Creativedede标签

dede标签  时间:2021-02-28  阅读:()
AraciandzerAdvancesinDierenceEquations(2015)2015:272DOI10.
1186/s13662-015-0610-8RESEARCHOpenAccessExtendedq-Dedekind-typeDaehee-Changheesumsassociatedwithextendedq-EulerpolynomialsSerkanAraci1*andzenzer2*Correspondence:mtsrkn@hotmail.
com1DepartmentofEconomics,FacultyofEconomics,AdministrativeandSocialSciences,HasanKalyoncuUniversity,Gaziantep,27410,TurkeyFulllistofauthorinformationisavailableattheendofthearticleAbstractInthepresentpaper,weaimtospecifyap-adiccontinuousfunctionforanoddprimeinsideap-adicq-analogoftheextendedDedekind-typesumsofhigherorderaccordingtoextendedq-Eulerpolynomials(orweightedq-Eulerpolynomials)whichisderivedfromafermionicp-adicq-deformedintegralonZp.
MSC:11S80;11B68Keywords:Dedekindsums;q-Dedekind-typesums;p-adicq-integral;extendedq-Eulernumbersandpolynomials1IntroductionLetpbechosenasaxedoddprimenumber.
InthispaperZp,Qp,CandCpwill,respec-tively,denotetheringofp-adicrationalintegers,theeldofp-adicrationalnumbers,thecomplexnumbers,andthecompletionofanalgebraicclosureofQp.
LetvpbeanormalizedexponentialvaluationofCpby|p|p=p–vp(p)=p.
Whenonetalksofaq-extension,qisvariouslyconsideredasanindeterminate,acom-plexnumberq∈Corap-adicnumberq∈Cp.
Ifq∈C,weassumethat|q|<.
Ifq∈Cp,weassumethat|–q|p<(see,fordetails,[–]).
ThefollowingmeasureisdenedbyKim:foranypositiveintegernand≤aExtendedq-Eulerpolynomials(alsoknownasweightedq-Eulerpolynomials)arede-nedbyE(α)n,q(x)=Zp–qα(x+ξ)–qαndμq(ξ)()2015Araciandzer.
ThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.
0InternationalLicense(http://creativecommons.
org/licenses/by/4.
0/),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,pro-videdyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.
AraciandzerAdvancesinDierenceEquations(2015)2015:272Page2of5forn∈Z+:={,,,,.
.
.
}.
Wenotethatlimq→E(α)n,q(x)=En(x),whereEn(x)arenthEulerpolynomials,whicharedenedbytherule∞n=En(x)tnn!
=etxet+,|t|<π(fordetails,see[]).
Inthecasex=in(),thenwehaveE(α)n,q():=E(α)n,q,whicharecalledextendedq-Eulernumbers(orweightedq-Eulernumbers).
Extendedq-Eulernumbersandpolynomialshavethefollowingexplicitformulas:E(α)n,q=+q(–qα)nnl=nl(–)l+qαl+,()E(α)n,q(x)=+q(–qα)nnl=nl(–)lqαlx+qαl+,()E(α)n,q(x)=nl=nlqαlxE(α)l,q–qαx–qαn–l.
()Moreover,ford∈Nwithd≡(mod),E(α)n,q(x)=+q+qd–qαd–qαnd–a=(–)aE(α)n,qx+ad;()see[].
Foranypositiveintegerh,kandm,Dedekind-typeDCsumsaregivenbyKimin[,],and[]asfollows:Sm(h,k)=k–M=(–)M–MkEmhMk,whereEm(x)aremthperiodicEulerfunctions.
Kim[]derivedsomeinterestingpropertiesforDedekind-typeDCsumsandconsid-eredap-adiccontinuousfunctionforanoddprimenumbertocontainap-adicq-analogofthehigherorderDedekind-typeDCsumskmSm+(h,k).
Simsek[]gaveaq-analogofDedekind-typesumsandderivedinterestingproperties.
