approximatedwww.niuav.com

www.niuav.com  时间:2021-03-19  阅读:()
WeiandYangAdvancesinDierenceEquations2013,2013:20http://www.
advancesindifferenceequations.
com/content/2013/1/20RESEARCHOpenAccessAnewapproachtoquantizedstabilizationofastochasticsystemwithmultiplicativenoiseLiWei*andYuanhuaYang*Correspondence:weili@mail.
sdu.
edu.
cnSchoolofControlScienceandEngineering,ShandongUniversity,Jinan,ChinaAbstractAnewquantization-dependentLyapunovfunctionisproposedtoanalyzethequantizedfeedbackstabilizationproblemofsystemswithmultiplicativenoise.
Forconvenienceoftheproof,onlyasingle-inputcaseisconsidered(whichcanbegeneralizedtoamulti-inputchannel).
Conditionsforthesystemstobequantizedmean-squarepoly-quadraticallystabilizedarederived,andtheanalysisofH∞performanceandcontrollerdesignisconductedforagivenlogarithmicquantizer.
Themostsignicantfeatureistheutilizationofaquantization-dependentLyapunovfunction,leadingtolessconservativeresults,whichisshownboththeoreticallyandthroughnumericalexamples.
Keywords:multiplicativenoise;discrete-timesystems;mean-squarestability;logarithmicquantizer;Lyapunovfunction1IntroductionRapidadvancementofdigitalnetworkshaswitnessedagrowinginterestininvestigat-ingeortsofsignalquantizationonfeedbackcontrolsystems.
Theemergingnetwork-basedcontrolsystemwhereinformationexchangebetweenthecontrollerandtheplantisthroughadigitalchannelwithlimitedcapacitieshasfurtherstrengthenedtheimportanceofthestudyonquantizedfeedbackcontrol.
Dierentfromtheclassicalcontroltheorywheredatatransmissionisassumedtohaveaninniteprecision,transmissionsubjecttoquantizationorlimiteddatacapacityindigitalnetworks,thetoolsinclassicalcontroltheorymaybeinvalid,sonewtoolsneedtobedevelopedfortheanalysisanddesignofquantizedfeedbacksystems.
Thestudyofquantizedfeedbackcontrolcanbetracedbackto[].
Mostoftheearlyre-searchfocusesontheunderstandingandmitigationofthequantizationeects,whilethequantizationerrorisconsideredtoimpairtheperformance[].
Inmoderncontrolthe-orywherethequantizerisalwaysconsideredasaninformationencoderanddecoder,onemainproblemishowmuchinformationhastobetransmittedinordertomakethesystemachieveacertainobjectivefortheclosed-loopsystem.
Foradiscrete-timesystemwithasingle-inputchannel,whenthestaticquantizerisconsidered,[]showstheminimumdatarateforthesystemtobestabilizedisprovedtobecharacterizedbytheunstablerootsofthesystemmatrix,andthecoarsestquantizerislogarithmic.
[]considersthecasewhentheinputchannelsubjecttoBernoullipacketsdropouts,theminimumdatarateisrelatednotonlytotheunstablerootsofthesystemmatrix,butalsowiththepacketsdropoutprobability.
Asforadiscrete-timesystemwithsingleinputsubjecttomultiplicativenoises2013WeiandYang;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
WeiandYangAdvancesinDierenceEquations2013,2013:20Page2of11http://www.
advancesindifferenceequations.
com/content/2013/1/20in[],thecoarseststaticquantizerforthesystemtobequadraticallymean-squarestabi-lizedisprovedtobelogarithmicwithinnitelevels,andthequantizationdensitycanbeapproximatedbysolvingaRiccatiequation;comprehensivestudyonfeedbackcontrolsys-temswithlogarithmicquantizersisnotgiven.
Asectorboundapproachisproposedin[]tocharacterizethequantizationerrorcausedbyalogarithmicquantizer,bywhichmanyquantizedproblemcanbesolvedbytherobusttools.
