatedcol-umntreatmentismorefeasiblethanbatchprocess(KhanandRao2017).
Seriesofsyntheticsolutionsofcadmium(II),copper(II),lead(II)andzinc(II)werepreparedandtriedtoremoveusingchemicallymodifiedmulti-metal-bindingbiosorbent(MMBB)inpackedbedcolumn.
Thebreak-throughcurvesforinfluentflowrate,initialmetalconcen-trationandbeddepthwereprepared,anddatawereexploredusingThomas,Yoon–Nelsonandmodifieddoseresponse.
Breakthroughandexhaustpoints,MTZ,tb,tsat,Cpandtpwerecalculated.
ThehighestmetaladsorptioncapacitiesofmodifiedMMBBattheexhaustiontimeswere38.
25,63.
37,108.
12and35.
23mg/gforCd,Cu,PbandZn,respectively.
DesorptionstudybyHClandapplicabilityofbiosorbenttestedusingsemi-simulatedwastewaterwerealsocon-ducted(Abdolalietal.
2017).
Columnadsorptionstudiesonnickelandcobaltremovalfromaqueoussolutionusingnativeandbiocharformoftectonagrandiswereperformed.
Breakthroughcurveswereplottedforprocessvariablebedheight,flowrateandinletmetalionconcentration.
DatawereappliedtoAdam–Bohart,ThomasandYoon–Nelson,inwhichThomasmodelwasfoundtobeingoodagree-mentwithhigherR2andcloserexperimentalandtheoreti-caluptakecapacityvalues(VilvanathanandShanthakumar2017).
RemainingreviewsarementionedinTable4,whichrepresentstherecentlypublishedpapersofmetalandionadsorbate,itsadsorbent,operationparameters,investigatedcolumnadsorptionmodelsandrespectivemaximumadsorp-tivecapacityrelatedtoThomasmodelandcorrespondingreference.
AdsorptionofdyeDyesusuallyhaveasyntheticoriginandcomplexaromaticmolecularstructureswhichmakethemmorestableandmoredifficulttobiodegrade.
Degradationofdyesistypi-callyaslowprocess.
Theremovalofcolorisneededtobeconsideredinthedisposaloftextilewastewaterduetoaes-theticdeteriorationaswellastheobstructionofpenetrationofdissolvedoxygenandsunlightintowaterbodies,whichseriouslyaffectsaquaticlife.
Besides,thedyeprecursorsanddegradationproductsareprovencarcinogenicandmuta-genicinnature.
Consumptionofdye-pollutedwatercancauseallergyreactions,dermatitis,skinirritation,cancerandmutationbothinbabiesandmatures(PatelandVashi2013).
Lopez-Cervantesandteammembershadpreparedbiosorbentchitosan–glutaraldehydefromshrimpshellsfortheremovalofthetextiledyeDirectBlue71fromanaqueoussolution.
ThisbioadsorbentwasanalyzedusingAppliedWaterScience(2019)9:45Page9of1745Table4DetailsofcolumnadsorptionstudiesofmetalandionsAdsorbateAdsorbentOperationparametersColumnisotherminvestigatedThomasmaximumadsorptioncapacityReferencesFluorideKanumamudInitialconcentration,flowrateandbedheightTMandBDST0.
585mg/gChenetal.
(2011)Cadmium(II)SyzygiumcuminiLleafpowderpH,initialconcentration,flowrateandbedheightTM,BDST,ABMandYNM29.
08mg/gRaoetal.
(2011)Copper(II),lead(II)andcadmium(II)FunctionalizedSBA-1mesoporoussilicawithpolyamidoamineFlowrateandbedheightTMandBDST1.
6,1.
3and1.
0mmol/gShahbazietal.
(2013)Hexavalentchromium(Cr+6)ModifiedcornstalkpH,influentconcentration,flowrateandbedheightTM,ABMandYNM152,323.
70mg/gChenetal.
(2012)Copper(II)Chitosan–zeolitecompositeBedheightBDST,CM41.
14g/LWanNgahetal.
(2012)Uranium(VI)Grapefruitpeel(GFP)Initialconcentration,flowrate,bedheightandparticlesizeofGFPTM,BDST,YNMandCM104.
1mg/gZouetal.
(2013)Copper(II)kenaf(Hibiscuscannabinus,L)fibersFlowrateandbedheightTMandBDST47.
27mg/gHasfalinaetal.
(2012)Chromium(VI)Orthophosphoricacid-acti-vatedligninpH,initialconcentration,flowrate,bedheightandionicstrengthTM,BDST,ABMandMDRM0.
889mmol/gAlbadarinetal.
(2012)Cesium(I)andstrontium(II)Montmorillonite–ironoxidecompositeInitialconcentrationandflowrateTM4.
42and15.
28mg/gAraremetal.
(2013)Chromium(VI)LeonarditeInitialconcentrationandflowrateTM,BDST,YNM,WM,CMandMDRM127.
53mg/l(BDST)Doradoetal.
(2014)Cadmium(II)andlead(II)DeadcalcareousskeletonsInitialconcentration,flowrateandbedheightTM,BDSTandYNM66.
16and75.
18mg/gLimandAris(2014)Copper(II)Polyaniline-coatedsawdustInitialconcentration,flowrateandbedheightTM,BDSTandYNM58.
23mg/gLiuandSun(2012)BromateFe(II)–Al(III)-layereddoublehydroxideInitialconcentration,flowrateandbedheightTMandBDST71.
01mol/gYangetal.
(2015)Copper(II)Surface-modifiedeucalyptusglobulusseedsInitialconcentration,flowrateandbedheightTM,BDSTandYNM300.
5mg/gSenthilKumaretal.
(2015)FlourideActivatedaluminaInitialconcentration,flowrateandbedheightTM,YNMandABM11.
01mg/gGhoraiandPant(2004)PhosphateZirconium-loadedsoyabeanresidue(okara)pH,initialconcentration,flowrate,bedheightandparticlesizeTM,BDSTandABM12.
21mg/gNguyenetal.
(2015)Chromium(VI)AlkalineanionexchangefiberInitialconcentration,flowrate,bedheight,pHandtemperatureTM,ABM,YNMandCM210.
2mg/gWang,LiandZeng(2015)Copper(II)andnickel(II)Magnetizedsawdust(Fe3O4–SD)Initialconcentration,flowrateandbedheightTM,ABMandYNM43.
45and33.
08mg/gKapurandMondal(2016)AppliedWaterScience(2019)9:4545Page10of17Table4(continued)AdsorbateAdsorbentOperationparametersColumnisotherminvestigatedThomasmaximumadsorptioncapacityReferencesNickel(II)andchromium(II)TiO2agglomeratednanopar-ticlesInitialconcentration,flowrateandbedheightTM,BDSTandABM33.
18and12.
94mg/gDebnathetal.
(2010)Cadmium(II)andlead(II)Grapestalkwastes(GSW)InitialconcentrationandparticlesizeofGSWTM31.
53and49.
40mg/gMirallesetal.
(2010)Manganese(II)Granular-activatedcarbonfromagrowasteofmangos-tenefruitpeelInitialconcentration,flowrateandbedheightTM,ABMandYNM7257.
32mg/gChowdhuryetal.
(2013)Chromium(II)PistachioshellInitialconcentration,flowrate,bedheight,pH,effluentconcentrationandtempera-tureTM,ABMandYNM27.
95mg/gBanerjeeetal.