Furthermore,Aracietal.
stud-iedDedekind-typesumsinaccordancewithmodiedq-Eulerpolynomialswithweightα[],modiedq-Genocchipolynomialswithweightα[],andweightedq-Genocchipolynomials[].
Recently,weightedq-BernoullinumbersandpolynomialswererstdenedbyKimin[].
Next,manymathematicians,byutilizingKim'spaper[],haveintroducedvariousgeneralizationofsomeknownspecialpolynomialssuchasBernoullipolynomials,Eulerpolynomials,Genocchipolynomials,andsoon,whicharecalledweightedq-Bernoulli,weightedq-Euler,andweightedq-Genocchipolynomialsin[,,–].
AraciandzerAdvancesinDierenceEquations(2015)2015:272Page3of5Bythesamemotivationoftheaboveknowledge,wegiveaweightedp-adicq-analogofthehigherorderDedekind-typeDCsumskmSm+(h,k)whicharederivedfromafermionicp-adicq-deformedintegralonZp.
2Extendedq-Dedekind-typesumsassociatedwithextendedq-EulerpolynomialsLetwbetheTeichmüllercharacter(modp).
Forx∈Zp:=Zp/pZp,setx:q=w–(x)–qx–q.
LetaandNbepositiveintegerswith(p,a)=andp|N.
WenowconsiderC(α)qs,a,N:qN=w–(a)a:qαs∞j=sjqαaj–qαN–qαajE(α)j,qN.
Inparticular,ifm+≡(modp–),thenC(α)qm,a,N:qN=–qαa–qαmmj=mjqαajE(α)j,qN–qαN–qαaj=–qαN–qαmZp–qαN(ξ+aN)–qαNmdμqN(ξ).
Thus,C(α)q(m,a,N:qN)isacontinuousp-adicextensionof–qαN–qαmE(α)m,qNaN.
Let[·]betheGausssymbolandlet{x}=x–[x].
Thus,wearenowreadytointroducetheq-analogofthehigherorderDedekind-typeDCsumsJ(α)m,q(h,k:ql)bytheruleJ(α)m,qh,k:ql=k–M=(–)M––qαM–qαkZp–qα(lξ+l{hMk})–qαlmdμql(ξ).
Ifm+≡(modp–),–qαk–qαm+k–M=(–)M––qαM–qαkZp–qαk(ξ+hMk)–qαkmdμqk(ξ)=k–M=(–)M––qαM–qα–qαk–qαmZp–qαk(ξ+hMk)–qαkmdμqk(ξ),wherep|k,(hM,p)=foreachM.
By(),weeasilystatethefollowing:–qαk–qαm+J(α)m,qh,k:qk=k–M=–qαM–qα–qαk–qαm(–)M–AraciandzerAdvancesinDierenceEquations(2015)2015:272Page4of5*Zp–qαk(ξ+hMk)–qαkmdμqk(ξ)=k–M=(–)M––qαM–qαC(α)qm,(hM)k:qk,()where(hM)kdenotestheintegerxsuchthat≤xItisnotdiculttoindicatethefollowing:Zp–qα(x+ξ)–qαkdμq(ξ)=–qαm–qαk+q+qmm–i=(–)iZp–qαm(ξ+x+im)–qαmkdμqm(ξ).
()Onaccountof()and(),weeasilyseethat–qαN–qαmZp–qαN(ξ+aN)–qαNmdμqN(ξ)=+qN+qNpp–i=(–)i–qαNp–qαmZp–qαpN(ξ+a+iNpN)–qαpNmdμqpN(ξ).
()Becauseof(),(),and(),wedevelopthep-adicintegrationasfollows:C(α)qs,a,N:qN=+qN+qNp≤i≤p–a+iN=(modp)(–)iC(α)qs,(a+iN)pN,pN:qpN.
So,C(α)qm,a,N:qN=–qαN–qαmZp–qαN(ξ+aN)–qαNmdμqN(ξ)––qαNp–qαmZp–qαpN(ξ+a+iNpN)–qαpNmdμqpN(ξ),where(p–a)Ndenotestheintegerxwith≤xTherefore,wehavek–M=(–)M––qαM–qαC(α)qm,hM,k:qk=–qαk–qαm+J(α)m,qh,k:qk––qαk–qαm+*–qαkp–qαkJ(α)m,qp–h,k:qpk,wherepkandphmforeachM.
Thus,wegivethefollowingdenition,whichseemsinterestingforfurtherstudyingthetheoryofDedekindsums.
AraciandzerAdvancesinDierenceEquations(2015)2015:272Page5of5DenitionLeth,kbepositiveintegerwith(h,k)=,pk.
Fors∈Zp,wedeneap-adicDedekind-typeDCsumsasfollows:J(α)p,qs:h,k:qk=k–M=(–)M––qαM–qαC(α)qm,hM,k:qk.
