approximatedwww.niuav.com

www.niuav.com  时间:2021-03-19  阅读:()
WeiandYangAdvancesinDierenceEquations2013,2013:20http://www.
advancesindifferenceequations.
com/content/2013/1/20RESEARCHOpenAccessAnewapproachtoquantizedstabilizationofastochasticsystemwithmultiplicativenoiseLiWei*andYuanhuaYang*Correspondence:weili@mail.
sdu.
edu.
cnSchoolofControlScienceandEngineering,ShandongUniversity,Jinan,ChinaAbstractAnewquantization-dependentLyapunovfunctionisproposedtoanalyzethequantizedfeedbackstabilizationproblemofsystemswithmultiplicativenoise.
Forconvenienceoftheproof,onlyasingle-inputcaseisconsidered(whichcanbegeneralizedtoamulti-inputchannel).
Conditionsforthesystemstobequantizedmean-squarepoly-quadraticallystabilizedarederived,andtheanalysisofH∞performanceandcontrollerdesignisconductedforagivenlogarithmicquantizer.
Themostsignicantfeatureistheutilizationofaquantization-dependentLyapunovfunction,leadingtolessconservativeresults,whichisshownboththeoreticallyandthroughnumericalexamples.
Keywords:multiplicativenoise;discrete-timesystems;mean-squarestability;logarithmicquantizer;Lyapunovfunction1IntroductionRapidadvancementofdigitalnetworkshaswitnessedagrowinginterestininvestigat-ingeortsofsignalquantizationonfeedbackcontrolsystems.
Theemergingnetwork-basedcontrolsystemwhereinformationexchangebetweenthecontrollerandtheplantisthroughadigitalchannelwithlimitedcapacitieshasfurtherstrengthenedtheimportanceofthestudyonquantizedfeedbackcontrol.
Dierentfromtheclassicalcontroltheorywheredatatransmissionisassumedtohaveaninniteprecision,transmissionsubjecttoquantizationorlimiteddatacapacityindigitalnetworks,thetoolsinclassicalcontroltheorymaybeinvalid,sonewtoolsneedtobedevelopedfortheanalysisanddesignofquantizedfeedbacksystems.
Thestudyofquantizedfeedbackcontrolcanbetracedbackto[].
Mostoftheearlyre-searchfocusesontheunderstandingandmitigationofthequantizationeects,whilethequantizationerrorisconsideredtoimpairtheperformance[].
Inmoderncontrolthe-orywherethequantizerisalwaysconsideredasaninformationencoderanddecoder,onemainproblemishowmuchinformationhastobetransmittedinordertomakethesystemachieveacertainobjectivefortheclosed-loopsystem.
Foradiscrete-timesystemwithasingle-inputchannel,whenthestaticquantizerisconsidered,[]showstheminimumdatarateforthesystemtobestabilizedisprovedtobecharacterizedbytheunstablerootsofthesystemmatrix,andthecoarsestquantizerislogarithmic.
[]considersthecasewhentheinputchannelsubjecttoBernoullipacketsdropouts,theminimumdatarateisrelatednotonlytotheunstablerootsofthesystemmatrix,butalsowiththepacketsdropoutprobability.
Asforadiscrete-timesystemwithsingleinputsubjecttomultiplicativenoises2013WeiandYang;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
WeiandYangAdvancesinDierenceEquations2013,2013:20Page2of11http://www.
advancesindifferenceequations.
com/content/2013/1/20in[],thecoarseststaticquantizerforthesystemtobequadraticallymean-squarestabi-lizedisprovedtobelogarithmicwithinnitelevels,andthequantizationdensitycanbeapproximatedbysolvingaRiccatiequation;comprehensivestudyonfeedbackcontrolsys-temswithlogarithmicquantizersisnotgiven.
Asectorboundapproachisproposedin[]tocharacterizethequantizationerrorcausedbyalogarithmicquantizer,bywhichmanyquantizedproblemcanbesolvedbytherobusttools.