(2018)Copper(II)Amino-functionalizedramiestalkInitialconcentrationflowrateandbedheightTM,ABM,YNMandBDST0.
528mmol/gWangetal.
(2018)Lead(II)andcadmium(II)PAACnanocompositeInitialconcentration,flowrate,bedheight,pHandtemperatureTM36.
20and37.
25mg/gZendehdelandMohammadi(2018)FluorideMagnesia–pullulancomposite(MgOP)Initialconcentration,flowrate,bedheight,pH,tem-peratureandotherexistinganionsTMandYNM16.
6mg/gYeetal.
(2018)ArsenateChitosanInitialconcentration,flowrate,bedheight,beddiam-eterandflowdirectionTM,ABMandYNM51.
2mg/gBrion-Robyetal.
(2018)Copper(II),cobalt(II)andnickel(II)SugarcanebagasseInitialconcentration,flowrateandbedheightTMandABM1.
060,0.
800and1.
029mmol/gXavieretal.
(2018)CyanideBlastfurnacegranulatedslagInitialconcentration,flowrate,pHandbedheight–91.
6%(Removalefficiency)Routetal.
2018FluorideMagnesium–hydroxyapatitepelletsInitialconcentration,flowrate,pH,bedheight,particlesizeandparticleshapeTMandABM45.
5mg/gMondaletal.
(2018)Copper(II),magnesium(II)andnickel(II)Yersiniabactin,immobilizedtoXAD16resinFlowrateandpHTMandMDRM0.
12,0.
2and0.
1mg/gMoscatelloetal.
(2018)Chromium(VI)Ionicliquidfunctionalizedcel-lulose(ILFC)pHTMandYNM181.
8mg/gZhenandLong(2018)Chromium(VI)Co-immobilizedactivatedcarbonandBacillussubtilisInitialconcentration,flowrateandbedheightTM11.
7mg/gSukumaretal.
(2017)Chromium(VI),copper(II)andzinc(II)ActivatedNeembarkInitialconcentration,flowrateandbedheightTMandYNM53.
95,12.
45and23.
54mg/gMaheshwariandGupta(2016)AppliedWaterScience(2019)9:45Page11of1745scanningelectronmicroscopy,X-raydiffractionandnuclearmagneticresonancespectroscopy.
Theeffectofvariouspro-cessparameterssuchasbedheight,inletDirectBlue71concentration,flowratewasperformed.
ColumnisothermsAdams–Bohart,Thomasandbeddepthservicetimemath-ematicalmodelswereutilized,inwhichbeddepthservicetimemodelshowedgoodagreementwiththeexperimentaldataandthehighvaluesofcorrelationcoefficients.
Maxi-mumdyeremovalcapacitywasfoundtobe343.
59mg/g(Lopez-Cervantesetal.
2017).
IranianLuffacylindricaandNaOH-modifiedLuffacylindricaasanaturallignocellulosicadsorbentwerepreparedandinvestigatedforbiosorptionofmethyleneblue(MB)usingafixed-bedcolumn.
Theresponsesurfacemethodologybasedoncentralcompositedesignwasusedtoevaluatetheinteractiveeffectsofthreemajoroperatingparameterslikeinletdyeconcentration,Luffadosageandfeedflowrateonthedyeremovalper-centage(responsevariable).
ThebreakthroughcurveswerepredictedbytheAdams–BohartandThomasmodelsusingnonlinearregressionanalysis,inwhichmaximumadsorptioncapacitiesofmethylenebluedyewereachievedtobe21.
4and46.
58mg/gforLuffaandNaOH-modifiedLuffa,respec-tively.
HighercapacityofNaOH-modifiedLuffaisattributedtotheintensificationofthenegativelychargedsurfaceofthebase-modifiedadsorbentwithhydroxylgroups.
Desorp-tionstudieswerealsoperformedwithHCl(BaharloueiandSirousazar2018).
Glassbeadscoatedwithchitosanwereusedforfoodazodyesadsorptioninafixed-bedcolumn,andmaximumcapacityoftheadsorptioncolumnwasfoundatrangeof13.
5–108.
7mg/g(Vieiraetal.
2014).
OtherdyeremovalusingcolumnadsorptionstudiesisdepictedinTable5.
MiscellaneousadsorbateMiscellaneousadsorbateslikebenzaldehyde,salicylicacid,levofloxacin,etc.
arealsobeingremovedbycolumnadsorp-tiontreatment.
Mengetal.
studiedthecolumnadsorptiveremovalofsalicylicacidonthesurfaceofwollastonite-basedimprintedpolymer(WMIP).
Effectofinitialcon-centrationofsalicylicacid,columnbedheight,flowrateandtemperatureisperformed,anddatawereanalyzedbyThomasandAdamandBohartmodels(Mengetal.
2013).
Feasibilityoffixed-bedcolumnfilledwithactivatedcharcoalpreparedfromcoconuthusksforremovalofbenzaldehydefromitsaqueoussolutionisconducted.
Variousparameterssuchasinletconcentration,feedflowrate,beddepthandcolumninnerdiameterwereevaluated(Cantelietal.
2014).
Fourtypesofmagnesium(Mg)-impregnatedbiocharswerepreparedviathermalpyrolysisofwoodchipspretreatedwithMgSO4andcharacterizeditwithvarioussophisticatedinstruments.
Batchaswellascontinuousfixedcolumnexperimentswascarriedoutinordertoremoveantibiotics,Table4(continued)AdsorbateAdsorbentOperationparametersColumnisotherminvestigatedThomasmaximumadsorptioncapacityReferencesChromium(VI)Polypyrrole/Fe3O4nanocom-positeInitialconcentration,flowrate,compositionofnano-compositeandbedheightTM,ABMandYNM258.
36mg/gBhaumiketal.
(2013)Copper(II)Tetraethylenepentamine-modi-fiedsugarcanebagasseInitialconcentration,flowrateandbedheightTMandYNM0.
26mmol/gChenetal.
(2017)Copper(II)andnickel(II)Magnetizedsawdust(Fe3O4–SD)Initialconcentration,flowrateandbedheightTM,ABM,YNMandBDST31.
89and23.
59mg/gKapurandMondal(2016)Copper(II)andnickel(II)NaturalandimmobilizedmarinealgaeSargassumsp.
Initialconcentration,flowrateandbedheightTM2.
06and1.
69mmol/gBarquilhaetal.
(2017)AppliedWaterScience(2019)9:4545Page12of17levofloxacin.
Effectofdifferentflowrate,initialconcentra-tionandbeddepthwasanalyzed(Zhaoetal.
2018).
Xuandteammemberpreparedcarbonnanotube(CNT)andutilizedasanadsorbentforremovalof2-naphthol.
Processvariables(flowrate,initialconcentrationandbeddepth)andcolumnisotherms(Thomas,Yoon–NelsonandBDST)werealsoanalyzed.
Thebreakthroughandexhaustpointwascalcu-lated.
Theequilibriumadsorptionamountof2-naphtholontheCNT-basedcompositeadsorbentvariesfrom122.
7mg/kgto286.
6mg/kginthisexperimentalregion(Xuetal.
2017).
Pengandco-scientistshadfabricated,characterizedandutilizedanotheradsorbents,aminefunctionalizedmag-netic-activatedcharcoalderivedfrombamboowastes(AFM-BAC)andactivatedcharcoalfrombamboowastes(BAC)foradsorptionoffluoroquinoloneantibioticsciprofloxacin(CIP)andnorfloxacin(NOR)throughbatchandcolumnmethod.
