mndede标签

dede标签  时间:2021-02-28  阅读:()
GeneralizedDedekindSumsArisingfromEisensteinSeriesTristieStucker&AmyVennosAdvisor:Dr.
MatthewYoungDepartmentofMathematics,TexasA&MUniversityNSFDMS–1757872July16,2018MobiusTransformationsSL2(Z)=abcda,b,c,d∈Z,adbc=1.
MobiusTransformationsSL2(Z)=abcda,b,c,d∈Z,adbc=1.
Givenγ∈SL2(Z),theMobiustransformationassociatedtoγisthecomplexmapdenedbyz→az+bcz+d,wherez∈H={x+iy|x,y∈R,y>0}.
MobiusTransformationsSL2(Z)=abcda,b,c,d∈Z,adbc=1.
Givenγ∈SL2(Z),theMobiustransformationassociatedtoγisthecomplexmapdenedbyz→az+bcz+d,wherez∈H={x+iy|x,y∈R,y>0}.
Wewriteγz=az+bcz+d.
AutomorphicFormsAfunctionf:H→CisanautomorphicformifAutomorphicFormsAfunctionf:H→Cisanautomorphicformif1.
fobeyssometransformationproperty.
e.
g.
faz+bcz+d=(cz+d)kf(z)AutomorphicFormsAfunctionf:H→Cisanautomorphicformif1.
fobeyssometransformationproperty.
e.
g.
faz+bcz+d=(cz+d)kf(z)2.
fsatisesacertaindierentialequation(complexanalytic,harmonicfunctions,AutomorphicFormsAfunctionf:H→Cisanautomorphicformif1.
fobeyssometransformationproperty.
e.
g.
faz+bcz+d=(cz+d)kf(z)2.
fsatisesacertaindierentialequation(complexanalytic,harmonicfunctions,3.
fexhibitssomeboundarybehavior.
(polynomialgrowth,boundednessasfunctionapproachesi∞EisensteinSeriesFork≥4andkeven,theweight-kEisensteinSeriesisEk(z)=12gcd(c,d)=11(cz+d)k.
EisensteinSeriesFork≥4andkeven,theweight-kEisensteinSeriesisEk(z)=12gcd(c,d)=11(cz+d)k.
Forallγ=abcd∈SL2(Z),Ek(γz)=(cz+d)kEk(z).
DirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:DirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈ZDirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈Z2.
χ(n)=0igcd(n,q)=1DirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈Z2.
χ(n)=0igcd(n,q)=13.
χ(mn)=χ(m)χ(n)m,n∈ZDirichletCharactersADirichletcharacterχ(modq)isafunctionχ:Z→Cwiththefollowingproperties:1.
χ(n+ql)=χ(n)n,l∈Z2.
χ(n)=0igcd(n,q)=13.
χ(mn)=χ(m)χ(n)m,n∈ZExample:Jacobi/LegendreSymbolsEisensteinSerieswithDirichletCharactersEχ1,χ2(z,s)=12gcd(c,d)=1(q2y)sχ1(c)χ2(d)|cq2z+d|2s|cq2z+d|cq2z+dkwhereχ1andχ2areDirichletcharactersmoduloq1,q2,respectively.
EisensteinSerieswithDirichletCharactersEχ1,χ2(z,s)=12gcd(c,d)=1(q2y)sχ1(c)χ2(d)|cq2z+d|2s|cq2z+d|cq2z+dkwhereχ1andχ2areDirichletcharactersmoduloq1,q2,respectively.
Eχ1,χ2(γz,s)=ψ(γ)Eχ1,χ2(z,s),whereψ(γ)=χ1(d)χ2(d),forallγ=abcd∈Γ0(q1q2).
EisensteinSerieswithDirichletCharactersEχ1,χ2(z,s)=12gcd(c,d)=1(q2y)sχ1(c)χ2(d)|cq2z+d|2s|cq2z+d|cq2z+dkwhereχ1andχ2areDirichletcharactersmoduloq1,q2,respectively.
Eχ1,χ2(γz,s)=ψ(γ)Eχ1,χ2(z,s),whereψ(γ)=χ1(d)χ2(d),forallγ=abcd∈Γ0(q1q2).
Γ0(N)=abcd∈SL2(Z)c≡0(modN)PeriodicityofEχ1,χ2LetT=1101∈Γ0(q1q2).