Theresultsarealsoextendedtoadaptivecontrolin[,]andtheLQR-typeproblemin[].
Basedonthecharacterizationofthequantizederror,[]giveslessconservativeconditionsofthequantizationdensitytoachievestabilitybystudyingthepropertiesofthelogarithmicquantizerfurther;[]useamethodbasedonTsypkin-typeLyapunovfunctionstostudytheabsolutestabilityanal-ysisofquantizedfeedbackcontrolofadiscrete-timelinearsystem,lessconservativecon-ditionsthanthoseinthequadraticframeworkarederived.
[]showedthatanite-levellogarithmicquantizersucestoapproachthewell-knownminimumaveragedatarateforstabilizinganunstablelineardiscrete-timesystemundertwobasicnetworkcongu-rations,andexplicitnite-levellogarithmicquantizersandthecorrespondingcontrollerstoapproachtheminimumaveragedataratearederived.
Fornetworkedsystems,[]givesthequantizedoutput-feedbackcontrollerforthecontrolwithdatapacketsdropout.
Inthispaper,anewapproachtotheanalysisandsynthesisofquantizedfeedbackcontrolforstochasticsystemswithmultiplicativenoiseisproposed.
Usinglogarithmicquantizedstate-feedbackcontrol,resultsformean-squarestabilizationandH∞performanceanal-ysisaswellasthecontrollersynthesisaregiven.
Lessconservativeresultsarederivedbytheutilizationofaquantization-dependentLyapunovfunction,whichisshownboththe-oreticallyandthroughanumericalexample.
Notations:P>(P≥)meansPisasymmetricpositive(semi-positive)matrix.
PTstandsforthetranspositionofmatrixP.
Thespaceofasquaresummableinnitese-quenceisdenotedbyl[,∞),andforw={w(t)}∈l[,∞),itsnormisgivenbyw=∞|w(t)|.
2Stabilityandstabilization2.
1ProblemformulationConsiderthefollowinglineardiscrete-timesystemswithmultiplicativenoise:x(t+)=A+Aξ(t)x(t)+B+Bξ(t)u(t),x()=x,()wherex(t)∈Rnisthesystemstatevectorwithknowninitialstatex;u(t)∈Rmisthecontrolinput;ξ(t)∈RistheprocessnoisewithEξ(t)=,Eξ(t)ξ(j)=σδtj,andisuncor-relatedwithinitialstatex.
Asprovedin[],thecoarseststaticquantizerforthesystem()tobequadraticallymean-squarestabilizedviaquantizedstate-feedbackisprovedtobelogarithmic.
Supposeuisascalarthathastobequantized,thelogarithmicquantizerisinthefollowingform:q(u)=uiif+δui,ifu=,–Q(–u)ifu,()whereρisthequantizeddensityofthelogarithmicquantizerq,whichcanbecomputedusingtheapproachgivenin[],withδ=–ρ+ρ.
()Forthemulti-inputcasewithdierentquantizers,thestate-feedbackcontrolwithoutquantizationisintheformofv(t)=Kx(t)Kx(t)···Kmx(t),()whichhastobetransmittedthroughadigitalnetworksubjecttologarithmicquantizersasgivenin(),anddenotethequantizedcontrolasu(t)=qv(t)=q(Kx(t))q(Kx(t))···qm(Kmx(t)),()whereqi,i=,.
.
.
,marequantizerswithdierentquantizationdensity.
Withoutlossofgenerality,inthispaperonlyasingle-inputcasewithm=isconsideredforsimplicity,whichcanbegeneralizedtoamulti-inputcase.