ThesaturatedadsorptioncapacitiesofBACandAFM-BACwere172.
5mg/gand293.
2mg/gforCIPand193.
4mg/gand315.
7mg/gforNOR,respectively(Pengetal.
2017).
AtenololwasremovedusinggranularcharcoalbySan-cho(Sanchoetal.
2012)andSotelo(Soteloetal.
2012),andtheiradsorptioncapacitieswere51.
10and44.
36mg/g,respectively.
Comparisonofbatchandcolumnadsorptionstudieswasperformedusingactivatedcarbonforremovalofpharmaceuticalproductdiclofenac.
Initialpollutantconcentration,weightofadsorbentandvolumetricfeedflowratewereanalyzed.
Breakthroughtime,thetimewhen5%ofinitialconcentrationisdetectedintheeffluent,wasathigherinitialconcentrationandlowerflowrate.
Frac-tionalbedutilizationincreasedwiththeincreaseintheini-tialconcentrationandflowrate,butdecreasedwithhigheramountofactivatedcarbon.
Breakthroughcurvesexperi-mentaldatawerefittedusingThomas,Bohart–AdamsandYananalyticalmodels.
Yanmodelshowedthehighestaverageofthedeterminationcoefficients(R2=0.
9842)ofallexperiments,whiletheamountsadsorbedbythepackedcolumnwerebetterpredictedbyThomasequation(Francoetal.
2018).
Theadsorptionofranitidinehydro-chloride(RH)ontomicrowave-irradiatedAeglemarme-losCorreafruitshellwasalsoinvestigatedinafixed-bedcolumn(Sivarajasekaretal.
2018).
Theremovaloftotalorganiccarbonfromrealindustrialwastewaterusingpoly-ethylenimine-functionalizedpyroxenenanoparticles(PEI-PY)embeddedintodiatomitebyHethnawietal.
(2017).
Removalofacetaminophenfromsyntheticwastewaterinafixed-bedcolumnadsorptionusinglow-costcoconutshellwastepretreatedwithNaOH,HNO3,ozoneand/orchitosanwasperformed,andresultsofmaximumadsorp-tioncapacitywere:ozone-treatedGAC(20.
88mg/g)>chi-tosan-coatedGAC(16.
67mg/g)>HNO3-treatedGAC(11.
09mg/g)>NaOH-treatedGAC(7.
57mg/g)>as-receivedGAC(2.
84mg/g).
Thisrevealsthattheozone-treatedGACismorepreferableadsorbentthanotherinves-tigatedadsorbents(Yanyanaetal.
2018).
Table5DetailsofcolumnadsorptionstudiesofdyeDyeadsorbateAdsorbentOperationparametersColumnisotherminvestigatedThomasmaximumadsorptioncapacityReferencesMalachitegreen(MG)NaOH-modifiedricehuskpH,initialconcentra-tion,flowrateandbedheightTM,BDST,ABMandYNM101.
31mg/gChowdhuryandSaha(2013a)MethyleneblueWastewatermelonrindInitialconcentration,flowrateandbedheightTM,BDSTandABM113.
5mg/gLakshmipathyandSarada(2016)Acidyellow17TamarindseedpowderInitialconcentration,flowrate,pHandbedheightTM,YHM,BDSTandABM978.
5mg/gPatelandVashi(2012)MethylenebluePineconeInitialconcentration,flowrateandbedheightTM,BDSTandYNM55.
68mg/gYagubetal.
(2015)MethyleneblueNaOH-modifiedricehuskFlowrateandbedheightTM,BDSTandYNM101.
3mg/gChowdhury,andSaha(2013b)Malachitegreen(MG)NaOH-modifiedricehuskpH,initialconcentra-tion,flowrateandbedheightTM,BDST,ABMandYNM101.
31mg/gChowdhuryandSaha(2013a)AlluraredAC,tartrazineandsunsetyellowFCFGlassbead-coatedchitosanpHandbedheightTM,BDSTandYNM29.
8,75.
1and65.
6mg/gVieiraetal.
(2014)MethylblueBiocharandKaolinInitialconcentration,flowrateandbedheightTM,BDSTandYNM20.
06mg/gDawoodetal.
(2018)AppliedWaterScience(2019)9:45Page13of1745Challengesforutilization1.
Asindustryisalwaysdemandedforlowcost,lowerdis-charge,environmentalfriendly,easilyavailablemate-rialusageandleastspaciousforeffluenttreatmentplant,andmostofplantconsistsofbiologicaltreatmentasatertiarytreatmentduetoitsvastfeasibility;themaindisadvantagesofanyadsorptionarethatthehighpriceoftreatmentanddifficultregeneration.
Italsoproducedsolidwasteofexhaustedadsorbent.
2.
Columnadsorptionstudiesareconsideredasbetteradsorptionduetoreasonableadvantages,butchal-lengeforcolumnadsorptionisthatasfluidispassedthroughthefixedbedofsolidadsorbents,initiallytrans-ferofadsorbatefromthefeedfluidoccursatthebedentrance.
Asfeedfluidiscontinuouslypassedtowardthecolumn,MTZprogressivelymovethroughthebedoncetheadsorbentinaregionbecomessaturatedwiththeadsorbatemolecules.
Afterparticletimeduration,theadsorbentparticlesupstreamordownstreamoftheMTZdonotparticipateinthemass-transferprocesses,andthus,adsorptionprocessofremovingtheadsorbate(pollutants)iscongested.
Thereafteradsorbentmustbereplacedorregenerated.
Fixed-bedcolumnadsorptionhasfacingotherproblemsofpoortemperaturecontrol-ler,undesirableheatgradients,un-wantedchemicalreactions,channelinganddifficulttoclean.
3.
Forproperindustrialprospective,seriesofcolumnshouldbeattachedforbetteradsorptionresults.
Otherfactorssuchascolumncontainingmultipleadsorbents,numerousadsorbatesystemandalsotheirappropriateratioaretobeconsidered.
4.
Alltheexperimentsarebeingaccomplishedusingsyn-theticwastewaterofmetal,dyeandothercontamina-tionsincludingpharmaceuticalproductsinthecontinu-ousfixed-bedcolumnstudiesbyvariousresearchers.
But,realindustrialliketextile,dyeing,electroplating,tanning,paper,etc.
effluentmustbeconsideredfortheremovalofcomponentscontributingtheCOD,BOD,colorandotherparameters.
Furthermore,regenerationstudiesanddesorptionstepmodelingmustbecon-ducted.
ConclusionFromvariousliteraturesurveys,weconcludedthatfixed-bedcolumnstudiesforremovalofvariouscontaminationsfromsyntheticwastewaterarestillintheveryinfancy.
Thisreviewpapercomprisedofadsorption,itstypesandmecha-nism,typesofadsorbent,adsorbateandadsorptionstudy.
Columnstudyiscomparedwithotheradsorptionstudiesintabulatedform,whichrevealedthatcolumnstudyisbet-ter,easy,simple,economicalandfeasibleforindustrialforremovalofvariouscontaminationsincludingdye,metalandotherhazardouswaste.
Breakthroughcurvesanditsparametersareinterpretedtodesigncolumnbyvariousfigures.
Numerousprocessparametersareknowntohaveimportantinfluenceonthisphenomenon:initialconcentra-tionofadsorbate,flowrate,bedheight,pH,particlesizeofadsorbentandtemperature.
Detaildescriptionofcolumnisothermsmodels,i.
e.