Theresultsarealsoextendedtoadaptivecontrolin[,]andtheLQR-typeproblemin[].
Basedonthecharacterizationofthequantizederror,[]giveslessconservativeconditionsofthequantizationdensitytoachievestabilitybystudyingthepropertiesofthelogarithmicquantizerfurther;[]useamethodbasedonTsypkin-typeLyapunovfunctionstostudytheabsolutestabilityanal-ysisofquantizedfeedbackcontrolofadiscrete-timelinearsystem,lessconservativecon-ditionsthanthoseinthequadraticframeworkarederived.
[]showedthatanite-levellogarithmicquantizersucestoapproachthewell-knownminimumaveragedatarateforstabilizinganunstablelineardiscrete-timesystemundertwobasicnetworkcongu-rations,andexplicitnite-levellogarithmicquantizersandthecorrespondingcontrollerstoapproachtheminimumaveragedataratearederived.
Fornetworkedsystems,[]givesthequantizedoutput-feedbackcontrollerforthecontrolwithdatapacketsdropout.
Inthispaper,anewapproachtotheanalysisandsynthesisofquantizedfeedbackcontrolforstochasticsystemswithmultiplicativenoiseisproposed.
Usinglogarithmicquantizedstate-feedbackcontrol,resultsformean-squarestabilizationandH∞performanceanal-ysisaswellasthecontrollersynthesisaregiven.
Lessconservativeresultsarederivedbytheutilizationofaquantization-dependentLyapunovfunction,whichisshownboththe-oreticallyandthroughanumericalexample.
Notations:P>(P≥)meansPisasymmetricpositive(semi-positive)matrix.
PTstandsforthetranspositionofmatrixP.
Thespaceofasquaresummableinnitese-quenceisdenotedbyl[,∞),andforw={w(t)}∈l[,∞),itsnormisgivenbyw=∞|w(t)|.
2Stabilityandstabilization2.
1ProblemformulationConsiderthefollowinglineardiscrete-timesystemswithmultiplicativenoise:x(t+)=A+Aξ(t)x(t)+B+Bξ(t)u(t),x()=x,()wherex(t)∈Rnisthesystemstatevectorwithknowninitialstatex;u(t)∈Rmisthecontrolinput;ξ(t)∈RistheprocessnoisewithEξ(t)=,Eξ(t)ξ(j)=σδtj,andisuncor-relatedwithinitialstatex.
Asprovedin[],thecoarseststaticquantizerforthesystem()tobequadraticallymean-squarestabilizedviaquantizedstate-feedbackisprovedtobelogarithmic.
Supposeuisascalarthathastobequantized,thelogarithmicquantizerisinthefollowingform:q(u)=uiif+δui,ifu=,–Q(–u)ifu,()whereρisthequantizeddensityofthelogarithmicquantizerq,whichcanbecomputedusingtheapproachgivenin[],withδ=–ρ+ρ.
()Forthemulti-inputcasewithdierentquantizers,thestate-feedbackcontrolwithoutquantizationisintheformofv(t)=Kx(t)Kx(t)···Kmx(t),()whichhastobetransmittedthroughadigitalnetworksubjecttologarithmicquantizersasgivenin(),anddenotethequantizedcontrolasu(t)=qv(t)=q(Kx(t))q(Kx(t))···qm(Kmx(t)),()whereqi,i=,.
.
.
,marequantizerswithdierentquantizationdensity.
Withoutlossofgenerality,inthispaperonlyasingle-inputcasewithm=isconsideredforsimplicity,whichcanbegeneralizedtoamulti-inputcase.
Foraquantizerasgivenintheformof(),asillustratedin[],usingthesectorboundapproach,thequantizationerrore(t)canbecharacterizedase(t)=qv(t)–v(t)=fKx(t)–Kx(t)=(t)Kx(t),()where(t)∈[–δ,δ]withδgivenby(),sotheclosed-loopsystemwithquantizedfeedbackisgivenbyx(t+)=A+Aξ(t)x(t)+B+Bξ(t)+(t)Kx(t).
