RESEARCHARTICLEOpenAccessSerumTGF-β1andSMAD3levelsarecloselyassociatedwithcoronaryarterydiseaseCanChen1,2,WeiLei2,WenjiangChen2,JianfengZhong2,XiaoxinGao2,BoLi2,HuailongWang2andCongxinHuang1*AbstractBackground:Coronaryarterydisease(CAD)isoneofthemostcommondiseasesleadingtomortalityandmorbidityworldwide.
Thereisconsiderabledebateonwhetherserumtransforminggrowthfactorβ1(TGF-β1)levelsareassociatedwithlong-termmajoradversecardiovasculareventsinpatientswithCAD,andtodate,nostudyhasspecificallyaddressedlevelsinpatientswithdifferentdegreesofCADseverity.
Methods:SerumTGF-β1andmothersagainstdecapentaplegichomolog3(SMAD3)concentrationswereevaluatedin279patientswithCADand268controlswithoutCAD.
Theclinicalandbiochemicalcharacteristicsofallsubjectswerealsodeterminedandanalyzed.
Results:TGF-β1andSMAD3concentrationsinCADpatientsweresignificantlyhigherthanthoseinthecontrols.
TheserumTGF-β1levelinacutemyocardialinfarction(AMI)wassignificantlyhigherthanthatinbothstableanginapectoris(SAP)andunstableanginapectoris(UAP)(p0.
05).
SMAD3levelsshowednoobviousdifferenceamongAMI,SAP,andUAP.
TGF-β1andSMAD3arepotentialbiomarkersforCAD,andmaybemoreaccuratethanLpa,ApoA1,uricacid,BUN,ortriglycerides(TG).
Conclusions:SerumTGF-β1andSMAD3levelsarecloselyassociatedwithCAD,andmaybecomeusefulbiomarkersfordiagnosisandriskstratification.
Keywords:Coronaryarterydisease,TGF-β1,SMAD3protein,Human,BiomarkersBackgroundCoronaryarterydisease(CAD)isoneoftheleadingcausesofmortalityandmorbidityworldwide,especiallyinmanydevelopedcountries[1,2].
AccordingtotheWorldHealthOrganization,itispredictedthat23.
6milliondeathsperyearwillbebecauseofcardiovascu-lardiseasesby2030[3].
CAD,withacomplexetiology,isconsideredtobetheresultofaninteractionbetweengeneticandenvironmentalfactors[4-6].
Inthepastdecades,manycontributingfactorsincludingsmoking,hypertension,diabetesmellitus(DM),atherosclerosis,obesity,anddiethavebeenestablished,buttheexactetiologyunderlyingCADremainsobscure.
IncreasingevidencesuggeststhatinflammationplaysanimportantroleinthepathogenesisofCAD[7,8].
AnumberofinflammatorycytokinesmediateadversecardiovasculareventsinpatientswithCAD,andtrans-forminggrowthfactor-β1(TGF-β1)hasgarneredpar-ticularattentionbecauseofitsmultiplerolesinimportantpathologicalchangessuchasenhancementofmacrophageandfibroblastchemotaxis,stimulationofextracellularmatrix(ECM)synthesis,andvascularcellproliferationab-normalities[9,10].
AlthoughithasbeenknownthatTGF-β1activatesseveralpathways,includingtheextracellular-regulatedkinasepathway,thenuclearfactor-κBpathway,andthephosphatidylinositol-3-kinasepathway[11,12],itsmainsignalingmechanismislinkedtothemothersagainstdecapentaplegichomolog3(SMAD3)family[13].
TGF-β1bindstoitstypeIreceptorsandformsahetero-mericcomplexwiththetypeIIreceptor,whichsubse-quentlyresultsinphosphorylationandactivationofthe*Correspondence:huangcongxin@vip.
163.
com1DepartmentofCardiovascularMedicine,RenminHospitalofWuhanUniversity,Wuhan430060,ChinaFulllistofauthorinformationisavailableattheendofthearticle2014Chenetal.
;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycredited.