,Thomasmodel,beddepthservicetime,theAdamsandBohartmodel,Yoon–Nelson,Clark,Wolborskaandmodifieddose–responsemodel,arestatedtounderstandtheadsorptionsystem.
Wehavereviewedrecentdevelopmentofdifferentadsorbentsintheapplicationofcontaminant(adsorbate),suchasmetal,ion,dyeandotherpollutantsremovalsusingfixed-bedcolumnstudyconcern-ingtooperationparameters,investigatedisotherms.
Finally,challengesforutilizationofthefixed-bedcolumnadsorptionstudyaredemonstrated,showingthegapsbetweenpilotandindustrialscales.
OpenAccessThisarticleisdistributedunderthetermsoftheCrea-tiveCommonsAttribution4.
0InternationalLicense(http://creativecommons.
org/licenses/by/4.
0/),whichpermitsunrestricteduse,distribu-tion,andreproductioninanymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.
ReferencesAbdelRahmanRO,KozakMW,HungY(2014)Radioactivepollutionandcontrol,Ch(16).
In:HungYT,WangLK,ShammasNK(eds)Handbookofenvironmentandwastemanagement.
WorldScientificPublishingCo,Singapore,pp949–1027.
https://doi.
org/10.
1142/9789814449175_0016AbdelRahmanRO,MetwallySS,El-KamashAM(2018)Lifecycleofionexchangersinnuclearindustry:Applicationinradioactivewastestreatmentandmanagementofexhaustedexchangers.
In:MartínezLMT,KharissovaOV,KharisovBI(eds)HandbookofEcomaterials.
Springer,Cham.
https://doi.
org/10.
1007/978-3-319-48281-1_108-1AbdolaliA,NgoHH,GuoW,ZhouJL,ZhangJ,LiangS,ChangSW,NguyenDD,LiuY(2017)Applicationofabreakthroughbiosorbentforremovingheavymetalsfromsyntheticandrealwastewatersinalab-scalecontinuousfixedbedcolumn.
BioresTechnol229:78–87.
https://doi.
org/10.
1016/j.
biortech.
2017.
01.
016AhmadAA,HameedBH(2009)Fixed-bedadsorptionofreactiveazodyeontogranularactivatedcarbonpreparedfromwaste.
JHaz-ardMater175(1–3):298–303.
https://doi.
org/10.
1016/j.
jhazmat.
2009.
10.
003AhmadR,KumarR(2011)Adsorptionofamaranthdyeontoaluminareinforcedpolystyrene.
CLEANSoilAirWater39(1):74–82.
https://doi.
org/10.
1002/clen.
201000125AhmedMJ,HameedBH(2018)Removalofemergingpharmaceuti-calcontaminantsbyadsorptioninafixedbedcolumn:areview.
EcotoxicolEnvironSaf149:257–266.
https://doi.
org/10.
1016/j.
ecoenv.
2017.
12.
012AppliedWaterScience(2019)9:4545Page14of17AlbadarinAB,MangwandiC,Al-MuhtasebAH,WalkerGM,AllenSJ,AhmadMNM(2012)Modellingandfixedbedcolumnadsorp-tionofCr(VI)ontoorthophosphoricacid-activatedlignin.
ChinJChemEng20(3):469–477.
https://doi.
org/10.
1016/s1004-9541(11)60208-5Al-EssaK,KhaliliF(2018)Heavymetalsadsorptionfromaqueoussolutionsontounmodifiedandmodifiedjordaniankaoliniteclay:batchandcolumntechniques.
AmJApplChem6(1):25–34.
https://doi.
org/10.
1021/je100770jAliI(2018)Microwaveassistedeconomicsynthesisofmultiwalledcarbonnanotubesforarsenicspeciesremovalinwater:batchandcolumnoperations.
JMolLiq271:677–685.
https://doi.
org/10.
1016/j.
molliq.
2018.
09.
021AraremA,BourasO,BouzidiA(2013)Batchandcontinuousfixed-bedcolumnadsorptionofCs+andSr2+ontomontmorillonite–ironoxidecomposite:comparativeandcompetitivestudy.
JRadio-analNuclChem298(1):537–545.
https://doi.
org/10.
1007/s10967-013-2433-yAtkinsPV(1994)Physicalchemistry,5thedn.
OxfordUniversityPress,OxfordBaharloueiA,JalilnejadE,SirousazarM(2018)Fixed-bedcol-umnperformanceofmethylenebluebiosorptionbyLuffacylindrica:statisticalandmathematicalmodeling.
ChemEngCommun205(11):1537–1554.
https://doi.
org/10.
1080/00986445.
2018.
1460364BanerjeeS,ChattopadhyayaMC(2013)Adsorptioncharacteristicsfortheremovalofatoxicdye,tartrazinefromaqueoussolutionsbyalowcostagriculturalby-product.
ArabJChem10(2):1629–1638.
https://doi.
org/10.
1016/j.
arabjc.
2013.
06.
005BanerjeeM,BarN,BasuRK,DasSK(2018)RemovalofCr(VI)fromitsaqueoussolutionusinggreenadsorbentpistachioshell:afixedbedcolumnstudyandGA–ANNmodeling.
WaterConservSciEng3(1):19–31.
https://doi.
org/10.
1007/s41101-017-0039-xBarquilhaCER,CossichES,TavaresCRG,SilvaEA(2017)Biosorp-tionofnickel(II)andcopper(II)ionsinbatchandfixed-bedcolumnsbyfreeandimmobilizedmarinealgaeSargassumsp.
JCleanProd150:58–64.
https://doi.
org/10.
1016/j.
jclepro.
2017.
02.
199BhaumikM,SetshediK,MaityA,OnyangoMS(2013)Chromium(VI)removalfromwaterusingfixedbedcolumnofpolypyrrole/Fe3O4nanocomposite.
SepPurifTechnol110:11–19.
https://doi.
org/10.
1016/j.
seppur.
2013.
02.
037BiswasS,MishraU(2015)Continuousfixed-bedcolumnstudyandadsorptionmodeling:removalofleadionfromaqueoussolu-tionbycharcoaloriginatedfromchemicalcarbonizationofrubberwoodsawdust.
JChemArticleID907379.
http://dx.
doi.
org/10.
1155/2015/907379Brion-RobyR,GagnonJ,DeschenesJ,ChabotB(2018)Investigationoffixedbedadsorptioncolumnoperationparametersusingachitosanmaterialfortreatmentofarsenatecontaminatedwater.
JEnvironChemEng6(1):505–511.
https://doi.
org/10.
1016/j.
jece.
2017.
12.
032CanteliAMD,CarpineD,ScheerAP,MafraMR,MafraL(2014)Fixed-bedcolumnadsorptionofthecoffeearomacompoundbenzaldehydefromaqueoussolutionontogranularactivatedcar-bonfromcoconuthusk.
WTFoodSciTechnol59(2):1025–1032.
https://doi.
org/10.
1016/j.
lwt.
2014.
06.
015CavalcanteCLJr(2000)Industrialadsorptionseparationprocesses:fundamentals,modelingandapplications.
LatinAmApplRes30:357–364ChenN,ZhangZ,FengC,LiM,ChenR,SugiuraN(2011)Investiga-tionsonthebatchandfixed-bedcolumnperformanceoffluorideadsorptionbyKanumamud.
Desalination268(1–3):76–82.
https://doi.
org/10.
1016/j.
desal.
2010.
09.
053ChenS,YueQ,GaoB,LiQ,XuX,FuK(2012)Adsorptionofhexavalentchromiumfromaqueoussolutionbymodifiedcornstalk:afixed-bedcolumnstudy.