Asaresultoftheabovedenition,westatethefollowingtheorem.
Theorem.
Form+≡(modp–)and(p–a)Ndenotestheintegerxwith≤xInthespecialcaseα=,ourapplicationsintheoryofDedekindsumsresembleKim'sresultsin[].
Theseresultsseemtobeinterestingforfurtherstudiesasin[,]and[].
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsAllauthorscontributedequallytothiswork.
Allauthorsreadandapprovedtherevisedmanuscript.
Authordetails1DepartmentofEconomics,FacultyofEconomics,AdministrativeandSocialSciences,HasanKalyoncuUniversity,Gaziantep,27410,Turkey.
2DepartmentofMathematics,FacultyofScienceandArts,KrklareliUniversity,Krklareli,39000,Turkey.
AcknowledgementsTheauthorsthankthereviewersfortheirhelpfulcommentsandsuggestions,whichhaveimprovedthequalityofthepaper.
Received:22June2015Accepted:15August2015References1.
Araci,S,Acikgoz,M,Park,KH:Anoteontheq-analogueofKim'sp-adicloggamma-typefunctionsassociatedwithq-extensionofGenocchiandEulernumberswithweightα.
Bull.
KoreanMath.
Soc.
50(2),583-588(2013)2.
Araci,S,Erdal,D,Seo,JJ:Astudyonthefermionicp-adicq-integralrepresentationonZpassociatedwithweightedq-Bernsteinandq-Genocchipolynomials.
Abstr.
Appl.
Anal.
2011,ArticleID649248(2011)3.
Araci,S,Acikgoz,M,Seo,JJ:Explicitformulasinvolvingq-Eulernumbersandpolynomials.
Abstr.
Appl.
Anal.
2012,ArticleID298531(2012).
doi:10.
1155/2012/2985314.
Araci,S,Acikgoz,M,Esi,A:Anoteontheq-Dedekind-typeDaehee-Changheesumswithweightαarisingfrommodiedq-Genocchipolynomialswithweightα.
J.
AssamAcad.
Math.
5,47-54(2012)5.
Kim,T:Anoteonp-adicq-Dedekindsums.
C.
R.
Acad.
BulgareSci.
54,37-42(2001)6.
Kim,T:Noteonq-Dedekind-typesumsrelatedtoq-Eulerpolynomials.
Glasg.
Math.
J.
54,121-125(2012)7.
Kim,T:NoteonDedekindtypeDCsums.
Adv.
Stud.
Contemp.
Math.
18,249-260(2009)8.
Kim,T:Themodiedq-Eulernumbersandpolynomials.
Adv.
Stud.
Contemp.
Math.
16,161-170(2008)9.
Kim,T:q-Volkenbornintegration.
Russ.
J.
Math.
Phys.
9,288-299(2002)10.
Kim,T:Onaq-analogueofthep-adicloggammafunctionsandrelatedintegrals.
J.
NumberTheory76,320-329(1999)11.
Kim,T:Ontheweightedq-Bernoullinumbersandpolynomials.
Adv.
Stud.
Contemp.
Math.
21(2),207-215(2011)12.
Rim,SH,Jeong,J:Anoteonthemodiedq-Eulernumbersandpolynomialswithweightα.
Int.
Math.
Forum6(65),3245-3250(2011)13.
Ryoo,CS:Anoteontheweightedq-Eulernumbersandpolynomials.
Adv.
Stud.
Contemp.
Math.
21,47-54(2011)14.
Seo,JJ,Araci,S,Acikgoz,M:q-Dedekind-typeDaehee-Changheesumswithweightαassociatedwithmodiedq-Eulerpolynomialswithweightα.
J.
ChungcheongMath.
Soc.
27(1),1-8(2014)15.
Simsek,Y:q-Dedekindtypesumsrelatedtoq-zetafunctionandbasicL-series.
J.
Math.
Anal.
Appl.
318,333-351(2006)16.
Sen,E,Acikgoz,M,Araci,S:Anoteonthemodiedq-Dedekindsums.
NotesNumberTheoryDiscreteMath.
19(3),60-65(2013)