TheCreativeCommonsPublicDomainDedicationwaiver(http://creativecommons.
org/publicdomain/zero/1.
0/)appliestothedatamadeavailableinthisarticle,unlessotherwisestated.
Chenetal.
BMCCardiovascularDisorders2014,14:18http://www.
biomedcentral.
com/1471-2261/14/18TGF-β1downstreamsignalingmoleculesSMAD2andSMAD3.
ActivatedSMAD2orSMAD3heterodimerizeswithSMAD4andthenintroducestheabovecomplexintothenucleus,whereitregulatestheexpressionofitstargetgene[14,15].
TGF-β1/SMAD3-dependentpathwaysplayapivotalroleinmediatingdifferentbiologicaleffectsofTGF-β1suchascellproliferation,immunesuppression,andinflammation[12,16-18].
Inthecardiovascularsystem,myocardialTGF-β1ex-pressionismarkedlyactivatedinpatientswithhyper-trophicordilatedcardiomyopathy,andinexperimentalmodelsofmyocardialhypertrophyandmyocardialin-farction[19].
OtherstudiessuggestthatTGF-βsignal-ingmaybecrucialforrepressionofinflammatorygeneexpressioninhealinginfarctsmediatedbyaninflam-matoryinfiltrate[20].
TGF-β1iscrucialinthepatho-genesisofinfarcthealing,cardiacremodeling,andinterstitialfibrosis.
Therehavebeenfewclinicalinves-tigationsofTGF-β1/SMAD3signalsinlargepatientgroups.
Thereisconsiderabledebateoveranycorrel-ationofTGF-β1levelswithmajoradversecardiovas-culareventsinpatientswithCAD.
Inparticular,nostudyhasspecificallyaddressedpatientswithdifferentdegreesofCAD[9].
Wecollectedserumsamplesfrom279patientswithCADandfrom297controls,andassessedforanyasso-ciationbetweenserumTGF-β1/SMAD3levelsandthepresenceandseverityofCAD.
Weevaluatedthepoten-tialclinicalapplicationofmeasurementsofthesecyto-kinesforCADdiagnosis,comparingtheirutilitywiththecurrentlyusedbiochemicalindicators.
MethodsStudypopulationWritteninformedconsentwasobtainedfromthepopu-lationinvolvedinthisstudyandthestudyprotocolwasapprovedbytheEthicsCommitteeofAffiliatedHospitalofGuangdongMedicalCollege.
Atotalof279patientswhowerereferredforcoronaryangiographybytheirattendingphysiciansfromMaytoAugust2013,andwhowerefoundtohaveatleast50%stenosisinatleastonecoronaryartery,wereincluded.
Theirageswereabout69.
30years.
The268controlswereconsecutivesubjectsundergoingroutinemedicalexaminationsatthePhysicalExaminationCenter.
Thosewhohadanyclinicalmanifestationsoramedicalhistoryofheartdisorders,afamilyhistoryofcoronaryarterydisease,orabnormalECGwereexcluded.
Exclusioncri-teriaalsoincludedacuteorchronicinfectionsorinflam-matorydiseases,severehepaticorrenaldysfunction,malignanttumors,orhematologicdisorders.
TheCADgroupwasdividedintothreesubgroups:acutemyocar-dialinfarction(AMI),unstableanginapectoris(UAP),andstableanginapectoris(SAP).
PhysiologicalevaluationandbloodcollectionAllstudyparticipantsunderwentastandardclinicalexamination.
Bodymassindex(BMI)wascalculatedastheindividual'sbodymassdividedbythesquareoftheirheight.
Smokingwasdefinedashavingsmokedforatleast1yearcurrently.
Hypertensionwasdefinedasasys-tolicbloodpressureof≥140mmHgoruseofantihyper-tensivetherapy.
Diabeteswasdiagnosedaccordingtononfastingglucoselevels≥11.
1mmol/L.
Approximately2mLofvenousbloodwascollectedfromeachsubject,andthenkeptintubeswithoutpreservativesat4°Covernight.