Foraquantizerasgivenintheformof(),asillustratedin[],usingthesectorboundapproach,thequantizationerrore(t)canbecharacterizedase(t)=qv(t)–v(t)=fKx(t)–Kx(t)=(t)Kx(t),()where(t)∈[–δ,δ]withδgivenby(),sotheclosed-loopsystemwithquantizedfeedbackisgivenbyx(t+)=A+Aξ(t)x(t)+B+Bξ(t)+(t)Kx(t).
()Wemainlyfocusonthederivationoflessconservativesucientconditionsforthesystemtoachievecertainperformance.
Tomakethepaperself-contained,thedenitionsforthesystem()tobemean-squarestableandmean-squarepoly-quadraticalstableareintro-duced.
DenitionTheclosedsystem()iscalledmean-squarestablewithquantizedfeedbackcontrolintheformof()ifthereexistsacontrolLyapunovfunctionVP(x)=xT(t)Px(t)satisfyingEVPx(t+)–EVPx(t),Q>,VandVsatisfying–Q[A+(–δ)BK]TViσ[A+(–δ)BK]TViQi–Vi–VTiQi–Vi–VTi,Q>,VandVsatisfying()and().
()and()():SupposethereexistmatricesQ>,Q>,VandVsatisfying()and().
First,asQi>,wehave(Vi–Qi)TQ–i(Vi–Qi)≥,whichimplies–VTiQ–iVi≤Qi–VTi–Vi.
()From()and()wehave–Q[A+(–δ)BK]TViσ[A+(–δ)BK]TVi–VTiQ–iVi–VTiQ–iVi,Q>,VandKsatisfying–Q[AV+(–δ)BK]Tσ[AV+(–δ)BK]TQi–V–VTQi–V–VTandQ>,VandKsatisfying()and().
Fromthe(,)block,weknowthatQi–V–VTQi>,soVisnonsingular.
Performingdiag{V–T,V–T,V–T}anddiag{V–,V–,V–}to()and(),respectively,yields–V–TQV–V–T[AV+(–δ)BK]TV–σV–T[AV+(–δ)BK]TV–V–TQiV––V–T–V–V–TQiV––V–T–V–,Q>,VandVsatisfying()and(),andusingthecontrollergaingivenin(),thesystem()canachievemean-squarepoly-quadraticallystability.
TheoremisbasedonTheorembysettingV=V=V,whichincreasestheconser-vativeness;thefollowingtheoremgivesalessconservativecondition.
TheoremConsiderthesystemin()andthestatefeedbackcontrollawin().
Givenalogarithmicquantizerasin(),theclosed-loopsystemin()ismean-squarepoly-quadraticallystableifthereexistmatricesQi>,Xi>,ViandKsatisfying–Q[A+(–δ)BK]T[A+(–δ)BK]T–VTi–ViVTi–XiVTi–ViVTiXi,Q>,VandV.
WhenTheo-remisusedtocomputethecoarsestquantizationdensityδmaxsuchthattheclosed-loopquantizedsystemismean-squarepoly-quadraticallystable,thatis,()and()arebilin-earmatrixinequalities.
Inthiscase,alinesearch(suchasthebisectionmethod)hastobeperformedtothevariablesδin()and(),andndδmaxiteratively,whichcanbereferredto[–].
2.
4IllustrativeexampleInthispart,anexampleisgiventoshowthatthenewproposedLyapunovfunctioncanleadtolessconservativeconditionsofthequantizationdensityforthesystemtoachievestability.
ExampleForthestochasticdiscrete-timesystem(),considerthescalarcaseofthefollowingform:A=A=.
–.
–.
.
.
–.
,B=B=T,()Eξ(t)=,Eξ(t)=σ=.
.
Itcanbeprovedthatthesystemwithoutcontrolpartisunstableinthemean-squaresense.
Supposethatthestate-feedbackin()isgivenbyK=[.
–.
],andthequantizerweuseislogarithmicintheformof().
Wewanttodeterminethemaximumsectorboundδmaxbelowwhichthestochasticsystemwithquantizedstatefeedbackismean-squareasymptoticallystable.