ThenTz=1z+10z+1=z+1,soEχ1,χ2(z+1,s)=(0z+1)kχ1(1)χ2(1)Eχ1,χ2(z,s)=Eχ1,χ2(z,s).
PeriodicityofEχ1,χ2LetT=1101∈Γ0(q1q2).
ThenTz=1z+10z+1=z+1,soEχ1,χ2(z+1,s)=(0z+1)kχ1(1)χ2(1)Eχ1,χ2(z,s)=Eχ1,χ2(z,s).
Thus,Eχ1,χ2isperiodic.
FourierExpansionfortheCompletedEisensteinSeriesDenethecompletedEisensteinseriesasEχ1,χ2(z,s):=(q2/π)sikτ(χ2)Γ(s+k2)L(2s,χ1χ2)Eχ1,χ2(z,s)FourierExpansionfortheCompletedEisensteinSeriesDenethecompletedEisensteinseriesasEχ1,χ2(z,s):=(q2/π)sikτ(χ2)Γ(s+k2)L(2s,χ1χ2)Eχ1,χ2(z,s)TheFourierexpansionforthecompletedEisensteinseriesisEχ1,χ2(z,s)=eχ1,χ2(y,s)+n=0λχ1,χ2(n,s)|n|e2πinx·Γ(s+k2)Γ(s+k2sgn(n))Wk2sgn(n),s12(4π|n|y).
EvaluatingEχ1,χ2(z,s)atk=0ands=1Eχ1,χ2(z,1)=n>0e2πinz√nab=nχ1(a)χ2(b)ba12+χ2(1)n>0e2πinz√nab=nχ1(a)χ2(b)ba12Theη-functionandDedekindSumsη(z)=eπiz/12∞n=1(1e2πinz)Theη-functionandDedekindSumsη(z)=eπiz/12∞n=1(1e2πinz)logηaz+bcz+d=logη(z)+πia+d12c+s(d,c)+12log(i(cz+d))Theη-functionandDedekindSumsη(z)=eπiz/12∞n=1(1e2πinz)logηaz+bcz+d=logη(z)+πia+d12c+s(d,c)+12log(i(cz+d))s(h,k)=k1r=1rkhrkhrk12EvaluatingEχ1,χ2(z,s)atk=0ands=1Eχ1,χ2(z,1)=n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)+χ2(1)n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)EvaluatingEχ1,χ2(z,s)atk=0ands=1Eχ1,χ2(z,1)=n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)+χ2(1)n>0e2πinz√nab=nχ1(a)χ2(b)ba12fχ1,χ2(z)Wehavebeeninvestigatingthefunctionfχ1,χ2.
TransformationPropertiesoffχ1,χ2(z)Deneφχ1,χ2(γ,z):=fχ1,χ2(γz)ψ(γ)fχ1,χ2(z).
TransformationPropertiesoffχ1,χ2(z)Deneφχ1,χ2(γ,z):=fχ1,χ2(γz)ψ(γ)fχ1,χ2(z).
MainGoal.
Findanitesumformulaforφχ1,χ2.
Propertiesofφχ1,χ2Lemma1.
Thefunctionφχ1,χ2isindependentofz.
Propertiesofφχ1,χ2Lemma1.
Thefunctionφχ1,χ2isindependentofz.
Proof.
SinceEχ1,χ2(γz,1)=ψ(γ)Eχ1,χ2(z,1)andEχ1,χ2(z,1)=fχ1,χ2(z)+χ2(1)fχ1,χ2(z),φχ1,χ2(γ,z)=χ2(1)φχ1,χ2(γ,z).
Sinceφχ1,χ2isaholomorphicfunctionandφχ1,χ2isanantiholomorphicfunction,φχ1,χ2mustbeconstant.
Propertiesofφχ1,χ2Lemma1.
Thefunctionφχ1,χ2isindependentofz.
Proof.
SinceEχ1,χ2(γz,1)=ψ(γ)Eχ1,χ2(z,1)andEχ1,χ2(z,1)=fχ1,χ2(z)+χ2(1)fχ1,χ2(z),φχ1,χ2(γ,z)=χ2(1)φχ1,χ2(γ,z).
Sinceφχ1,χ2isaholomorphicfunctionandφχ1,χ2isanantiholomorphicfunction,φχ1,χ2mustbeconstant.
Fromnowon,wewillwriteφχ1,χ2(γ)insteadofφχ1,χ2(γ,z).
Propertiesofφχ1,χ2Lemma2.
Letγ1,γ2∈Γ0(q1q2).
Thenφχ1,χ2(γ1γ2)=φχ1,χ2(γ1)+ψ(γ1)φχ1,χ2(γ2).
Propertiesofφχ1,χ2Lemma2.
Letγ1,γ2∈Γ0(q1q2).
Thenφχ1,χ2(γ1γ2)=φχ1,χ2(γ1)+ψ(γ1)φχ1,χ2(γ2).
Proof.
Sinceψismultiplicative,φχ1,χ2(γ1γ2)=fχ1,χ2(γ1γ2z)ψ(γ1γ2)fχ1,χ2(z)=fχ1,χ2(γ1γ2z)ψ(γ1)ψ(γ2)fχ1,χ2(z)=fχ1,χ2(γ1γ2z)ψ(γ1)fχ1,χ2(γ2z)+ψ(γ1)fχ1,χ2(γ2z)ψ(γ1)ψ(γ2)fχ1,χ2(z)=φχ1,χ2(γ1)+ψ(γ1)φχ1,χ2(γ2).
MainTheoremTheorem.
Letγ=abcd∈Γ0(q1q2).
