直线2014年北京市各城区中考二模数学压轴题(8、12、22、23、24、25)

cuteftp 8  时间:2021-02-19  阅读:()

2014年北京市各区县中考二模数学压轴题汇编

8, 12 22 23 24 25

一.西城区

8右图表示一个正方体的展开图下面四个正方体中只有一个符合要求那么这个正方体是

得C4与x轴交于另一点A4这样依次得到x轴上的点A1A2A3„

An„及抛物线C1 C2„ Cn„则点A4的坐标为  Cn的顶点坐标为 (n为正整数用含n的代数式表示) 

2如图4一个八角形纸板有个个角都是直角所有的边都相等将这个纸板沿虚线分割为八部分再拼接成一个正方形如图5所示画出拼接示意图若拼接后的正方形的面积为84 2则八角形纸板

的边长为 

23经过点1 1的直线l ykx2 (k0)与反比例函数G 1:y1) 

B b -1与y轴交于点D

1求直线l对应的函数表达式及反比例函数G1的表达式

2反比例函数G 2: :y2) 

①若点E在第一象限内且在反比例函数G2的图象上若EA=EB且△AEB的面积为8求点E的坐标及t值

②反比例函数G2的图象与直线l有两个公共点M N点M在点N的左侧若DMDN3 2直接写出t的取值范围

24 在△ABC ∠BAC为锐角 AB>AC AD平分∠BAC交BC于点D

 1如图1若△ABC是等腰直角三角形直接写出线段AC CD AB之间的数量关系2 B C的垂直平分线交AD延长线于点E 交B C于点F

①如图2 若∠ABE=60°  判断AC CE AB之间有怎样的数量关系并加以证明

②如图3 若ACAB 3 AE 求∠BAC的度数

25.在平面直角坐标系xOy中对于⊙A上一点B及⊙A外一点P给出如下定义若直线PB与x轴有公共点记作M则称直线PB为⊙A的“x关联直线”记作lPBM.

1已知⊙O是以原点为圆心 1为半径的圆 点P 0,2

①直线l1  y2直线l2  yx2直线l3  y 3 x2直线l4  y2 x2都经过点P在直线l1  l2  l3  l4中是⊙O的“x关联直线”的是 

②若直线lPBM是⊙O的“x关联直线”则点M的横坐标xM的最大值是 

2点A 2,0 ,⊙A的半径为1

①若P -1,2 ,⊙A的“x关联直线” lPBM ykxk2 点M的横坐标为xM 当xM最大时求k的值

②若P是y轴上一个动点且点P的纵坐标yp2 ⊙A的两条“x关联直线” lPCM, lPDN是⊙A的两条切线切点分别为C,D作直线CD与x轴点于点E 当点P的位置发生变化时 AE的长度是

二.海淀区

8如图1 AB是半圆O的直径正方形OPNM的对角线ON与AB垂直且相等 Q是OP的中点.一只机器甲虫从点A出发匀速爬行它先沿直径爬到点B再沿半圆爬回到点A一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t 甲虫与微型记录仪之间的距离为y表示y与t的函数关系的图象如图2所示那么微型记录仪可能位于图1中的

A. 点M B. 点N C. 点P D. 点Q

12平面直角坐标系中有一点A(1, 1) 对点A进行如下操作

第一步作点A关于x轴的对称点A1 ,延长线段AA1到点A2 ,使得2A1 A2=AA1 

第二步作点A2关于y轴的对称点A3,延长线段A2A3到点A4,使得2A3A4A2A3 

第三步作点A4关于x轴的对称点A5,延长线段A4A5到点A6 ,使得2A5A6A4A5 

· · · · · · ·

则点A2的坐标为________ 点A2014的坐标为________.

22在数学课上同学们研究图形的拼接问题比如两个全等的等腰直角三角形纸片既能拼成一个大的等腰直角三角形如图1  也能拼成一个正方形如图2 

图1 图2

 1现有两个相似的直角三角形纸片各有一个角为30 恰好可以拼成另一个含有30°角的直角三角

形那么在原来的两个三角形纸片中较大的与较小的纸片的相似比为_________请画出拼接的

示意图

2现有一个矩形恰好由三个各有一个角为30的直角三角形纸片拼成请你画出两种不同拼法的示意图在拼成这个矩形的三角形中若每种拼法中最小的三角形的斜边长为a请直接写出每种拼法中最大三角形的斜边长

23 已知关于x的方程 x2(m1)xm0①和x2(9m)x2(m1)3②其中m0.1求证方程①总有两个不相等的实数根

2设二次函数y1x2(m1)xm的图象与x轴交于A、 B两点点A在点B的左侧将A、 B两点按照相同的方式平移后点A落在点A'(1,3)处点B落在点B'处若点B'的横坐标恰好是方程②的一个根求m的值

3设二次函数y2x2(9m)x2(m1) 在2的条件下 函数y1  y2的图象位于直线x3左侧的部分与直线ykx k0交于两点 当向上平移直线ykx时交点位置随之变化若交点间的距离始终不变则k的值是________.

-5 -4 -3 -2 -1

24在△ABC中ABC90 D为平面内一动点 ADa ACb其中a b为常数且ab.将△ABD沿射线B C方向平移得到△FCE 点A、 B、D的对应点分别为点F、 C、E.连接BE.

1如图1若D在△ABC内部请在图1中画出△FCE

2在1的条件下若ADBE求BE的长用含a, b的式子表示

3若BAC=当线段BE的长度最大时则BAD的大小为__________当线段BE的长度最小时则BAD的大小为_______________用含的式子表示 .