青云互联-洛杉矶CN2弹性云限时五折,9.5元/月起,三网CN2gia回程,可选Windows,可自定义配置

官方网站:点击访问青云互联官网优惠码:五折优惠码:5LHbEhaS (一次性五折,可月付、季付、半年付、年付)活动方案:的套餐分为大带宽限流和小带宽不限流两种套餐,全部为KVM虚拟架构,而且配置都可以弹性设置1、洛杉矶cera机房三网回程cn2gia 洛杉矶cera机房                ...

DogYun27.5元/月香港/韩国/日本/美国云服务器,弹性云主机

DogYun怎么样?DogYun是一家2019年成立的国人主机商,称为狗云,提供VPS及独立服务器租用,其中VPS分为经典云和动态云(支持小时计费及随时可删除),DogYun云服务器基于Kernel-based Virtual Machine(Kvm)硬件的完全虚拟化架构,您可以在弹性云中,随时调整CPU,内存,硬盘,网络,IPv4路线(如果该数据中心接入了多条路线)等。DogYun弹性云服务器优...

LOCVPS全场8折,香港云地/邦联VPS带宽升级不加价

LOCVPS发布了7月份促销信息,全场VPS主机8折优惠码,续费同价,同时香港云地/邦联机房带宽免费升级不加价,原来3M升级至6M,2GB内存套餐优惠后每月44元起。这是成立较久的一家国人VPS服务商,提供美国洛杉矶(MC/C3)、和中国香港(邦联、沙田电信、大埔)、日本(东京、大阪)、新加坡、德国和荷兰等机房VPS主机,基于XEN或者KVM虚拟架构,均选择国内访问线路不错的机房,适合建站和远程办...

dede标签为你推荐
bluestacksbluestacks怎么用中小企业信息化小企业需要信息化吗?需要的话要怎么实现信息化呢?qq空间打扮如何打扮QQ空间?创维云电视功能创维电视怎么用,我买了个创维云电视,现在不知道怎么用手机往电视上传照片,谁能解答以下,商标注册查询官网怎么查商标是否注册成功iphone6上市时间苹果6什么时候在中国大陆上市网页打开很慢为什么打开网页很慢网页打开很慢为什么我打开浏览器的时候,网页打开的很慢?cr2格式如何打开CR2格式的照片呢系统分析员系统分析师是什么职业?主要做什么工作?
虚拟主机软件 vps侦探 vps交流 xenvps 网站域名备案 注册cn域名 photonvps 好看的桌面背景图片 宁波服务器 秒杀预告 柚子舍官网 合租空间 已备案删除域名 购买国外空间 独享主机 太原联通测速 路由跟踪 cdn网站加速 测速电信 石家庄服务器 更多