TablegivesthemaximumboundofδmaxusingtheLyapunovfunc-tionrelatedtothequantizationdensityproposedinthispaperandthegeneralcontrolLyapunovfunction.
WeiandYangAdvancesinDierenceEquations2013,2013:20Page9of11http://www.
advancesindifferenceequations.
com/content/2013/1/20Table1ComparisonofquantizationdensityMethodsδmaxρinfQuadraticapproach0.
44500.
3841Quantizationdependentapproach0.
49960.
33373ExtensiontoH∞performanceanalysisForthesystemx(t+)=A+Aξ(t)x(t)+B+Bξ(t)u(t)+Gw(t),()z(t)=Cx(t)+Du(t)+Fw(t),()wherethestatex(t),theinputu(t)andthesystemnoiseξ(t)aredenedasthoseofthesystem(),z(t)∈Rnisthecontroloutput.
A,A,B,B,C,D,G,Faresystemmatriceswithproperdimensions.
Supposethequantizerisgiventobelogarithmicintheformof()andthequantizationdensityisknown,sotheclosed-loopsystemwiththequantizedstatefeedbackcontrolisgivenasfollows:x(t+)=A+Aξ(t)x(t)+B+Bξ(t)+(t)Kx(t)+Gw(t),()z(t)=Cx(t)+D+(t)Kx(t)+Fw(t),()where(t)∈[–δ,δ].
DeningW={w(t)}∈l[,∞),theobjectiveofthispartistoderivetheconditionsforthesystem()and()tobemean-squareasymptoticallystablewithanH∞disturbanceattentionlevelγ,thatis,z(t),Q=QT>,VandVsatisfying–Q[A+(–δ)BK]TVi[C+(–δ)DK]Tσ[A+(–δ)BK]TVi–γIGTViFTQi–Vi–VTi–IQi–Vi–VTi<,()–Q[A+(+δ)BK]TVi[C+(+δ)DK]Tσ[A+(+δ)BK]TVi–γIGTViFTQi–Vi–VTi–IQi–Vi–VTi<,i∈{,}.
()ProofThetheoremisprovenbasedontheLyapunovfunctiondenedin().
First,()and()imply()and(),whichguaranteestheclosed-loopsystemin()and()toWeiandYangAdvancesinDierenceEquations2013,2013:20Page10of11http://www.
advancesindifferenceequations.
com/content/2013/1/20bemean-squarestablebyTheorem.
ToprovetheH∞performance,assumezeroinitialconditionsandconsiderthefollowingindex:=∞EzT(t)z(t)–γEwT(t)w(t)≤∞EzT(t)z(t)–γEwT(t)w(t)+EVx(t),()whereEVx(t)=ExT(t+)Q(t+)x(t+)–xT(t)Q(t)x(t).
()Then,alongthesolutionsof()and(),wehave=∞ηT(t)η(t),()withη(t)=x(t)w(t),=,where=A++(t)BKTQ(t+)A++(t)BK–Q(t)+σA++(t)BKTQ(t+)A++(t)BK+C++(t)DKTC++(t)DK,()=A++(t)BKTQ(t+)G+C++(t)DKTF,()=GTQ(t+)G+FTF–γI.
()Ontheotherhand,bysimilarreasoningasintheproofofTheorem,wecanconcludefrom()and()that<.
Thenfrom()weknowthatTheproofiscompleted.
4ConclusionTheproblemofquantizedstate-feedbackcontrolforastochasticsystemwithmulti-plicativenoiseshasbeeninvestigatedthroughaquantization-dependentapproach.
Con-ditionsformean-squarepoly-quadraticalstabilityareobtainedbyintroducinganewquantization-dependentLyapunovfunctionapproachforlinearstatefeedbackwithalog-arithmicquantizer,whichareshowntobelessconservativethanthosederivedbyacom-monLyapunovfunction.
