mndede标签

dede标签  时间:2021-02-28  阅读:()
GeneralizedDedekindSumsArisingfromEisensteinSeriesTristieStucker&AmyVennosAdvisor:Dr.
MatthewYoungDepartmentofMathematics,TexasA&MUniversityNSFDMS–1757872July16,2018MobiusTransformationsSL2(Z)=abcda,b,c,d∈Z,adbc=1.
MobiusTransformationsSL2(Z)=abcda,b,c,d∈Z,adbc=1.
Givenγ∈SL2(Z),theMobiustransformationassociatedtoγisthecomplexmapdenedbyz→az+bcz+d,wherez∈H={x+iy|x,y∈R,y>0}.
MobiusTransformationsSL2(Z)=abcda,b,c,d∈Z,adbc=1.
Givenγ∈SL2(Z),theMobiustransformationassociatedtoγisthecomplexmapdenedbyz→az+bcz+d,wherez∈H={x+iy|x,y∈R,y>0}.
Wewriteγz=az+bcz+d.
AutomorphicFormsAfunctionf:H→CisanautomorphicformifAutomorphicFormsAfunctionf:H→Cisanautomorphicformif1.
fobeyssometransformationproperty.
e.
g.
faz+bcz+d=(cz+d)kf(z)AutomorphicFormsAfunctionf:H→Cisanautomorphicformif1.
fobeyssometransformationproperty.
e.
g.
faz+bcz+d=(cz+d)kf(z)2.
fsatisesacertaindierentialequation(complexanalytic,harmonicfunctions,AutomorphicFormsAfunctionf:H→Cisanautomorphicformif1.
fobeyssometransformationproperty.
e.
g.
faz+bcz+d=(cz+d)kf(z)2.
fsatisesacertaindierentialequation(complexanalytic,harmonicfunctions,3.
fexhibitssomeboundarybehavior.
(polynomialgrowth,boundednessasfunctionapproachesi∞EisensteinSeriesFork≥4andkeven,theweight-kEisensteinSeriesisEk(z)=12gcd(c,d)=11(cz+d)k.
EisensteinSeriesFork≥4andkeven,theweight-kEisensteinSeriesisEk(z)=12gcd(c,d)=11(cz+d)k.
Forallγ=abcd∈SL2(Z),Ek(γz)=(cz+d)kEk(z).
DirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:DirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈ZDirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈Z2.
χ(n)=0igcd(n,q)=1DirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈Z2.
χ(n)=0igcd(n,q)=13.
χ(mn)=χ(m)χ(n)m,n∈ZDirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈Z2.
χ(n)=0igcd(n,q)=13.
χ(mn)=χ(m)χ(n)m,n∈ZExample:Jacobi/LegendreSymbolsEisensteinSerieswithDirichletCharactersEχ1,χ2(z,s)=12gcd(c,d)=1(q2y)sχ1(c)χ2(d)|cq2z+d|2s|cq2z+d|cq2z+dkwhereχ1andχ2areDirichletcharactersmoduloq1,q2,respectively.
EisensteinSerieswithDirichletCharactersEχ1,χ2(z,s)=12gcd(c,d)=1(q2y)sχ1(c)χ2(d)|cq2z+d|2s|cq2z+d|cq2z+dkwhereχ1andχ2areDirichletcharactersmoduloq1,q2,respectively.
Eχ1,χ2(γz,s)=ψ(γ)Eχ1,χ2(z,s),whereψ(γ)=χ1(d)χ2(d),forallγ=abcd∈Γ0(q1q2).
EisensteinSerieswithDirichletCharactersEχ1,χ2(z,s)=12gcd(c,d)=1(q2y)sχ1(c)χ2(d)|cq2z+d|2s|cq2z+d|cq2z+dkwhereχ1andχ2areDirichletcharactersmoduloq1,q2,respectively.
Eχ1,χ2(γz,s)=ψ(γ)Eχ1,χ2(z,s),whereψ(γ)=χ1(d)χ2(d),forallγ=abcd∈Γ0(q1q2).
Γ0(N)=abcd∈SL2(Z)c≡0(modN)PeriodicityofEχ1,χ2LetT=1101∈Γ0(q1q2).