Serumaliquotswereobtainedaftercentrifugationat1000gfor40minat4°C.
CoronaryangiographyAllcoronaryangiographieswereperformedusingstand-ardtechnique.
SignificantCADwasconsideredtobepresentiftherewasaninternalluminalstenosis≥50%intheleftmaincoronaryartery,rightcoronaryartery,and/ortheirmajorbranches.
Thedegreeofcoronaryatherosclerosiswasfurthercategorizedaccord-ingtothenumberofcoronaryvesselswithsignificantTable1ClinicalandbiochemicalcharacteristicsofthestudypopulationVariablesCADControlpSex(M/F)168/111180/880.
0913Age(years)69.
30±0.
704963.
73±0.
69520.
05)(Figure2).
However,SMAD3levelswerenotsignificantlydifferentamongAMI,SAP,andUAPsubgroups,suggestingthatTGF-β1mayregulatetheprogressionfromanginapectoristoAMI.
CorrelationofTGF-β1andSMAD3levelswithCADoccurrenceanditsriskfactorsToexplainapotentialmechanismofTGF-β1andSMAD3,weevaluatedtheirrelationshipwithCADanditsriskfactorsincludingLp(a),BUN,creatinine,uricacid,bloodglucose,totalcholesterol,TG,HDL,LDL,ApoA1,andApoB.
Therewasaverysignificantcorrel-ationbetweenCADandconcentrationofTGF-β1andSMAD3(p<0.
0001).
Amongtheotherbiochemicalindices[21],TGF-β1significantlycorrelatedwithLp(a)(p<0.
0203)anduricacid(p<0.
0001),respectively,andSMAD3corre-latedverysignificantlywithbloodglucose(p<0.
0001)(Figure3).
TGF-β1andSMAD3asbiomarkersforCADFarhigherTGF-β1andSMAD3concentrationsoccurredinCADpatients(TGF-β1:432.
2±22.
12ng/L;SMAD3:11.
47±0.
6161ng/L)comparedwithcontrols(TGF-β1:220.
1±8.
831ng/L;SMAD3:5.
157±0.
1965ng/L).
TheareaundertheReceiveroperatingcharacteristiccurves(AUCROC)indicatedthatbothTGF-β1(AUCROC:0.
678,95%confidenceinterval[CI]:0.
633–0.
723)andSMAD3(AUCROC:0.
715,95%CI:0.
672–0.
758)werethemorepotentbiomarkersforCAD,comparedwithLpa(AUCROC:0.
574,95%CI:0.
525–0.
623),ApoA1(AUCROC:0.
561,95%CI:0.
512–0.
609),uricacid(AUCROC:0.
663,95%CI:0.
617–0.
710),BUN(AUCROC:0.
581,95%CI:0.
533–0.
630),orTG(AUCROC:0.
545,95%CI:0.
496–0.
594)(Figure4).
DiscussionTGF-β1isamultifunctionalpeptidethatcontrolsprolif-eration,differentiation,andotherfunctionsinmanycelltypes,andithasdualregulationrolesinimmunere-sponseandcellulardevelopment.
TGF-β1actssynergis-ticallywithTGFαininducingtransformation.
Italsoactsasanegativeautocrinegrowthfactor.
DysregulationofTGF-β1activationandsignalingmayresultinapop-tosis.
Forexample,TGF-β1inhibitscancercellgrowthattheearlystageoftumorformation,andpromotesthecancerdevelopmentinthelatephase[22].
PreviousstudieshaveshownplasmaTGF-β1levelstobereducedinpatientswithadvancedatherosclerosisandangiographicallyprovenCAD.
ThelevelsofTGF-β1werethoughttobeinverselyrelatedtothedevelopmentandseverityofcoronarydisease[23-27].
Bycontrast,BorderandRuoslahtifoundthatTGF-β1couldenhanceatherogenesisbymediatingexcessiveECMdeposition[28].