BioresTechnol113:114–120.
https://doi.
org/10.
1016/j.
biortech.
2011.
11.
110ChenJD,YuJX,WangF,TangJQ,ZhangYF,XuYL,ChiRA(2017)SelectiveadsorptionandrecycleofCu2+fromaqueoussolutionbymodifiedsugarcanebagasseunderdynamiccondi-tion.
EnvironSciPollutRes24:1–8.
https://doi.
org/10.
1007/s11356-017-8608-2ChowdhuryS,SahaPD(2013a)AdsorptionofmalachitegreenfromaqueoussolutionbyNaOH-modifiedricehusk:fixed-bedcol-umnstudies.
EnvironProgrSustainEnergy32(3):633–639.
https://doi.
org/10.
1002/ep.
11674ChowdhuryS,SahaPD(2013b)Artificialneuralnetwork(ANN)modelingofadsorptionofmethylenebluebyNaOH-modifiedricehuskinafixed-bedcolumnsystem.
EnvironSciPollutRes20(2):1050–1058.
https://doi.
org/10.
1007/s11356-012-0912-2ChowdhuryZZ,ZainSM,RashidAK,RafiqueRF,KhalidK(2013)BreakthroughcurveanalysisforcolumndynamicssorptionofMn(II)ionsfromwastewaterbyusingMangostanagar-ciniapeel-basedgranular-activatedcarbon.
JChemArticleID959761,1–9.
https://doi.
org/10.
1155/2013/959761CrittendenB,ThomasWJ(1998)Adsorptiontechnologyanddesign,Chapter5:Processesandcycles.
ElsevierInc.
,NewYork,pp96–133DabrowskiA(2001)Adsorption-fromtheorytopractice.
AdvCollInterfaceSci93:135–224DawoodS,SenTK,PhanC(2018)Performanceanddynamicmodellingofbiocharandkaolinpackedbedadsorptioncol-umnforaqueousphasemethyleneblue(MB)dyeremoval.
EnvironTechnol26:1–11.
https://doi.
org/10.
1080/09593330.
2018.
1491065DebnathS,BiswasK,GhoshUC(2010)RemovalofNi(II)andCr(VI)withTitanium(IV)oxidenanoparticleagglomeratesinfixed-bedcolumns.
IndEngChemRes49(5):2031–2039.
https://doi.
org/10.
1021/ie9014827DoradoAD,GamisansX,ValderramaC,SoleM,LaoC(2014)Cr(III)removalfromaqueoussolutions:astraightforwardmodelapproachingoftheadsorptioninafixed-bedcolumn.
JEnvironSciHealthPartAToxic/HazardSubstEnvironEng49(2):179–186.
https://doi.
org/10.
1080/10934529.
2013.
838855DuZ,JiaM,MenJ(2014)RemovalofcesiumfromaqueoussolutionusingPAN-basedferrocyanidecompositespheres:adsorptiononafixed-bedcolumn.
ApplMechMater496–500:259–263.
https://doi.
org/10.
4028/www.
scientific.
net/amm.
496-500.
259EsparzaP,BorgesME,DazL,Alvarez-GalvanMC,FierroJLG(2011)EquilibriumandkineticsofadsorptionofmethyleneblueonTi-modifiedvolcanicashes.
AmInstChemEngJ57(3):819–825.
https://doi.
org/10.
1002/aic.
12285FathiMR,AsfaramA,HadipourA,RoostaM(2014)Kineticsandthermodynamicstudiesforremovalofacidblue129fromaque-oussolutionbyalmondshell.
JEnvironHealthSciEng12(1):62.
https://doi.
org/10.
1186/2052-336x-12-62FrancoMAE,CarvalhoCB,BonettoMM,SoaresRP,FerisLA(2018)Diclofenacremovalfromwaterbyadsorptionusingactivatedcarboninbatchmodeandfixed-bedcolumn:isotherms,ther-modynamicstudyandbreakthroughcurvesmodeling.
JCleanProd181:145–154.
https://doi.
org/10.
1016/j.
jclepro.
2018.
01.
138FreitasED,AlmeidaHJ,NetoAFA,VieiraMGA(2018)ContinuousadsorptionofsilverandcopperbyVerde-lodobentoniteinafixedbedflow-throughcolumn.
JCleanProd171:613–621.
https://doi.
org/10.
1016/j.
jclepro.
2017.
10.
036GhalyM,FaridaMSEE,HegazyMM,AbdelRahmanRO(2016)EvaluationofsyntheticBirnessiteutilizationasasorbentforcobaltandstrontiumremovalfromaqueoussolution.
ChemEngJ284:1373–1385.
https://doi.
org/10.
1016/j.
cej.
2015.
09.
025GhoraiS,PantKK(2004)Investigationsonthecolumnperformanceoffluorideadsorptionbyactivatedaluminainafixed-bed.
AppliedWaterScience(2019)9:45Page15of1745ChemEngJ98(1–2):165–173.
https://doi.
org/10.
1016/j.
cej.
2003.
07.
003GirishCR,MurtyVR(2014)Adsorptionofphenolfromaqueoussolutionusinglantanacamera,forestwaste:kinetics,iso-therm,andthermodynamicstudies.
IntSchResNotArticleID-201626.
http://dx.
doi.
org/10.
1155/2014/201626GuptaVK,AliI(2012)Environmentalwater:advancesintreatment,remediationandrecycling,Chapter2-Watertreatmentforinor-ganicpollutantsbyadsorptiontechnology,ElsevierIns,ISBN:9780444594037,29-33HasanzadehM,AnsariR,OstovarF(2016)Synthesisandapplica-tionofCeO2/sawdustnanocompositeforremovalofAs(III)ionsfromaqueoussolutionsusingafixedbedcolumnsystem.
GlobalNESTJ19(1):7–16HasfalinaCM,MaryamRZ,LuqmanCA,RashidM(2012)Adsorp-tionofcopper(II)fromaqueousmediuminfixed-bedcolumnbyKenaffibres.
APCBEEProcedia3:255–263.
https://doi.
org/10.
1016/j.
apcbee.
2012.
06.
079HeJ,CuiA,NiF,DengS,ShenF,YangG(2018)Anovel3Dyttriumbased-grapheneoxide-sodiumalginatehydrogelforremarkableadsorptionoffluoridefromwater.
JColloidInter-faceSci531:37–46.
https://doi.
org/10.
1016/j.
jcis.
2018.
07.
017HethnawiA,ManasrahAD,VitaleG,NassarNN(2017)Fixed-bedcolumnstudiesoftotalorganiccarbonremovalfromindus-trialwastewaterbyuseofdiatomitedecoratedwithpoly-ethyleniminefunctionalizedpyroxenenanoparticles.
JCol-loidInterfaceSci513(1):28–42.
https://doi.
org/10.
1016/j.
jcis.
2017.
10.
078KafshgariF,KeshtkarAR,MousavianMA(2013)StudyofMo(VI)removalfromaqueoussolution:applicationofdiffer-entmathematicalmodelstocontinuousbiosorptiondata.
IranJEnvironHealthSciEng10(1):1–11.
https://doi.
org/10.
1186/1735-2746-10-14KapurM,MondalMK(2016)Designandmodelparametersestimationforfixed-bedcolumnadsorptionofCu(II)andNi(II)ionsusingmagnetizedsawdust.
DesalinationWaterTreat57(26):12192–12203.
https://doi.
org/10.