()Wemainlyfocusonthederivationoflessconservativesucientconditionsforthesystemtoachievecertainperformance.
Tomakethepaperself-contained,thedenitionsforthesystem()tobemean-squarestableandmean-squarepoly-quadraticalstableareintro-duced.
DenitionTheclosedsystem()iscalledmean-squarestablewithquantizedfeedbackcontrolintheformof()ifthereexistsacontrolLyapunovfunctionVP(x)=xT(t)Px(t)satisfyingEVPx(t+)–EVPx(t),Q>,VandVsatisfying–Q[A+(–δ)BK]TViσ[A+(–δ)BK]TViQi–Vi–VTiQi–Vi–VTi,Q>,VandVsatisfying()and().
()and()():SupposethereexistmatricesQ>,Q>,VandVsatisfying()and().
First,asQi>,wehave(Vi–Qi)TQ–i(Vi–Qi)≥,whichimplies–VTiQ–iVi≤Qi–VTi–Vi.
()From()and()wehave–Q[A+(–δ)BK]TViσ[A+(–δ)BK]TVi–VTiQ–iVi–VTiQ–iVi,Q>,VandKsatisfying–Q[AV+(–δ)BK]Tσ[AV+(–δ)BK]TQi–V–VTQi–V–VTandQ>,VandKsatisfying()and().
Fromthe(,)block,weknowthatQi–V–VTQi>,soVisnonsingular.
Performingdiag{V–T,V–T,V–T}anddiag{V–,V–,V–}to()and(),respectively,yields–V–TQV–V–T[AV+(–δ)BK]TV–σV–T[AV+(–δ)BK]TV–V–TQiV––V–T–V–V–TQiV––V–T–V–,Q>,VandVsatisfying()and(),andusingthecontrollergaingivenin(),thesystem()canachievemean-squarepoly-quadraticallystability.
TheoremisbasedonTheorembysettingV=V=V,whichincreasestheconser-vativeness;thefollowingtheoremgivesalessconservativecondition.
TheoremConsiderthesystemin()andthestatefeedbackcontrollawin().
Givenalogarithmicquantizerasin(),theclosed-loopsystemin()ismean-squarepoly-quadraticallystableifthereexistmatricesQi>,Xi>,ViandKsatisfying–Q[A+(–δ)BK]T[A+(–δ)BK]T–VTi–ViVTi–XiVTi–ViVTiXi,Q>,VandV.
WhenTheo-remisusedtocomputethecoarsestquantizationdensityδmaxsuchthattheclosed-loopquantizedsystemismean-squarepoly-quadraticallystable,thatis,()and()arebilin-earmatrixinequalities.
Inthiscase,alinesearch(suchasthebisectionmethod)hastobeperformedtothevariablesδin()and(),andndδmaxiteratively,whichcanbereferredto[–].
2.
4IllustrativeexampleInthispart,anexampleisgiventoshowthatthenewproposedLyapunovfunctioncanleadtolessconservativeconditionsofthequantizationdensityforthesystemtoachievestability.
ExampleForthestochasticdiscrete-timesystem(),considerthescalarcaseofthefollowingform:A=A=.
–.
–.
.
.
–.
,B=B=T,()Eξ(t)=,Eξ(t)=σ=.
.
Itcanbeprovedthatthesystemwithoutcontrolpartisunstableinthemean-squaresense.
Supposethatthestate-feedbackin()isgivenbyK=[.
–.
],andthequantizerweuseislogarithmicintheformof().
Wewanttodeterminethemaximumsectorboundδmaxbelowwhichthestochasticsystemwithquantizedstatefeedbackismean-squareasymptoticallystable.
