DDoSAttacksDetectionusingMachineLearningAlgorithmsQianLiCommunicationUniversityofChinaBeijing,Chinaliqian0716@cuc.
edu.
cnLinhaiMengCommunicationUniversityofChinaBeijing,Chinaxmenglinhai@outlook.
comJinyaoYanCommunicationUniversityofChinaBeijing,Chinajyan@cuc.
edu.
cnYuanZhangCommunicationUniversityofChinaBeijing,Chinayuanzhang@cuc.
edu.
cnABSTRACTAdistributeddenial-of-service(DDoS)attackisamaliciousattempttodisruptnormaltrafficofatargetedserver,serviceornetworkbyoverwhelmingthetargetoritssurroundinginfrastructurewithafloodofInternettraffic.
Ithascausedgreatharmtothesecurityofthenetworkenvironment.
ThispaperdevelopsanovelframeworkcalledPCA-RNN(PrincipalComponentAnalysis-RecurrentNeuralNetwork)toidentifyDDoSattacks.
Inordertocomprehensivelyunderstandthenetworktraffic,weselectmostnetworkcharacteristicstodescribethetraffic.
WefurtherusethePCAalgorithmtoreducethedimensionsofthefeaturesinordertoreducethetimecomplexityofdetection.
ByapplyingPCA,thepredictiontimecanbesignificantlyreducedwhilemostoftheoriginalinformationcanstillbecontained.
DataafterdimensionsreductionisfedintoRNNtotrainandgetdetectionmodel.
Evaluationresultshowsthatfortherealdataset,PCA-RNNcanachievesignificantperformanceimprovementintermsofaccuracy,sensitivity,precision,andF-scorecomparedtotheseveralexistingDDoSattacksdetectionmethods.
CCSCONCEPTSSecurityandprivacyNetworksecurityDenial-of-serviceattacksKEYWORDSDDoSattacks,RNN,PCA,trafficfeatures1MotivationsDDoSattackisdistributedinthewaythattheattackerisusingmultiplecomputerstolaunchthedenialofserviceattack.
AnewstudythattriestomeasurethedirectcostofthatoneDDoSattackforIoT(InternetofThings)deviceuserswhosemachinesweresweptupintheassaultfoundthatitmayhavecostdeviceownersatotalof$323,973.
75inexcesspowerandaddedbandwidthconsumption[1].
Itisurgenttodomorein-depthresearchonDDoSattacks,andDDoSattacksdetectionasaveryimportantparthasbecomeahottopicoftheresearcharea.
Currently,thereexistmanystatisticalDDoSdetectionmethods,suchasnetworktrafficstatisticsfeaturesbaseddetection,sourceIPanddestinationIPaddresses-baseddetection,portentropyvalues-baseddetection,andwavelet-basedanalysis[2,3],anddestinationentropy[4],etc.
However,withthedevelopmentofInternettechnology,theDDoSattackmodelischangingfasterandfaster.
Constructionofanewstatisticalmodelrequiresalotoftimetobuild,sothatitdoesnotadaptwelltotherapidlychangingnetworkenvironment.
Thestatisticalmodelhasasingleapplicationscenarioandalotofcomplexityofbuildingorupgradingthemodel.
Inordertosolvetheaboveproblems,thewayofDDoSattacksdetectionthroughmachinelearningalgorithmshasgraduallybecomethefocusofresearch.
Themachinelearningalgorithmcanfindouttheabnormalinformationbehindthemassivedata,whichiswidelylovedbyresearchers.
Theadvantageofthemachinelearningdetectionmodelisthatnewdatacanquicklyupdatethedetectionmodel.
Therearestillsomedeficiencies.
Duetothehighcomputationalcomplexityofmachinelearningalgorithms,itrequireslongerpredictiontime.
ThemachinelearningalgorithmsusedtodetectDDoSattacksdonotconsiderthetimecorrelationoftrafficdata.
Motivatedbythesechallenges,thispaperpresentsPrincipalComponentAnalysis-RecurrentNeuralNetwork(PCA-RNN)toidentifyDDoSattacks.
Wefirstextractallrelevantfeaturestoensureouralgorithmcancoveralltheattacktypes,whichimprovessingleapplicationscenarioproblem.
Thefeaturesincludesfouraspects,namely,floodfeature,slowattackfeature,flowtimefeatureandwebattackfeature.
Duetothelargenumberoffeaturesselectedinthefirststep,thecomputationalcomplexityofthedetectionalgorithmislargelyincreased.
Wehandlethisproblembyreducingthedimensionofinputfeatures.
WeusePCAasourdimension-reductionmethod,whichisanefficientandflexiblelineardimension-reductionmethod.
Finally,sincenetworktraffichasshorttimecorrelation,itisbeneficialifthedetectionalgorithmcouldincorporatetheshorttimefeaturesoftheinputdata.