ThenTz=1z+10z+1=z+1,soEχ1,χ2(z+1,s)=(0z+1)kχ1(1)χ2(1)Eχ1,χ2(z,s)=Eχ1,χ2(z,s).
PeriodicityofEχ1,χ2LetT=1101∈Γ0(q1q2).
ThenTz=1z+10z+1=z+1,soEχ1,χ2(z+1,s)=(0z+1)kχ1(1)χ2(1)Eχ1,χ2(z,s)=Eχ1,χ2(z,s).
Thus,Eχ1,χ2isperiodic.
FourierExpansionfortheCompletedEisensteinSeriesDenethecompletedEisensteinseriesasEχ1,χ2(z,s):=(q2/π)sikτ(χ2)Γ(s+k2)L(2s,χ1χ2)Eχ1,χ2(z,s)FourierExpansionfortheCompletedEisensteinSeriesDenethecompletedEisensteinseriesasEχ1,χ2(z,s):=(q2/π)sikτ(χ2)Γ(s+k2)L(2s,χ1χ2)Eχ1,χ2(z,s)TheFourierexpansionforthecompletedEisensteinseriesisEχ1,χ2(z,s)=eχ1,χ2(y,s)+n=0λχ1,χ2(n,s)|n|e2πinx·Γ(s+k2)Γ(s+k2sgn(n))Wk2sgn(n),s12(4π|n|y).
EvaluatingEχ1,χ2(z,s)atk=0ands=1Eχ1,χ2(z,1)=n>0e2πinz√nab=nχ1(a)χ2(b)ba12+χ2(1)n>0e2πinz√nab=nχ1(a)χ2(b)ba12Theη-functionandDedekindSumsη(z)=eπiz/12∞n=1(1e2πinz)Theη-functionandDedekindSumsη(z)=eπiz/12∞n=1(1e2πinz)logηaz+bcz+d=logη(z)+πia+d12c+s(d,c)+12log(i(cz+d))Theη-functionandDedekindSumsη(z)=eπiz/12∞n=1(1e2πinz)logηaz+bcz+d=logη(z)+πia+d12c+s(d,c)+12log(i(cz+d))s(h,k)=k1r=1rkhrkhrk12EvaluatingEχ1,χ2(z,s)atk=0ands=1Eχ1,χ2(z,1)=n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)+χ2(1)n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)EvaluatingEχ1,χ2(z,s)atk=0ands=1Eχ1,χ2(z,1)=n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)+χ2(1)n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)Wehavebeeninvestigatingthefunctionfχ1,χ2.
TransformationPropertiesoffχ1,χ2(z)Deneφχ1,χ2(γ,z):=fχ1,χ2(γz)ψ(γ)fχ1,χ2(z).
TransformationPropertiesoffχ1,χ2(z)Deneφχ1,χ2(γ,z):=fχ1,χ2(γz)ψ(γ)fχ1,χ2(z).
MainGoal.
Findanitesumformulaforφχ1,χ2.
Propertiesofφχ1,χ2Lemma1.
Thefunctionφχ1,χ2isindependentofz.
Propertiesofφχ1,χ2Lemma1.
Thefunctionφχ1,χ2isindependentofz.
Proof.
SinceEχ1,χ2(γz,1)=ψ(γ)Eχ1,χ2(z,1)andEχ1,χ2(z,1)=fχ1,χ2(z)+χ2(1)fχ1,χ2(z),φχ1,χ2(γ,z)=χ2(1)φχ1,χ2(γ,z).
Sinceφχ1,χ2isaholomorphicfunctionandφχ1,χ2isanantiholomorphicfunction,φχ1,χ2mustbeconstant.
Propertiesofφχ1,χ2Lemma1.
Thefunctionφχ1,χ2isindependentofz.
Proof.
SinceEχ1,χ2(γz,1)=ψ(γ)Eχ1,χ2(z,1)andEχ1,χ2(z,1)=fχ1,χ2(z)+χ2(1)fχ1,χ2(z),φχ1,χ2(γ,z)=χ2(1)φχ1,χ2(γ,z).
Sinceφχ1,χ2isaholomorphicfunctionandφχ1,χ2isanantiholomorphicfunction,φχ1,χ2mustbeconstant.
Fromnowon,wewillwriteφχ1,χ2(γ)insteadofφχ1,χ2(γ,z).
Propertiesofφχ1,χ2Lemma2.
Letγ1,γ2∈Γ0(q1q2).
Thenφχ1,χ2(γ1γ2)=φχ1,χ2(γ1)+ψ(γ1)φχ1,χ2(γ2).
Propertiesofφχ1,χ2Lemma2.
Letγ1,γ2∈Γ0(q1q2).
Thenφχ1,χ2(γ1γ2)=φχ1,χ2(γ1)+ψ(γ1)φχ1,χ2(γ2).
Proof.
Sinceψismultiplicative,φχ1,χ2(γ1γ2)=fχ1,χ2(γ1γ2z)ψ(γ1γ2)fχ1,χ2(z)=fχ1,χ2(γ1γ2z)ψ(γ1)ψ(γ2)fχ1,χ2(z)=fχ1,χ2(γ1γ2z)ψ(γ1)fχ1,χ2(γ2z)+ψ(γ1)fχ1,χ2(γ2z)ψ(γ1)ψ(γ2)fχ1,χ2(z)=φχ1,χ2(γ1)+ψ(γ1)φχ1,χ2(γ2).