AnotherrecentstudyrevealedthatahighplasmalevelofTGF-βhadasignificantlystrongprognosisintermsofsurvivalwithoutcardiovasculareventsandsur-vivalwithoutcoronaryinterventionscomparedwiththelowTGF-βgroup(bothp<0.
05),suggestingthatplasmaTGF-βmaypotentiallyhavegreatprognosticvalueinpatientswithCAD[29].
SchaanetalmaintainedthatserumTGF-β1wasnotassociatedwithCADoccurrenceafterclinicalandlaboratoryevaluationofTGF-β1inpa-tientswithCADorDM[9].
However,theysampledFigure3CorrelationofTGF-β1orSMAD3withtheriskfactorsofCAD,(A)CorrelationanalysisofTGB-β1withLPa;(B)CorrelationanalysisofTGB-βwithSUA;(C)SMAD3withGlu.
***p<0.
0001,*p<0.
05.
Chenetal.
BMCCardiovascularDisorders2014,14:18Page5of7http://www.
biomedcentral.
com/1471-2261/14/18fewerthan30cases.
Wedemonstratedsignificantposi-tivecorrelationbetweenserumTGF-β1/SMAD3levelsandCADbasedon547subjects.
TherehasbeennostudystratifyingpatientsaccordingtoCADseverity.
ItisprobablethattherelevanceofTGF-β1inCADcanonlybedetectedinseveredisease,orhighconcentrationsofTGF-β1fromsevereCADmayhaveaparadoxicaleffect[27,30,31].
InthecorrelationofTGF-β1andSMAD3levelswiththeriskfactorsofCAD,TGF-β1iscloselyrelatedtoLp(a)anduricacid,whichbothareconsideredtobemarkersofatherosclerosis,indicatingthatthiscytokinemaycontributetotheestablishmentofCADbyregulat-ingatherogenesis.
SMAD3levelscorrelatedcloselywithbloodglucose,implyingthatSMAD3mayinfluenceCADoccurrenceandthedevelopmentofDM.
Interest-ingly,ithasbeenreportedthatriskfactorsincludingLp(a),uricacid,BUN,triglycerides,andApoA1canbeuse-fulbiomarkersfordifferentclinicaldiagnoses[21,32],butwefoundthatTGF-β1andSMAD3weremoresen-sitivebiomarkersforCADthanthosefactorsmentionedabove.
ConclusionSerumTGF-β1andSMAD3levelsarecloselyassociatedwithCAD.
Theunderlyingmechanismmaybetheirregulatoryeffectsonatherosclerosisandbloodsugar.
Alimitationofthepresentstudyisthatthecontrolpopulationdiffersfromthecases,intermsofageandcardiovascularriskfactors.
Themeanagedifference(~5years)shouldbeacceptableinanepidemiologicstudyofCADaccordingtoapreviousreport[6,9].
CADpredominatesinanolderpopulation.
CompetinginterestsTheauthorshadnoconflictsofinteresttodeclareinrelationtothisarticle.
Authors'contributionsWLandCCperformedthestudyandwrotethemanuscript.
WC,JZ,andWLperformedthestudyand/orcontributedtodataanalysisandinterpretation.
XG,BL,andHWreviewed/approvedtheresearchprotocol.
CHtakesfullresponsibilityfortheworkasawhole,includingthestudydesign,accesstodata,andthedecisiontosubmitandpublishthemanuscript.
Allauthorsreadandapprovedthefinalmanuscript.
AcknowledgmentsThispaperwassupportedbytheDoctorScientificResearchFoundationinGuangdongMedicalCollege(no.
10201B01202andXB1322)andtheNaturalScienceFoundationofGuangdongProvince(S2013040012115andS2013010015074)andtheNationalNaturalScienceFoundationofChina(no.
81270212andno.
81300035).
Authordetails1DepartmentofCardiovascularMedicine,RenminHospitalofWuhanUniversity,Wuhan430060,China.
2DepartmentofCardiovascularMedicine,TheAffiliatedHospitalofGuangdongMedicalCollege,Zhanjiang524000,China.