1080/19443994.
2015.
1049961KhanU,RaoRAK(2017)AhighactivityadsorbentofchemicallymodifiedCucurbitamoschata(anoveladsorbent)fortheremovalofCu(II)andNi(II)fromaqueoussolution:synthesis,characteri-zationandmetalremovalefficiency.
ProcessSafEnvironProt107:238–258.
https://doi.
org/10.
1016/j.
psep.
2017.
02.
008KratochvilD,VoleskyB(1998)Advancesinthebiosorptionofheavymetals.
TrendsBiotechnol16:291–300.
https://doi.
org/10.
1016/s0167-7799(98)01218-9KumarR,SinghRD,SharmaKD(2005)WaterresourcesofIndia.
CurrSci89(5):794–811LakshmipathyR,SaradaNC(2016)Methyleneblueadsorptionontonativewatermelonrind:batchandfixedbedcolumnstudies.
DesalinationWaterTreat57(23):10632–10645.
https://doi.
org/10.
1080/19443994.
2015.
1040462LeeC,KimJ,KangJ,KimS,ParkS,LeeS,ChoiJ(2015)Compara-tiveanalysisoffixed-bedsorptionmodelsusingphosphatebreak-throughcurvesinslagfiltermedia.
DesalinationWaterTreat55(7):1795–1805.
https://doi.
org/10.
1080/19443994.
2014.
930698LimAP,ArisAZ(2014)Continuousfixed-bedcolumnstudyandadsorptionmodeling:removalofcadmium(II)andlead(II)ionsinaqueoussolutionbydeadcalcareousskeletons.
BiochemEngJ87:50–61.
https://doi.
org/10.
1016/j.
bej.
2014.
03.
019LiuD,SunD(2012)ModelingadsorptionofCu(II)usingpolyani-line-coatedsawdustinafixed-bedcolumn.
EnvironEngSci29(6):461–465.
https://doi.
org/10.
1089/ees.
2010.
0435Lopez-CervantesJ,Sanchez-MachadoDI,Sanchez-DuarteRG,Correa-MurrietaMA(2017)Studyofafixed-bedcolumnintheadsorptionofanazodyefromanaqueousmediumusingachitosan–glutaraldehydebiosorbent.
AdsorptSciTechnol36:215–232.
https://doi.
org/10.
1177/0263617416688021MaheshwariU,GuptaS(2016)RemovalofCr(VI)fromwastewa-terusingactivatedneembarkinafixed-bedcolumn:interfer-enceofotherionsandkineticmodellingstudies.
DesalinationWaterTreat57(18):8514–8525.
https://doi.
org/10.
1080/19443994.
2015.
1030709MengM,FengY,ZhangM,LiuY,JiY,WangJ,WuY,YanY(2013)Highlyefficientadsorptionofsalicylicacidfromaqueoussolu-tionbywollastonite-basedimprintedadsorbent:afixed-bedcol-umnstudy.
ChemEngJ225:331–339.
https://doi.
org/10.
1016/j.
cej.
2013.
03.
080MirallesN,ValderramaC,CasasI,MartnezM,FloridoA(2010)Cadmiumandleadremovalfromaqueoussolutionbygrapestalkwastes:modelingofafixed-bedcolumn.
JChemEngData55(9):3548–3554.
https://doi.
org/10.
1021/je100200wMonashP,PugazhenthiG(2010)Removalofcrystalvioletdyefromaqueoussolutionusingcalcinedanduncalcinedmixedclayadsorbents.
SepSciTechnol45(1):94–104.
https://doi.
org/10.
1080/01496390903256174MondalP,MehtaD,SaharanVK,GeorgeS(2018)Continuouscolumnstudiesforwaterdefluoridationusingsynthesizedmagnesium-incorporatedhydroxyapatitepellets:experimentalandmodelingstudies.
EnvironProcess5(2):261–285.
https://doi.
org/10.
1007/s40710-018-0287-6MontgomeryJM(1985)Watertreatmentprinciplesanddesign.
Con-sultingEngineersInc.
,BostonMoscatelloN,SwayambhuG,JonesCH,XuJ,DaiN,PfeiferBA(2018)Continuousremovalofcopper,magnesium,andnickelfromindustrialwastewaterutilizingthenaturalproductyersin-iabactinimmobilizedwithinapacked-bedcolumn.
ChemEngJ343:173–179.
https://doi.
org/10.
1016/j.
cej.
2018.
02.
093MoyoM,PakadeVE,ModiseSJ(2017)Biosorptionoflead(II)bychemicallymodifiedMangiferaindicaseedshells:adsorbentpreparation,characterizationandperformanceassessment.
ProcessSafEnvironProt111:40–51.
https://doi.
org/10.
1016/j.
psep.
2017.
06.
007NguyenTAH,NgoHH,GuoWS,PhamTQ,LiFM,NguyenTV,BuiXT(2015)Adsorptionofphosphatefromaqueoussolutionsandsewageusingzirconiumloadedokara(ZLO):fixed-bedcolumnstudy.
SciTotalEnviron523:40–49.
https://doi.
org/10.
1016/j.
scitotenv.
2015.
03.
126OzdemirO,TuranM,TuranAZ,FakiA,EnginAB(2009)Feasibilityanalysisofcolorremovalfromtextiledyeingwastewaterinafixed-bedcolumnsystembysurfactant-modifiedzeolite(SMZ).
JHazardMater166:647–654.
https://doi.
org/10.
1016/j.
jhazmat.
2008.
11.
123PatelH,VashiRT(2012)FixedbedcolumnadsorptionofACIDYellow17dyeontoTamarindSeedPowder.
CanJChemEng90(1):180–185.
https://doi.
org/10.
1002/cjce.
20518PatelH,VashiRT(2013)Acomparisonstudyofremovalofmeth-ylenebluedyebyadsorptiononNeemleafpowder(NLP)andactivatedNLP.
JEnvironEngLandscManag21(1):36–41.
https://doi.
org/10.
3846/16486897.
2012.
671772PengX,HuF,ZhangT,QiuF,DaiH(2017)Amine-functionalizedmagneticbamboobasedactivatedcarbonadsorptiveremovalofciprofloxacinandnorfloxacin:abatchandfixed-bedcolumnstudy.
BioresTechnol249:924–934.
https://doi.
org/10.
1016/j.
biortech.
2017.
10.
095RangabhashiyamS,SelvarajuN(2015a)EfficacyofunmodifiedandchemicallymodifiedSwieteniamahagonishellsfortheremovalofhexavalentchromiumfromsimulatedwastewater.
JMolLiq209:487–497.
https://doi.
org/10.
1016/j.
molliq.
2015.
06.
033RangabhashiyamS,SelvarajuN(2015b)EvaluationofthebiosorptionpotentialofanovelCaryotaurensinflorescencewastebiomassfortheremovalofhexavalentchromiumfromaqueoussolutions.
AppliedWaterScience(2019)9:4545Page16of17JTaiwanInstChemEng47:59–70.
https://doi.
org/10.
1016/j.
jtice.
2014.
09.
034RangabhashiyamS,NandagopalMS,NakkeeranE,SelvarajuN(2016)Adsorptionofhexavalentchromiumfromsyntheticandelectro-platingeffluentonchemicallymodifiedSwieteniamahagonishellinapackedbedcolumn.
EnvironMonitAssess188:411.
https://doi.
org/10.