Thenφχ1,χ2(γ)=πiχ2(1)τ(χ1)j(modc)n(modq1)χ2(j)χ1(n)B1jcB1nq1ajc,whereB1(z)=zz12,z/∈Z0,otherwise,andτ(χ)=q1n=0χ(n)e2πinq,forχmoduloq.
CarnivalFunhouseProofofMainTheoremLetγ=abcd∈Γ0(q1q2).
Choosez=dc+ic2u∈Hforsomeu∈R,u=0.
Thenγz=ac+iu.
φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iuψ(γ)fχ1,χ2dc+ic2uCarnivalFunhouseProofofMainTheoremLetγ=abcd∈Γ0(q1q2).
Choosez=dc+ic2u∈Hforsomeu∈R,u=0.
Thenγz=ac+iu.
φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iuψ(γ)fχ1,χ2dc+ic2ulimu→0+fχ1,χ2dc+ic2u=0.
CarnivalFunhouseProofofMainTheoremLetγ=abcd∈Γ0(q1q2).
Choosez=dc+ic2u∈Hforsomeu∈R,u=0.
Thenγz=ac+iu.
φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iuψ(γ)fχ1,χ2dc+ic2ulimu→0+fχ1,χ2dc+ic2u=0.
Thus,φχ1,χ2(γ)=limu→0+fχ1,χ2ac+iu.
CarnivalFunhouseProofofMainTheoremfχ1,χ2(z)=∞k=1∞l=1χ1(l)χ2(k)le2πiklz.
CarnivalFunhouseProofofMainTheoremfχ1,χ2(z)=∞k=1∞l=1χ1(l)χ2(k)le2πiklz.
Simplifyingfχ1,χ2andevaluatinglimu→0+fχ1,χ2ac+iu,wegetφχ1,χ2(γ)=χ2(1)∞l=1χ1(l)lj(modc)χ2(j)B1jce2πialjc.
CarnivalFunhouseProofofMainTheoremFromthetransformationpropertiesofEχ1,χ2,wehaveφχ1,χ2(γ)=12(φχ1,χ2(γ)χ2(1)φχ1,χ2(γ)).
Wesimplifythismoresymmetricversionofφχ1,χ2togetφχ1,χ2(γ)=πiχ2(1)τ(χ1)j(modc)n(modq1)χ2(j)χ1(n)B1jcB1nq1ajc.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
WecalculatedthegeneralizedDedekindsumdirectlyfromtheFourierexpansionoftheEisensteinseries.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
WecalculatedthegeneralizedDedekindsumdirectlyfromtheFourierexpansionoftheEisensteinseries.
Withmoretime,wewouldliketocalculateareciprocitytheoremforourgeneralizedDedekindsum.
SummaryofResultsWefounda"natural"proofforthegeneralizedDedekindsumformulawithDirichletcharacters.
WebeganwithanicerversionoftheEisensteinseries.
WecalculatedthegeneralizedDedekindsumdirectlyfromtheFourierexpansionoftheEisensteinseries.
Withmoretime,wewouldliketocalculateareciprocitytheoremforourgeneralizedDedekindsum.
12hks(h,k)+12khs(k,h)=h2+k23hk+1References1.
T.
M.
Apostol,ModularFunctionsandDirichletSeriesinNumberTheory,Springer-VerlagNewYork,Inc.
,1976.
2.
B.
Berndt,CharacterTransformationFormulaeSimilartoThosefortheDedekindEta-Function,Proc.
Sym.
PureMath.
,No.
24,Amer.
Math.
Soc,Providence,(1973),9–30.
3.
M.
C.
Dagl,M.
Can,OnReciprocityFormulasforApostol'sDedekindSumsandtheirAnalogues,J.
IntegerSeq.
17(5)(2014),Article14.
5.
4,105–1244.
L.
Goldstein,DedekindSumsforaFuchsianGroup,I.
NagayaMath.
J.
50(1973),21–47.
5.
C.
Nagasaka,OnGeneralizedDedekindSumsAttachedtoDirichletCharacters,JournalofNumberTheory19(1984),no.
3,374–383.
6.
M.
Young,ExplicitCalculationswithEisensteinSeries.
arXiv:1710.
03624,(2017),1–37.