TablegivesthemaximumboundofδmaxusingtheLyapunovfunc-tionrelatedtothequantizationdensityproposedinthispaperandthegeneralcontrolLyapunovfunction.
WeiandYangAdvancesinDierenceEquations2013,2013:20Page9of11http://www.
advancesindifferenceequations.
com/content/2013/1/20Table1ComparisonofquantizationdensityMethodsδmaxρinfQuadraticapproach0.
44500.
3841Quantizationdependentapproach0.
49960.
33373ExtensiontoH∞performanceanalysisForthesystemx(t+)=A+Aξ(t)x(t)+B+Bξ(t)u(t)+Gw(t),()z(t)=Cx(t)+Du(t)+Fw(t),()wherethestatex(t),theinputu(t)andthesystemnoiseξ(t)aredenedasthoseofthesystem(),z(t)∈Rnisthecontroloutput.
A,A,B,B,C,D,G,Faresystemmatriceswithproperdimensions.
Supposethequantizerisgiventobelogarithmicintheformof()andthequantizationdensityisknown,sotheclosed-loopsystemwiththequantizedstatefeedbackcontrolisgivenasfollows:x(t+)=A+Aξ(t)x(t)+B+Bξ(t)+(t)Kx(t)+Gw(t),()z(t)=Cx(t)+D+(t)Kx(t)+Fw(t),()where(t)∈[–δ,δ].
DeningW={w(t)}∈l[,∞),theobjectiveofthispartistoderivetheconditionsforthesystem()and()tobemean-squareasymptoticallystablewithanH∞disturbanceattentionlevelγ,thatis,z(t),Q=QT>,VandVsatisfying–Q[A+(–δ)BK]TVi[C+(–δ)DK]Tσ[A+(–δ)BK]TVi–γIGTViFTQi–Vi–VTi–IQi–Vi–VTi<,()–Q[A+(+δ)BK]TVi[C+(+δ)DK]Tσ[A+(+δ)BK]TVi–γIGTViFTQi–Vi–VTi–IQi–Vi–VTi<,i∈{,}.
()ProofThetheoremisprovenbasedontheLyapunovfunctiondenedin().
First,()and()imply()and(),whichguaranteestheclosed-loopsystemin()and()toWeiandYangAdvancesinDierenceEquations2013,2013:20Page10of11http://www.
advancesindifferenceequations.
com/content/2013/1/20bemean-squarestablebyTheorem.
ToprovetheH∞performance,assumezeroinitialconditionsandconsiderthefollowingindex:=∞EzT(t)z(t)–γEwT(t)w(t)≤∞EzT(t)z(t)–γEwT(t)w(t)+EVx(t),()whereEVx(t)=ExT(t+)Q(t+)x(t+)–xT(t)Q(t)x(t).
()Then,alongthesolutionsof()and(),wehave=∞ηT(t)η(t),()withη(t)=x(t)w(t),=,where=A++(t)BKTQ(t+)A++(t)BK–Q(t)+σA++(t)BKTQ(t+)A++(t)BK+C++(t)DKTC++(t)DK,()=A++(t)BKTQ(t+)G+C++(t)DKTF,()=GTQ(t+)G+FTF–γI.
()Ontheotherhand,bysimilarreasoningasintheproofofTheorem,wecanconcludefrom()and()that<.
Thenfrom()weknowthatTheproofiscompleted.
4ConclusionTheproblemofquantizedstate-feedbackcontrolforastochasticsystemwithmulti-plicativenoiseshasbeeninvestigatedthroughaquantization-dependentapproach.
Con-ditionsformean-squarepoly-quadraticalstabilityareobtainedbyintroducinganewquantization-dependentLyapunovfunctionapproachforlinearstatefeedbackwithalog-arithmicquantizer,whichareshowntobelessconservativethanthosederivedbyacom-monLyapunovfunction.
Moreover,H∞performanceanalysishasalsobeenproposedinthequantization-dependentframework.