Received:23October2013Accepted:11February2014Published:17February2014Figure4Receiveroperatingcharacteristic(ROC)curvesforTGF-β1andSMAD3.
TheareaunderthecurveofTGF-β1was0.
678(95%confi-denceinterval[CI],0.
633–0.
723).
TheareaunderthecurveofSMAD3was0.
715(95%CI,0.
672–0.
758).
Chenetal.
BMCCardiovascularDisorders2014,14:18Page6of7http://www.
biomedcentral.
com/1471-2261/14/18References1.
Lloyd-JonesD,AdamsR,CarnethonM,DeSimoneG,FergusonTB,FlegalK,FordE,FurieK,GoA,GreenlundK,HaaseN,HailpernS,HoM,HowardV,KisselaB,KittnerS,LacklandD,LisabethL,MarelliA,McDermottM,MeigsJ,MozaffarianD,NicholG,O'DonnellC,RogerV,RosamondW,SaccoR,SorlieP,StaffordR,SteinbergerJ,etal:AmericanHeartAssociationStatisticsCommitteeandStrokeStatisticsSubcommittee.
Heartdiseaseandstrokestatistics—2009update:areportfromtheAmericanHeartAssociationStatisticsCommitteeandStrokeStatisticsSubcommittee.
Circulation2009,119:480–486.
2.
MininoAM:DeathintheUnitedStates,2009.
NCHSDataBrief2011,64:1–8.
3.
WorldHealthOrganizationCardiovascularDiseases(CVDs):WhoFactSheet.
;2011.
4.
KathiresanS,SrivastavaD:Geneticsofhumancardiovasculardisease.
Cell2012,148:1242–1257.
5.
StylianouIM,BauerRC,ReillyMP,RaderDJ:Geneticbasisofatherosclerosis:insightsfrommiceandhumans.
CircRes2012,110:337–355.
6.
TayebiN,KeT,FooJN,FriedlanderY,LiuJ,HengCK:Associationofsinglenucleotidepolymorphismrs6903956onchromosome6p24.
1withcoronaryarterydiseaseandlipidlevelsindifferentethnicgroupsoftheSingaporeanpopulation.
ClinBiochem2013,46:755–759.
7.
SugamuraK,KeaneyJFJr:Reactiveoxygenspeciesincardiovasculardisease.
FreeRadicBiolMed2011,51:978–992.
8.
TousoulisD,KampoliAM,PapageorgiouN,AndroulakisE,AntoniadesC,ToutouzasK,StefanadisC:Pathophysiologyofatherosclerosis:theroleofinflammation.
CurrPharmDes2011,17:4089–4110.
9.
SchaanBD,QuadrosAS,Sarmento-LeiteR,DeLuccaG,JrBA,BertoluciM:'Correction:'Serumtransforminggrowthfactorbeta-1(TGF-beta-1)levelsindiabeticpatientsarenotassociatedwithpre-existentcoronaryarterydisease.
CardiovascDiabetol2007,6:19.
10.
GraingerDJ:TGF-betaandatherosclerosisinman.
CardiovascRes2007,74:213–222.
11.
BakinAV,TomlinsonAK,BhowmickNA,MosesHL,ArteagaCL:Phosphatidylinositol3-kinasefunctionisrequiredfortransforminggrowthfactorbeta-mediatedepithelialtomesenchymaltransitionandcellmigration.
JBiolChem2000,275:36803–36810.
12.
CaraciF,BattagliaG,BuscetiC,BiagioniF,MastroiacovoF,BoscoP,DragoF,NicolettiF,SortinoMA,CopaniA:TGF-beta1protectsagainstAbeta-neurotoxicityviathephosphatidylinositol-3-kinasepathway.
NeurobiolDis2008,30:234–242.
13.
EdlinRS,TsaiS,YamanouchiD,WangC,LiuB,KentKC:Characterizationofprimaryandrestenoticatheroscleroticplaquefromthesuperficialfemoralartery:potentialroleofSmad3inregulationofSMCproliferation.
JVascSurg2009,49:1289–1295.
14.