Moreover,H∞performanceanalysishasalsobeenproposedinthequantization-dependentframework.
However,itisworthpointingoutthatthoughlessconservativeconditionsareobtained,dierentfromthederivationofthecoarsestquan-tizer,theexplicitrelationofthesystemmatricesandquantizationdensityisnotgiven.
Theanalysisofrelationbetweenthequantizationdensityandthesystemmatricesandthestatisticalpropertiesofnoisesintheproposedquantization-dependentframeworkisasubjectworthfurtherresearching.
WeiandYangAdvancesinDierenceEquations2013,2013:20Page11of11http://www.
advancesindifferenceequations.
com/content/2013/1/20CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsLWcarriedouttheproofofthemainpartofthisarticle,YYcorrectedthemanuscriptandparticipatedinitsdesignandcoordination.
Allauthorshavereadandapprovedthenalmanuscript.
AcknowledgementsWewouldliketothanktheeditor-in-chief,theassociateeditorandthereviewersfortheirvaluablecommentsonthepaperwhichhaveledtosignicantimprovementonthepresentationandqualityofthepaper.
ThisworkissupportedbytheTaishanScholarConstructionEngineeringbyShandongGovernment,theNationalNaturalScienceFoundation(No.
61174141),andtheMajorStateBasicResearchDevelopmentProgramofChina(973Program)(No.
2009cb320600),YangtseRiveScholarBonusSchemes(No.
31400080963017),NationalNaturalScienceFoundation(No.
61034007).
Received:20July2012Accepted:18December2012Published:23January2013References1.
Kalman,RE:Nonlinearaspectsofsampled-datacontrolsystems.
In:Proc.
SymposiumonNonlinearCircuitTheoryVII.
PolytechnicPress,NewYork(1956)2.
Lewis,JB,Tou,JT:Optimumsampled-datasystemswithquantizedcontrolsignals.
IEEETrans.
Appl.
Ind.
82(67),229-233(1963)3.
Elia,N,Mitter,S:Stabilizationoflinearsystemswithlimitedinformation.
IEEETrans.
Autom.
Control46(9),1384-1400(2001)4.
Tsumura,K,Ishii,H,Hoshina,H:Tradeosbetweenquantizationandpacketlossinnetworkedcontroloflinearsystems.
Automatica45,2963-2970(2009)5.
Wei,L,Fu,M,Zhang,H:Quantizedstabilizationforstochasticdiscrete-timesystemswithmultiplicativenoises.
Int.
J.
RobustNonlinearControl(2012).
doi:10.
1002/rnc.
27786.
Fu,M,Xie,L:Thesectorboundapproachtoquantizedfeedbackcontrol.
IEEETrans.
Autom.
Control50(11),1698-1711(2005)7.
Hayakawa,T,Ishii,H,Tsumura,K:Adaptivequantizedcontrolforlinearuncertaindiscrete-timesystems.
Automatica45,692-700(2009)8.
Hayakawa,T,Ishii,H,Tsumura,K:Adaptivequantizedcontrolfornonlinearuncertainsystems.
Syst.
ControlLett.
58,625-632(2009)9.
Gao,H,Chen,T:Anewapproachtoquantizedfeedbackcontrolsystems.
Automatica44,534-542(2008)10.
Zhou,B,Duan,G,Lam,J:Ontheabsolutestabilityapproachtoquantizedfeedbackcontrol.
Automatica46,337-346(2010)11.
You,K,Su,W,Fu,M,Xie,L:Attainabilityoftheminimumdatarateforstabilizationoflinearsystemsvialogarithmicquantization.
Automatica47(1),170-176(2011)12.
Niu,Y,Jia,T,Wang,X,Yang,F:Output-feedbackcontroldesignforNCSssubjecttoquantizationanddropout.
Inf.
Sci.
179(21),3804-3813(2009)13.
Feng,G:Controllerdesignandanalysisofuncertainpiecewise-linearsystems.