However,itisworthpointingoutthatthoughlessconservativeconditionsareobtained,dierentfromthederivationofthecoarsestquan-tizer,theexplicitrelationofthesystemmatricesandquantizationdensityisnotgiven.
Theanalysisofrelationbetweenthequantizationdensityandthesystemmatricesandthestatisticalpropertiesofnoisesintheproposedquantization-dependentframeworkisasubjectworthfurtherresearching.
WeiandYangAdvancesinDierenceEquations2013,2013:20Page11of11http://www.
advancesindifferenceequations.
com/content/2013/1/20CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsLWcarriedouttheproofofthemainpartofthisarticle,YYcorrectedthemanuscriptandparticipatedinitsdesignandcoordination.
Allauthorshavereadandapprovedthenalmanuscript.
AcknowledgementsWewouldliketothanktheeditor-in-chief,theassociateeditorandthereviewersfortheirvaluablecommentsonthepaperwhichhaveledtosignicantimprovementonthepresentationandqualityofthepaper.
ThisworkissupportedbytheTaishanScholarConstructionEngineeringbyShandongGovernment,theNationalNaturalScienceFoundation(No.
61174141),andtheMajorStateBasicResearchDevelopmentProgramofChina(973Program)(No.
2009cb320600),YangtseRiveScholarBonusSchemes(No.
31400080963017),NationalNaturalScienceFoundation(No.
61034007).
Received:20July2012Accepted:18December2012Published:23January2013References1.
Kalman,RE:Nonlinearaspectsofsampled-datacontrolsystems.
In:Proc.
SymposiumonNonlinearCircuitTheoryVII.
PolytechnicPress,NewYork(1956)2.
Lewis,JB,Tou,JT:Optimumsampled-datasystemswithquantizedcontrolsignals.
IEEETrans.
Appl.
Ind.
82(67),229-233(1963)3.
Elia,N,Mitter,S:Stabilizationoflinearsystemswithlimitedinformation.
IEEETrans.
Autom.
Control46(9),1384-1400(2001)4.
Tsumura,K,Ishii,H,Hoshina,H:Tradeosbetweenquantizationandpacketlossinnetworkedcontroloflinearsystems.
Automatica45,2963-2970(2009)5.
Wei,L,Fu,M,Zhang,H:Quantizedstabilizationforstochasticdiscrete-timesystemswithmultiplicativenoises.
Int.
J.
RobustNonlinearControl(2012).
doi:10.
1002/rnc.
27786.
Fu,M,Xie,L:Thesectorboundapproachtoquantizedfeedbackcontrol.
IEEETrans.
Autom.
Control50(11),1698-1711(2005)7.
Hayakawa,T,Ishii,H,Tsumura,K:Adaptivequantizedcontrolforlinearuncertaindiscrete-timesystems.
Automatica45,692-700(2009)8.
Hayakawa,T,Ishii,H,Tsumura,K:Adaptivequantizedcontrolfornonlinearuncertainsystems.
Syst.
ControlLett.
58,625-632(2009)9.
Gao,H,Chen,T:Anewapproachtoquantizedfeedbackcontrolsystems.
Automatica44,534-542(2008)10.
Zhou,B,Duan,G,Lam,J:Ontheabsolutestabilityapproachtoquantizedfeedbackcontrol.
Automatica46,337-346(2010)11.
You,K,Su,W,Fu,M,Xie,L:Attainabilityoftheminimumdatarateforstabilizationoflinearsystemsvialogarithmicquantization.
Automatica47(1),170-176(2011)12.
Niu,Y,Jia,T,Wang,X,Yang,F:Output-feedbackcontroldesignforNCSssubjecttoquantizationanddropout.
Inf.
Sci.
179(21),3804-3813(2009)13.
Feng,G:Controllerdesignandanalysisofuncertainpiecewise-linearsystems.
IEEETrans.
CircuitsSyst.