MiyazawaK,ShinozakiM,HaraT,FuruyaT,MiyazonoK:TwomajorSmadpathwaysinTGF-superfamilysignalling.
GenesCell2002,7:1191–1204.
15.
XuF,LinSH,YangYZ,GuoR,CaoJ,LiuQ:Theeffectofcurcuminonsepsis-inducedacutelunginjuryinaratmodelthroughtheinhibitionoftheTGF-β1/SMAD3pathway.
IntImmunopharmacol2013,16:1–6.
16.
DerynckR,ZhangYE:Smad-dependentandSmad-independentpathwaysinTGF-betafamilysignalling.
Nature2003,425:577–584.
17.
ZhuY,CulmseeC,KlumppS,KrieglsteinJ:Neuroprotectionbytransforminggrowthfactor-beta1involvesactivationofnuclearfactor-kappaBthroughphosphatidylinositol-3-OHkinase/Aktandmitogen-activatedproteinkinase-extracellular-signalregulatedkinase1,2signalingpathways.
Neuroscience2004,123:806–897.
18.
GoelSA,GuoLW,ShiXD,KundiR,SovinskiG,SeedialS,LiuB,KentKC:Preferentialsecretionofcollagentype3versustype1fromadventitialfibroblastsstimulatedbyTGF-β/Smad3-treatedmedialsmoothmusclecells.
CellSignal2013,25:9559–9560.
19.
DobaczewskiM,ChenW,FrangogiannisNG:Transforminggrowthfactor(TGF)-βsignalingincardiacremodeling.
JMolCellCardiol2011,51:600–606.
20.
BujakM,FrangogiannisNG:TheroleofTGF-betasignalinginmyocardialinfarctionandcardiacremodeling.
CardiovascRes2007,74:184–195.
21.
LiuB,ZhangYM:Studyonriskfactorsofprematurecoronaryarterydisease.
ChinJCardiovascRes2009,7:629–632.
22.
LinWT,WuXN,ZhuPP,ZhangZF,ChenJ:Studiesonanti-tumoractivitiesofenteromorphachlorellagrowthfactorinexperimentallivercanceranditsmechanism.
JFujianMedUniv2009,43:227–230.
23.
GraingerDJ,KempPR,MetcalfeJC,LiuAC,LawnRM,WilliamsNR,GraceAA,SchofieldPM,ChauhanA:Theserumconcentrationofactivetransforminggrowthfactor-betaisseverelydepressedinadvancedatherosclerosis.
NatMed1995,1:74–79.
24.
CrookR,LeathamEW,SalomoneOA,Hossein-NiaM,GraingerDJ,KaskiJC:Plasmalevelsofactivetransforminggrowthfactor-betaarereducedinpatientswiththreevesselcoronaryarterydisease.
Heart1996,75:79.
25.
TashiroH,ShimokawaH,YamamotoK,MomoharaM,TadaH,TakeshitaA:Alteredplasmalevelsofcytokinesinpatientswithischemicheartdisease.
CoronArteryDis1997,8:143–147.
26.
LiCG,BethellH,WilsonPB,BhatnagarD,WalkerMG,KumarS:ThesignificanceofCD105,TGFbetaandCD105/TGFbetacomplexesincoronaryarterydisease.
Atherosclerosis2000,152:249–256.
27.
BatumanO,GoD,ClarkLT,SmithEL,ClementsP,FeitA,LedererD:Relationshipbetweencytokinelevelsandcoronaryarterydiseaseinwomen.
HeartDis2001,3:80–84.
28.
BorderWA,RuoslahtiE:Transforminggrowthfactor-betaindisease:thedarksideoftissuerepair.
JClinInvest1992,90:1–7.
29.
TashiroH,ShimokawaH,SadamatuK,YamamotoK:Prognosticsignificanceofplasmaconcentrationsoftransforminggrowthfactor-betainpatientswithcoronaryarterydisease.
CoronArteryDis2002,13:139–143.
30.