1007/s10661-016-5415-zRaoKS,AnandS,VenkateswarluP(2011)ModelingthekineticsofCd(II)adsorptiononSyzygiumcuminiL.
leafpowderinafixedbedminicolumn.
JIndEngChem17(2):174–181.
https://doi.
org/10.
1016/j.
jiec.
2011.
02.
003RecepogluYK,KabayN,IpekIY,ArdaM,YukselM,YoshizukaK,NishihamaS(2018)Packedbedcolumndynamicstudyforboronremovalfromgeothermalbrinebyachelatingfiberandbreak-throughcurveanalysisbyusingmathematicalmodels.
Desalina-tion437:1–6.
https://doi.
org/10.
1016/j.
desal.
2018.
02.
022RoutK,SahooMK,SahooCR(2018)AdsorptionpotentialofBlastFurnaceGranulatedslagtowardsremovalofaqueouscyanide.
IntResJEngTechnol5(1):273–277SameeraV,NagaDeepthiCH,SrinuBabuG,RaviTejaY(2011)Roleofbiosorptioninenvironmentalcleanup.
JMicrobBiochemTechnolR1:001.
https://doi.
org/10.
4172/1948-5948.
r1-001SanchoJLS,RodriguezAR,TorrellasSA,RodriguezJG(2012)Removalofanemergingpharmaceuticalcompoundbyadsorp-tioninfixedbedcolumn.
DesalinationWaterTreat45(1–3):305–314.
https://doi.
org/10.
1080/19443994.
2012.
692062SaravananA,SenthilKumarP,YaswanthrajM(2018)Modelingandanalysisofapacked-bedcolumnfortheeffectiveremovalofzincfromaqueoussolutionusingdualsurfacemodifiedbiomass.
PartSciTechnolIntJ36(8):934–944.
https://doi.
org/10.
1080/02726351.
2017.
1329243SathasivamK,HarisMRHM(2010)Adsorptionkineticsandcapacityoffattyacid-modifiedbananatrunkfibersforoilinwater.
WaterAirSoilPollut213(1–4):413–423.
https://doi.
org/10.
1007/s11270-010-0395-zSawyerNC,McCartyPL,ParkinGF(1994)Chemistryforenvironmen-talengineering.
McGrawHillInternationalEdition,SingaporeSelimKA,YoussefMA,AbdEl-RahiemFH,HassanMS(2014)DyeremovalusingsomesurfacemodifiedsilicatemineralsDyeremovalusingsomesurfacemodifiedsilicateminerals.
IntJMinSciTechnol24(2):183–189.
https://doi.
org/10.
1016/j.
ijmst.
2014.
01.
007SenthilKumarP,SaiDeepthiASL,BharaniR,RakkeshG(2015)StudyofadsorptionofCu(II)ionsfromaqueoussolutionbysurface-modifiedEucalyptusglobulusseedsinafixed-bedcol-umn:experimentaloptimizationandmathematicalmodeling.
ResChemIntermed41(11):8681–8698.
https://doi.
org/10.
1007/s11164-015-1921-9ShafeeyanMS,DaudWMAW,ShamiriA(2014)Areviewofmath-ematicalmodelingoffixed-bedcolumnsforcarbondioxideadsorption.
ChemEngResDes92(5):961–988.
https://doi.
org/10.
1016/j.
cherd.
2013.
08.
018ShahbaziA,YounesiH,BadieiA(2013)Batchandfixed-bedcolumnadsorptionofCu(II),Pb(II)andCd(II)fromaqueoussolutionontofunctionalisedSBA-15mesoporoussilica.
CanJChemEng91(4):739–750.
https://doi.
org/10.
1002/cjce.
21691SharmaSK,SanghiR(2012)Advancesinwatertreatmentandpollu-tionprevention.
Springer,DordrechtShengL,ZhangY,TangF,LiuS(2018)Mesoporous/microporoussil-icamaterials:preparationfromnaturalsandsandhighlyefficientfixed-bedadsorptionofmethyleneblueinwastewater.
Micropo-rousMesoporousMater257:9–18.
https://doi.
org/10.
1016/j.
micromeso.
2017.
08.
023SinghR,GautamN,MishraA,GuptaR(2011)Heavymetalsandlivingsystems:anoverview.
IndianJournalofPharmacology43(3):246–253.
https://doi.
org/10.
4103/0253-7613.
81505SivarajasekarN,MohanrajN,BaskarR,SivamaniS(2018)Fixed-bedadsorptionofranitidinehydrochlorideontomicrowaveassisted—activatedAeglemarmelosCorreafruitshell:statisti-caloptimizationandbreakthroughmodelling.
ArabJSciEng43(5):2205–2215SoteloJL,OvejeroG,RodriguezA,AlvarezS,GarciaJ(2012)Removalofatenololandisoproturoninaqueoussolutionsbyadsorptioninafixed-bedcolumn.
IndEngChemRes51(13):5045–5055.
https://doi.
org/10.
1021/ie300334qSukumarC,JanakiV,VijayaraghavanK,Kamala-KannanS,ShanthiK(2017)RemovalofCr(VI)usingco-immobilizedactivatedcarbonandBacillussubtilis:fixed-bedcolumnstudy.
CleanTechnolEnvironPolicy19(1):251–258.
https://doi.
org/10.
1007/s10098-016-1203-2TeutscherovaN,HouskaJ,NavasM,MasaguerA,BenitoM,VazquezE(2018)LeachingofammoniumandnitratefromAcrisolandCalcisolamendedwithholmoakbiochar:acolumnstudy.
Geoderma323:136–145.
https://doi.
org/10.
1016/j.
geoderma.
2018.
03.
004UngerKK,SkudasR,SchulteMM(2008)Particlepackedcolumnsandmonolithiccolumnsinhigh-performanceliquidchromatogra-phy-comparisonandcriticalappraisal.
JChromatogrA1184(1–2):393–415.
https://doi.
org/10.
1016/j.
chroma.
2007.
11.
118USEPAUnitedStatesEnvironmentalProtectionAgency(1983)Con-troloforganicsubstancesinwaterandwastewater,DocumentNo.
:U.
S.
EPA-600/8-83-011VasanthKumarK,SubanandamK,BhagavanuluDVS(2004)MakingGACsorptioneconomy.
PollutRes23(3):439–444VieiraMLG,EsquerdoVM,NobreLR,DottoGL,PintoLAA(2014)Glassbeadscoatedwithchitosanforthefoodazodyesadsorp-tioninafixedbedcolumn.
JIndEngChem20(5):3387–3393.
https://doi.
org/10.
1016/j.
jiec.
2013.
12.
024VilvanathanS,ShanthakumarS(2017)ColumnadsorptionstudiesonnickelandcobaltremovalfromaqueoussolutionusingnativeandbiocharformofTectonagrandis.
EnvironProgrSustainEnergy36:1030–1038.
https://doi.
org/10.
1002/ep.
12567WanNgahWS,TeongLC,TohRH,HanafiahMAKM(2012)Utili-zationofchitosan–zeolitecompositeintheremovalofCu(II)fromaqueoussolution:adsorption,desorptionandfixedbedcol-umnstudies.
ChemEngJ209:46–53.
https://doi.
org/10.
1016/j.
cej.
2012.
07.
116WangW,LiM,ZengQ(2015)Adsorptionofchromium(VI)bystrongalkalineanionexchangefiberinafixed-bedcolumn:experimentsandmodelsfittingandevaluating.
SepPurifTechnol149:16–23.
https://doi.
org/10.
1016/j.
seppur.
2015.