I49(2),224-232(2002)14.
Kocvara,M,Stingl,M:Pennon:acodeforconvexnonlinearandsemideniteprogramming.
Optim.
MethodsSoftw.
18(3),317-333(2003)15.
Zhu,Y,Li,DQ,Feng,G:H∞controllersynthesisofuncertainpiecewisecontinuous-timelinearsystems.
IEEProc.
,ControlTheoryAppl.
152(5),513-519(2005)16.
Zhang,H,Feng,G,Dang,C:StabilityanalysisandH∞controlforuncertainstochasticpiecewise-linearsystems.
IETControlTheoryAppl.
3(8),1059-1069(2009)doi:10.
1186/1687-1847-2013-20Citethisarticleas:WeiandYang:Anewapproachtoquantizedstabilizationofastochasticsystemwithmultiplicativenoise.
AdvancesinDierenceEquations20132013:20.

LOCVPS:美国XEN架构VPS七折,全场八折,日本/新加坡XEN架构月付29.6元起

LOCVPS发来了针对XEN架构VPS的促销方案,其中美国洛杉矶机房7折,其余日本/新加坡/中国香港等机房全部8折,优惠后日本/新加坡机房XEN VPS月付仅29.6元起。这是成立较久的一家国人VPS服务商,目前提供美国洛杉矶(MC/C3)、和中国香港(邦联、沙田电信、大埔)、日本(东京、大阪)、新加坡、德国和荷兰等机房VPS主机,基于XEN或者KVM虚拟架构,均选择国内访问线路不错的机房,适合建...

Vultr新注册赠送100美元活动截止月底 需要可免费享30天福利

昨天晚上有收到VULTR服务商的邮件,如果我们有清楚的朋友应该知道VULTR对于新注册用户已经这两年的促销活动是有赠送100美元最高余额,不过这个余额有效期是30天,如果我们到期未使用完的话也会失效的。但是对于我们一般用户来说,这个活动还是不错的,只需要注册新账户充值10美金激活账户就可以。而且我们自己充值的余额还是可以继续使用且无有效期的。如果我们有需要申请的话可以参考"2021年最新可用Vul...

Digital-VM暑期全场六折优惠,8个机房

Digital-VM商家目前也在凑热闹的发布六月份的活动,他们家的机房蛮多的有提供8个数据中心,包括日本、洛杉矶、新加坡等。这次六月份的促销活动全场VPS主机六折优惠。Digital-VM商家还是有一点点特点的,有提供1Gbps和10Gbps带宽的VPS主机,如果有需要大带宽的VPS主机可以看看。第一、商家优惠码优惠码:June40全场主机六折优惠,不过仅可以月付、季付。第二、商家VPS主机套餐1...

www.niuav.com为你推荐
京沪高铁上市首秀京沪高铁将有哪些看点?陈嘉垣电视剧《反黑》里面,雷太太女儿扮演者是谁?www.vtigu.com如图,已知四边形ABCD是平行四边形,下列条件:①AC=BD,②AB=AD,③∠1=∠2④AB⊥BC中,能说明平行四边形www.zhiboba.com登录哪个网站可以看nba当天的直播 是直播汴京清谈汴京还被称为什么?ww.43994399在线单机小游戏云鹏清16届大学生篮球联赛西北赛前八强雀嘴鳝鳄雀鳝能和招财猫混养吗雀嘴鳝什么是雀鳝鱼 雀鳝可以吃吗两朝太岁大运克太岁是什么意思?
网页空间租用 电信服务器租赁 免费域名跳转 3322动态域名 樊云 BWH vmsnap3 42u标准机柜尺寸 万网优惠券 商家促销 镇江联通宽带 丹弗 京东商城双十一活动 100x100头像 web服务器的架设 爱奇艺vip免费领取 网游服务器 空间登陆首页 阿里云免费邮箱 英雄联盟台服官网 更多