IEEETrans.
CircuitsSyst.
I49(2),224-232(2002)14.
Kocvara,M,Stingl,M:Pennon:acodeforconvexnonlinearandsemideniteprogramming.
Optim.
MethodsSoftw.
18(3),317-333(2003)15.
Zhu,Y,Li,DQ,Feng,G:H∞controllersynthesisofuncertainpiecewisecontinuous-timelinearsystems.
IEEProc.
,ControlTheoryAppl.
152(5),513-519(2005)16.
Zhang,H,Feng,G,Dang,C:StabilityanalysisandH∞controlforuncertainstochasticpiecewise-linearsystems.
IETControlTheoryAppl.
3(8),1059-1069(2009)doi:10.
1186/1687-1847-2013-20Citethisarticleas:WeiandYang:Anewapproachtoquantizedstabilizationofastochasticsystemwithmultiplicativenoise.
AdvancesinDierenceEquations20132013:20.

这几个Vultr VPS主机商家的优点造就商家的用户驱动力

目前云服务器市场竞争是相当的大的,比如我们在年中活动中看到各大服务商都找准这个噱头的活动发布各种活动,有的甚至就是平时的活动价格,只是换一个说法而已。可见这个行业确实竞争很大,当然我们也可以看到很多主机商几个月就消失,也有看到很多个人商家捣鼓几个品牌然后忽悠一圈跑路的。当然,个人建议在选择服务商的时候尽量选择老牌商家,这样性能更为稳定一些。近期可能会准备重新整理Vultr商家的一些信息和教程。以前...

spinservers春节优惠:$149/月10Gbps圣何塞服务器-2*E5-2630Lv3 CPU,256G内存,2*1.6T SSD硬盘

spinservers是Majestic Hosting Solutions LLC旗下站点,商家提供国外服务器租用和Hybrid Dedicated等产品,数据中心包括美国达拉斯和圣何塞机房,机器默认10Gbps端口带宽,高配置硬件,支持使用PayPal、信用卡、支付宝或者微信等付款方式。农历春节之际,商家推出了几款特别促销配置,最低双路E5-2630Lv3机器每月149美元起,下面列出几款机器...

虎跃云-物理机16H/32G/50M山东枣庄高防BGP服务器低至550元每月!

虎跃科技怎么样?虎跃科技(虎跃云)是一家成立于2017年的国内专业服务商,专业主营云服务器和独立服务器(物理机)高防机房有着高端华为T级清洗能力,目前产品地区有:山东,江苏,浙江等多地区云服务器和独立服务器,今天虎跃云给大家带来了优惠活动,为了更好的促销,枣庄高防BGP服务器最高配置16核32G仅需550元/月,有需要的小伙伴可以来看看哦!产品可以支持24H无条件退款(活动产品退款请以活动规则为准...

www.niuav.com为你推荐
access数据库access数据库主要学什么百度关键词价格查询百度关键字如何设定竟价价格?钟神发跪求钟神发名言出处,A站大神看过来haole018.com为什么www.haole008.com在我这里打不开啊,是不是haole008换新的地址了?haole018.com为啥进WWWhaole001)COM怎么提示域名出错?囡道是haole001换地了吗www.55125.cnwww95599cn余额查询125xx.comwww.free.com 是官方网站吗?4400av.com在www.dadady.com 达达电影看片子很快的啊杨丽晓博客杨丽晓今年高考了吗?haole012.com说在:012qq.com这个网站能免费挂QQ,是真的吗?
php主机空间 网站备案域名查询 泛域名解析 enzu vpsio 云主机51web 申请个人网页 web服务器的架设 idc是什么 秒杀汇 网络空间租赁 metalink idc查询 东莞服务器 怎么建立邮箱 1元域名 阿里云邮箱登陆地址 国外网页代理 闪讯网 免备案jsp空间 更多