05.
022WangF,YuJ,ZhangZ,XuY,ChiR(2018)Anamino-functionalizedRamiestalk-basedadsorbentforhighlyeffectiveCu2+removalfromwater:adsorptionperformanceandmechanism.
Pro-cessSafEnvironProt117:511–522.
https://doi.
org/10.
1016/j.
psep.
2018.
05.
023XavierALP,AdarmeOFH,FurtadoLM,FerreiraGMD,SilvaLHM,GilLF,GurgelLVA(2018)Modelingadsorptionofcopper(II),cobalt(II)andnickel(II)metalionsfromaqueoussolutionontoanewcarboxylatedsugarcanebagasse.
PartII:Optimizationofmonocomponentfixed-bedcolumnadsorption.
JColloidInter-faceSci516:431–445.
https://doi.
org/10.
1016/j.
jcis.
2018.
01.
068XuL,WangS,ZhouJ,DengH,FrostRL(2017)Columnadsorptionof2-naphtholfromaqueoussolutionusingcarbonnanotube-basedcompositeadsorbent.
ChemEngJ335:450–457.
https://doi.
org/10.
1016/j.
cej.
2017.
10.
176YagubMT,SenTK,AfrozeS,AngHM(2015)Fixed-beddynamiccolumnadsorptionstudyofmethyleneblue(MB)ontopinecone.
DesalinationWaterTreat55(4):1026–1039.
https://doi.
org/10.
1080/19443994.
2014.
924034YangQ,ZhongY,LiX,LiX,LuoK,WuaX,ChenH,LiuY,ZengG(2015)Adsorption-coupledreductionofbromatebyAppliedWaterScience(2019)9:45Page17of1745Fe(II)–Al(III)layereddoublehydroxideinfixed-bedcolumn:experimentalandbreakthroughcurvesanalysis.
JIndEngChem28:54–59.
https://doi.
org/10.
1016/j.
jiec.
2015.
01.
022YanyanaL,KurniawanaTA,ZhuM,OuyangT,AvtarR,OthmanMHD,MohammadBT,AlbadarinAB(2018)Removalofacetaminophenfromsyntheticwastewaterinafixed-bedcol-umnadsorptionusinglow-costcoconutshellwastepretreatedwithNaOH,HNO3,ozone,and/orchitosan.
JEnvironManag226(15):365–376.
https://doi.
org/10.
1016/j.
jenvman.
2018.
08.
032YeY,YangJ,JiangW,KangJ,HuY,NgoHH,GuoW,LiuY(2018)Fluorideremovalfromwaterusingamagnesia–pullulancompos-iteinacontinuousfixed-bedcolumn.
JEnvironManag206:929–937.
https://doi.
org/10.
1016/j.
jenvman.
2017.
11.
081YiY,WangZ,ZhangK,YuG,DuanX(2008)SedimentpollutionanditseffectonfishthroughfoodchainintheYangtzeRiver.
IntJSedimRes23(4):338–347.
https://doi.
org/10.
1016/S1001-6279(09)60005-6ZainiH,AbubakarS,RihayatT,SuryaniS(2018)Adsorptionandkineticsstudyofmanganesse(II)inwastewaterusingver-ticalcolumnmethodbysugarcanebagasse.
IOPConfSerMaterSciEng334:012025.
https://doi.
org/10.
1088/1757-899x/334/1/012025ZendehdelM,MohammadiH(2018)Thefixed-bedcolumnstudyforheavymetalsremovalfromthewastewaterbypolyacrylamide-co-acrylicacid/clinoptilolitenanocomposite.
NanosciNanotechnolAsia8(1):67–74.
https://doi.
org/10.
2174/2210681208666171214120031ZhangaW,DongaL,YanaH,LiaH,KanaZJX,YangaH,LibA,ChengaR(2011)Removalofmethylenebluefromaqueoussolu-tionsbystrawbasedadsorbentinafixed-bedcolumn.
ChemEngJ173(2):429–436.
https://doi.
org/10.
1016/j.
cej.
2011.
08.
001ZhaoX,YiS,DongS,XuH,SunY,HuX(2018)RemovalofLevo-floxacinfromaqueoussolutionbyMagnesiumimpregnatedBiochar:batchandcolumnexperiments.
ChemSpecBioavailab30(1):68–75.
https://doi.
org/10.
1080/09542299.
2018.
1487775ZhenD,LongZ(2018)CovalentlybondedionicliquidontocelluloseforfastadsorptionandefficientseparationofCr(VI):batch,col-umnandmechanisminvestigation.
CarbohydPolym198:190–197.
https://doi.
org/10.
1016/j.
carbpol.
2018.
02.
038ZouW,ZhaoL,ZhuL(2013)Adsorptionofuranium(VI)bygrape-fruitpeelinafixed-bedcolumn:experimentsandpredictionofbreakthroughcurves.
JRadioanalNuclChem295:717–727.
https://doi.
org/10.
1007/s10967-012-1950-4Publisher'sNoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
快快CDN主营业务为海外服务器无须备案,高防CDN,防劫持CDN,香港服务器,美国服务器,加速CDN,是一家综合性的主机服务商。美国高防服务器,1800DDOS防御,单机1800G DDOS防御,大陆直链 cn2线路,线路友好。快快CDN全球安全防护平台是一款集 DDOS 清洗、CC 指纹识别、WAF 防护为一体的外加全球加速的超强安全加速网络,为您的各类型业务保驾护航加速前进!价格都非常给力,需...
Hostodo近日发布了美国独立日优惠促销活动,主要推送了四款特价优惠便宜的VPS云服务器产品,基于KVM虚拟架构,NVMe阵列,1Gbps带宽,默认分配一个IPv4+/64 IPv6,采用solusvm管理,赠送收费版DirectAdmin授权,服务有效期内均有效,大致约为7折优惠,独立日活动时间不定,活动机型售罄为止,有需要的朋友可以尝试一下。Hostodo怎么样?Hostodo服务器好不好?...
hosteons当前对美国洛杉矶、达拉斯、纽约数据中心的VPS进行特别的促销活动:(1)免费从1Gbps升级到10Gbps带宽,(2)Free Blesta License授权,(3)Windows server 2019授权,要求从2G内存起,而且是年付。 官方网站:https://www.hosteons.com 使用优惠码:zhujicepingEDDB10G,可以获得: 免费升级10...
mmbb.com为你推荐
摩拜超15分钟加钱摩拜单车不是按骑行时间收费吗,我怎么只要开锁就要支付一元(而且只骑十几分钟)商标注册流程及费用我想注册商标一般需要什么流程和费用?www.jjwxc.net在哪个网站看小说?psbc.comwap.psbc.com网银激活丑福晋大福晋比正福晋大么同ip域名什么是同主机域名haole018.com为啥进WWWhaole001)COM怎么提示域名出错?囡道是haole001换地了吗www.haole012.com012qq.com真的假的ip在线查询我要用eclipse做个ip在线查询功能,用QQwry数据库,可是我不知道怎么把这个数据库放到我的程序里面去,高手帮忙指点下,小弟在这谢谢了avtt4.comwww.5c5c.com怎么进入
北京域名注册 国外免费域名网站 美元争夺战 mediafire下载工具 网络星期一 发包服务器 数字域名 百度云1t 银盘服务是什么 服务器是干什么用的 宏讯 全能空间 中国域名 申请免费空间 lamp的音标 网站加速 优惠服务器 卡巴斯基免费版 rsync ddos防火墙 更多