图1 备用图

25.对于半径为r的⊙P及一个正方形给出如下定义若⊙P上存在到此正方形四条边距离都相等的点则称⊙P是该正方形的“等距圆”如图1在平面直角坐标系xOy中正方形ABCD的顶点A的坐标为2 4顶点C、D在x轴上且点C在点D的左侧.

1当r=4 2时

①在P1 0 -3 P2 4 6 P3 4 2 2中可以成为正方形A B CD的“等距圆”的圆心的是②若点P在直线yx2上且⊙P是正方形AB CD的“等距圆”则点P的坐标为2如图2在正方形ABCD所在平面直角坐标系xOy中正方形EFGH的顶点F的坐标为6 2顶点E、H在y轴上且点H在点E的上方.

①若⊙P同时为上述两个正方形的“等距圆”且与BC所在直线相切求⊙P在y轴上截得的弦长

②将正方形ABCD绕着点D旋转一周在旋转的过程中线段HF上没有一个点能成为它的“等距圆”的圆心则r的取值范围是

图1 图2

三.东城区

8矩形ABCD中AD=8 cm AB=6 cm动点E从点C开始沿边CB向点B以2cm/s的速度运动至点B停止动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE设运动时间为x单位 s此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位 c m2) 则y与x之间的函数关系用图象表示大致是下图中的

22.我们曾学过“两点之间线段最短”的知识常可利用它来解决两条线段和最小的相关问题下面是大家非常熟悉的一道习题

如图1 已知 A B在直线l的同一侧在l上求作一点使得PA+PB最小

A

图1 图2 B

我们只要作点B关于l的对称点B′  如图2所示根据对称性可知 PB=PB  因此求A P+B P最小就相当于求AP+PB′最小显然当A、 P、 B′在一条直线上时AP+PB′最小 因此连接AB 与直线l的交点就是要求的点P

有很多问题都可用类似的方法去思考解决

 图3

1如图3正方形ABCD的边长为2 E为BC的中点 P是BD上一动点连结EP CP则EP+CP的最

小值是__________

2如图4 A是锐角MON内部任意一点在∠MON的两边OM ON上各求作一点B C组成△ABC

使△ABC周长最小 不写作法保留作图痕迹

3如图5平面直角坐标系中有两点A 6 4、 B 4 6在y轴上找一点C在x轴上找一点D

使得四边形ABCD的周长最小则点C的坐标应该是  点D的坐标应该是 

24如图等腰Rt△ABC中 ∠ACB=90° AC=BC=4 P是AC边上一动点 由A向C运动与A、 C不重合 Q是CB延长线上一点与点P同时以相同的速度由B向CB延长线方向运动Q不与B重合过P作PE⊥AB于E连接P Q交AB于D A

Q B C

cloudcone:特价便宜VPS补货通知贴,SAS或SSD低价有磁盘阵列,SAS或SSD raid10 硬盘

cloudcone经常性有特价促销VPS放出来,每次的数量都是相当有限的,为了方便、及时帮助大家,主机测评这里就做这个cloudcone特价VPS补货专题吧,以后每次放货我会在这里更新一下日期,方便大家秒杀!官方网站:https://cloudcone.com/预交费模式,需要充值之后方可使用,系统自动扣费!信用卡、PayPal、支付宝,均可付款购买!为什么说cloudcone值得买?cloudc...

BGP.TO日本和新加坡服务器进行促销,日本服务器6.5折

BGP.TO目前针对日本和新加坡服务器进行促销,其中日本东京服务器6.5折,而新加坡服务器7.5折起。这是一家专门的独立服务器租售网站,提供包括中国香港、日本、新加坡和洛杉矶的服务器租用业务,基本上都是自有硬件、IP资源等,国内优化直连线路,机器自动化部署上架,并提供产品的基本管理功能(自助开关机重启重装等)。新加坡服务器 $93.75/月CPU:E3-1230v3内存:16GB硬盘:480GB ...

RackNerd 2022春节促销提供三款年付套餐 低至年付10.88美元

RackNerd 商家我们应该是比较熟悉的商家,速度一般,但是人家便宜且可选机房也是比较多的,较多集中在美国机房。包括前面的新年元旦促销的时候有提供年付10美元左右的方案,实际上RackNerd商家的营销策略也是如此,每逢节日都有活动,配置简单变化,价格基本差不多,所以我们网友看到没有必要囤货,有需要就选择。RackNerd 商家这次2022农历新年也是有几款年付套餐。低至RackNerd VPS...

cuteftp 8为你推荐
万维读者网《读者》要订购有网站吗?郭吉军郭吉军和管鹏这两个站长怎么样?群里有人骂刷网站权重刷出来的流量会提高网站的权重吗?无线路由器限速设置如何设置无线路由器局域网限速?bluestacksbluestacks怎么用?淘宝店推广给淘宝店铺推广有什么好处?godaddygodaddy域名怎样使用创维云电视功能创维新出的4K超高清健康云电视有谁用过,功能效果怎么样?怎么升级ios6苹果iPhone6怎么升级系统bluestackbluestacks下载的东西在哪
广州服务器租用 上海服务器租用 日本动态vps 香港vps主机 已经备案域名 vpsio l5639 香港托管 免备案空间 香港新世界电讯 卡巴斯基永久免费版 qq数据库下载 hostker 河南m值兑换 秒杀汇 卡巴斯基是免费的吗 美国独立日 美国迈阿密 云服务是什么意思 卡巴斯基官网下载 更多