MainTheoremTheorem.
Letγ=abcd∈Γ0(q1q2).
Thenφχ1,χ2(γ)=πiχ2(1)τ(χ1)j(modc)n(modq1)χ2(j)χ1(n)B1jcB1nq1ajc,whereB1(z)=zz12,z/∈Z0,otherwise,andτ(χ)=q1n=0χ(n)e2πinq,forχmoduloq.
CarnivalFunhouseProofofMainTheoremLetγ=abcd∈Γ0(q1q2).
Choosez=dc+ic2u∈Hforsomeu∈R,u=0.
Thenγz=ac+iu.
φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iuψ(γ)fχ1,χ2dc+ic2uCarnivalFunhouseProofofMainTheoremLetγ=abcd∈Γ0(q1q2).
Choosez=dc+ic2u∈Hforsomeu∈R,u=0.
Thenγz=ac+iu.
φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iuψ(γ)fχ1,χ2dc+ic2ulimu→0+fχ1,χ2dc+ic2u=0.
CarnivalFunhouseProofofMainTheoremLetγ=abcd∈Γ0(q1q2).
Choosez=dc+ic2u∈Hforsomeu∈R,u=0.
Thenγz=ac+iu.
φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iuψ(γ)fχ1,χ2dc+ic2ulimu→0+fχ1,χ2dc+ic2u=0.
Thus,φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iu.
CarnivalFunhouseProofofMainTheoremfχ1,χ2(z)=∞k=1∞l=1χ1(l)χ2(k)le2πiklz.
CarnivalFunhouseProofofMainTheoremfχ1,χ2(z)=∞k=1∞l=1χ1(l)χ2(k)le2πiklz.
Simplifyingfχ1,χ2andevaluatinglimu→0+fχ1,χ2ac+iu,wegetφχ1,χ2(γ)=χ2(1)∞l=1χ1(l)lj(modc)χ2(j)B1jce2πialjc.
CarnivalFunhouseProofofMainTheoremFromthetransformationpropertiesofEχ1,χ2,wehaveφχ1,χ2(γ)=12(φχ1,χ2(γ)χ2(1)φχ1,χ2(γ)).
Wesimplifythismoresymmetricversionofφχ1,χ2togetφχ1,χ2(γ)=πiχ2(1)τ(χ1)j(modc)n(modq1)χ2(j)χ1(n)B1jcB1nq1ajc.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
WecalculatedthegeneralizedDedekindsumdirectlyfromtheFourierexpansionoftheEisensteinseries.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
WecalculatedthegeneralizedDedekindsumdirectlyfromtheFourierexpansionoftheEisensteinseries.
Withmoretime,wewouldliketocalculateareciprocitytheoremforourgeneralizedDedekindsum.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
WecalculatedthegeneralizedDedekindsumdirectlyfromtheFourierexpansionoftheEisensteinseries.
Withmoretime,wewouldliketocalculateareciprocitytheoremforourgeneralizedDedekindsum.
12hks(h,k)+12khs(k,h)=h2+k23hk+1References1.
T.
M.
Apostol,ModularFunctionsandDirichletSeriesinNumberTheory,Springer-VerlagNewYork,Inc.
,1976.
2.
B.
Berndt,CharacterTransformationFormulaeSimilartoThosefortheDedekindEta-Function,Proc.
Sym.
PureMath.
,No.
24,Amer.
Math.
Soc,Providence,(1973),9–30.
3.
M.
C.
Dagl,M.
Can,OnReciprocityFormulasforApostol'sDedekindSumsandtheirAnalogues,J.
IntegerSeq.
17(5)(2014),Article14.
5.
4,105–1244.
L.
Goldstein,DedekindSumsforaFuchsianGroup,I.
NagayaMath.
J.
50(1973),21–47.
5.
C.
Nagasaka,OnGeneralizedDedekindSumsAttachedtoDirichletCharacters,JournalofNumberTheory19(1984),no.
3,374–383.
6.
M.
Young,ExplicitCalculationswithEisensteinSeries.
arXiv:1710.
03624,(2017),1–37.