StefoniS,CiancioloG,DonatiG,DormiA,SilvestriMG,ColiL,DePascalisA,IannelliS:LowTGF-beta1serumlevelsareariskfactorforatherosclerosisdiseaseinESRDpatients.
KidneyInt2002,61:324–335.
31.
OsI,DjurovicS,SeljeflotI,BergK:Transforminggrowthfactor(TGF)-beta1inverselyrelatedtovascularcelladhesionmolecule-1inpostmenopausalwomenwithcoronaryarterydisease.
ApossiblemechanismfortheputativecardioprotectiveroleofTGF-beta1JInternMed2002,251:223–227.
32.
WenHH,BaiP,NiuLJ,LiYD:Theinfluenceofserumuricacidonacutemyocardialinfarctionanditspredicativevalue.
ActaAcadMedNeiMongol2006,28:27–31.
doi:10.
1186/1471-2261-14-18Citethisarticleas:Chenetal.
:SerumTGF-β1andSMAD3levelsarecloselyassociatedwithcoronaryarterydisease.
BMCCardiovascularDisorders201414:18.
SubmityournextmanuscripttoBioMedCentralandtakefulladvantageof:ConvenientonlinesubmissionThoroughpeerreviewNospaceconstraintsorcolorgurechargesImmediatepublicationonacceptanceInclusioninPubMed,CAS,ScopusandGoogleScholarResearchwhichisfreelyavailableforredistributionSubmityourmanuscriptatwww.
biomedcentral.
com/submitChenetal.
BMCCardiovascularDisorders2014,14:18Page7of7http://www.
biomedcentral.
com/1471-2261/14/18
轻云互联成立于2018年的国人商家,广州轻云互联网络科技有限公司旗下品牌,主要从事VPS、虚拟主机等云计算产品业务,适合建站、新手上车的值得选择,香港三网直连(电信CN2GIA联通移动CN2直连);美国圣何塞(回程三网CN2GIA)线路,所有产品均采用KVM虚拟技术架构,高效售后保障,稳定多年,高性能可用,网络优质,为您的业务保驾护航。官方网站:点击进入广州轻云网络科技有限公司活动规则:用户购买任...
可以看到这次国庆萤光云搞了一个不错的折扣,香港CN2产品6.5折促销,还送50的国庆红包。萤光云是2002年创立的商家,本次国庆活动主推的是香港CN2优化的机器,其另外还有国内BGP和高防服务器。本次活动力度较大,CN2优化套餐低至20/月(需买三个月,用上折扣+代金券组合),有需求的可以看看。官方网站:https://www.lightnode.cn/地区CPU内存SSDIP带宽/流量价格备注购...
Megalayer是新晋崛起的国外服务器商,成立于2019年,一直都处于稳定发展的状态,机房目前有美国机房,香港机房,菲律宾机房。其中圣何塞包括CN2或者国际线路,Megalayer商家提供了一些VPS特价套餐,譬如15M带宽CN2线路主机最低每月48元起,基于KVM架构,支持windows或者Linux操作系统。。Megalayer技术团队行业经验丰富,分别来自于蓝汛、IBM等知名企业。Mega...
www.niuav.com为你推荐
乐划锁屏乐视手机如何破解锁屏密码?netlife熊猫烧香图片安徽汽车网中国汽车十大品牌梦之队官网梦之队是哪个国家的?嘉兴商标注册我在濮院想注册一个羊毛衫商标?该怎么做?比肩工场比肩成局 什么意思lunwenjiancepaperfree论文检测安全吗psbc.comwww.psbc.com怎样注册www.bbb336.comwww.zzfyx.com大家感觉这个网站咋样,给俺看看呀。多提意见哦。哈哈。5xoy.comhttp www.05eee.com
虚拟主机评测网 主机域名 国外服务器 免费博客空间 国内php空间 京东商城双十一活动 小米数据库 1美金 外贸空间 网站防护 电信主机托管 谷歌搜索打不开 架设代理服务器 时间服务器 windowsserver2012 hosts文件修改 cloudflare 服务器操作系统 西部数码主机 德国代理ip 更多