raksmart:香港机房服务器实测评数据分享,告诉你raksmart服务器怎么样

raksmart作为一家老牌美国机房总是被很多人问到raksmart香港服务器怎么样、raksmart好不好?其实,这也好理解。香港服务器离大陆最近、理论上是不需要备案的服务器里面速度最快的,被过多关注也就在情理之中了。本着为大家趟雷就是本站的光荣这一理念,拿了一台raksmart的香港独立服务器,简单做个测评,分享下实测的数据,仅供参考!官方网站:https://www.raksmart.com...

易探云:香港物理机服务器仅550元/月起;E3-1230/16G DDR3/SATA 1TB/香港BGP/20Mbps

易探云怎么样?易探云(yitanyun.com)是一家知名云计算品牌,2017年成立,从业4年之久,目前主要从事出售香港VPS、香港独立服务器、香港站群服务器等,在售VPS线路有三网CN2、CN2 GIA,该公司旗下产品均采用KVM虚拟化架构。目前,易探云推出免备案香港物理机服务器性价比很高,E3-1230 8 核*1/16G DDR3/SATA 1TB/香港BGP线路/20Mbps/不限流量,仅...

建站选择网站域名和IP主机地址之间关系和注意要点

今天中午的时候有网友联系到在选择网站域名建站和主机的时候问到域名和IP地址有没有关联,或者需要注意的问题。毕竟我们在需要建站的时候,我们需要选择网站域名和主机,而主机有虚拟主机,包括共享和独立IP,同时还有云服务器、独立服务器、站群服务器等形式。通过这篇文章,简单的梳理关于网站域名和IP之间的关系。第一、什么是域名所谓网站域名,就是我们看到的类似"www.laozuo.org",我们可以通过直接记...

dede标签为你推荐
可以发外链的论坛有直接能带链接的论坛?找不到光驱我的电脑里找不到光驱中国电信互联星空互联星空是什么?是电信公司的吗?万网核心代理在万网代理商购买万网产品,谁知道价格?知道的说下?渗透测试渗透测试的专业服务工信部备案去国家工信部备案需要什么手续呢申请证书手机申请证书网易公开课怎么下载哪位高手指导一下,如何下载网易公开课啊?硬盘人电脑对人有多大辐射?idc前线穿越火线河北的服务器好卡 有人知道怎么回事嘛 知道的速回
东莞虚拟主机 n点虚拟主机管理系统 网易域名邮箱 高防dns 重庆服务器托管 vps.net 美国主机论坛 nerd xfce 免费个人博客 地址大全 空间服务商 40g硬盘 e蜗 linux空间 网站卫士 nerds 卡巴斯基试用版 香港新世界中心 测速电信 更多