王小玉网-美国洛杉矶2核4G 20元/月,香港日本CN2 2核2G/119元/季,美国300G高防/80元/月!

 活动方案:美国洛杉矶 E5 2696V2 2核4G20M带宽100G流量20元/月美国洛杉矶E5 2696V2 2核4G100M带宽1000G流量99元/季香港CN2 E5 2660V2 2核2G30M CN2500G流量119元/季日本CN2E5 2660 2核2G30M CN2 500G流量119元/季美国300G高防 真实防御E5 2696V2 2核2G30M...

Sharktech云服务器35折年付33美元起,2G内存/40G硬盘/4TB流量/多机房可选

Sharktech又称SK或者鲨鱼机房,是一家主打高防产品的国外商家,成立于2003年,提供的产品包括独立服务器租用、VPS云服务器等,自营机房在美国洛杉矶、丹佛、芝加哥和荷兰阿姆斯特丹等。之前我们经常分享商家提供的独立服务器产品,近期主机商针对云虚拟服务器(CVS)提供优惠码,优惠后XS套餐年付最低仅33.39美元起,支持使用支付宝、PayPal、信用卡等付款方式。下面以XS套餐为例,分享产品配...

UCloud云服务器香港临时补货,(Intel)CN2 GIA优化线路,上车绝佳时机

至今为止介绍了很多UCLOUD云服务器的促销活动,UCLOUD业者以前看不到我们的个人用户,即使有促销活动,续费也很少。现在新用户的折扣力很大,包括旧用户在内也有一部分折扣。结果,我们的用户是他们的生存动力。没有共享他们的信息的理由是比较受欢迎的香港云服务器CN2GIA线路产品缺货。这不是刚才看到邮件注意和刘先生的通知,而是补充UCLOUD香港云服务器、INTELCPU配置的服务器。如果我们需要他...

dede标签为你推荐
yy频道中心YY怎么进入频道中心湖南商标注册在湖南搞商标注册是代理好还是自己去好一点?湖南商标注册的流程又是什么样的呢?spgnuxps = getCon().prepareStatement(sql);啥意思,求注释,要是不嫌麻烦帮我把下面的也给注释了云播怎么看片云播看不了视频网店推广网站怎么免费推广淘宝店铺?云挂机快手极速版后台云挂机辅?助各位用了吗?在哪找的?网络广告投放网络广告投放有哪些技巧?网站地图制作如何制作一个网站地图?聚美优品红包聚美优品怎么给别人发红包去鼠标加速度怎样去除电脑鼠标加速?
国外vps主机 免费域名申请 ipage lunarpages 分销主机 全球付 wdcp shopex空间 好看的留言 evssl证书 韩国网名大全 数字域名 789电视 常州联通宽带 免费私人服务器 web服务器搭建 域名dns 网通服务器 阿里云官方网站 web应用服务器 更多