Inthisway,weselectRNNalgorithmwhichhasshort-termmemoryandistimelyefficientasourtrainingmodule.
2MethodWedescribethedesigndetailsinthissection.
WefirstselectallrelevantfeaturestoensurethattheneuralnetworkcanthoroughlylearntheDDoSattacksinformation.
Toreducethetimecomplexity,weusePCAtoreducethefeaturevectordimensionsandsimplifytheneuralnetworkmodel.
ComparedwithLinearDiscriminantAnalysis(LDA)andotherlineardimensionalityreductionmethods,PCAismoreflexibletoselecttheoutputdimensionaccordingtoactualrequirements,sowechosePCAasthedimensionreductionmethod.
Finally,weconstructafront-to-backcorrelationofnetworkbyRNNalgorithmsothatDDoSdetectioncanbeperformedfrommultipleperspectives.
ThearchitectureoftheproposedframeworkisillustratedinFigure1.
APNet2018,August2-32018,Beijing,ChinaQianLietal.
Figure1:PCA-RNNModel3PreliminaryResultsWeevaluateouralgorithmandcomparewithseveralexistingdetectionalgorithmusingKDDdataset[5].
TheKDDdatasetisa9weeknetworkconnectiondatacollectedfromasimulatedUnitedStatesAirForceLAN,dividedintoidentifiedtrainingdataandnotidentifiedtestdata.
Thetestdataandthetrainingdatahaveadifferentprobabilitydistribution,andthetestdatacontainssometypesofattackthatdonotappearinthetrainingdata,whichmakestheintrusiondetectionmorerealistic.
Figure2:Performancemetrics.
Figure3:PredictiontimeofPCA-RNNcomparedwithexistingmethods.
AscanbeseeninFigure2andFigure3,thepredictiontimeofPCA-RNNcanbesignificantlydecreasedcomparingtheRNNalgorithmswithsimilaraccuracyrateandF1value.
TheaccuracyandF1ofPCA-BP,BPandPCA-LSTMalgorithmsarelowerthanPCA-RNN.
PCA-SVMpredictiontakes83.
3326sandtakestoolongtodraweasily.
WecanalsoseefromFigure3,PCA-RNNneedstheminimumpredictiontimeabovetheaccuracyof98.
7%.
Figure4.
DetectionaccuracyofPCA-RNNcomparedwithexistingmethods.
WealsocompareourPCA-RNNwithseveralexistingstatisticalalgorithms.
AscanbeseeninFigure4,statisticaldetectionalgorithmscanonlyperformwelloncertaintypesofattacks,whileourPCA-RNNalgorithmshowsgooddetectionaccuracyonalltestingscenarios.
4ConclusionandFutureWorkThispaperpresentsanovelmachinelearningbasedDDoSdetectionmethodwithbothaccuracyandefficiency.
Inthefuturework,wewilltestthealgorithmthroughmorerealdatasetandtrytostudytheinherentcharacteristicsundertheselectedfeatures.
REFERENCES[1]Study:AttackonKrebsOnSecurityCostIoTDeviceOwners$323K,Available:https://krebsonsecurity.
com/2018/05/study-attack-on-krebsonsecurity-cost-iot-device-owners-323k/[2]Tao,Y.
,&Yu,S.
(2013).
DDoSAttackDetectionatLocalAreaNetworksUsingInformationTheoreticalMetrics.
IEEEInternationalConferenceonTrust,SecurityandPrivacyinComputingandCommunications(Vol.
8,pp.
233-240).
IEEE.
[3]Dong,P.
,Du,X.
,Zhang,H.
,&Xu,T.
(2016).
AdetectionmethodforanovelDDoSattackagainstSDNcontrollersbyvastnewlow-trafficflows.
IEEEInternationalConferenceonCommunications(pp.
1-6).
IEEE.
[4]Mousavi,S.
M.
,&Sthilaire,M.
(2015).
EarlydetectionofDDoSattacksagainstSDNcontrollers.
InternationalConferenceonComputing,NETWORKINGandCommunications(Vol.
17,pp.
77-81).
IEEEComputerSociety.
[5]KDDCupData,http://kdd.
ics.
uci.
edu/databases/kddcup99/kddcup99.
html.
如今我们很多朋友做网站都比较多的采用站群模式,但是用站群模式我们很多人都知道要拆分到不同IP段。比如我们会选择不同的服务商,不同的机房,至少和我们每个服务器的IP地址差异化。于是,我们很多朋友会选择美国多IP站群VPS商家的产品。美国站群VPS主机商和我们普通的云服务器、VPS还是有区别的,比如站群服务器的IP分布情况,配置技术难度,以及我们成本是比普通的高,商家选择要靠谱的。我们在选择美国多IP...
近日快云科技发布了最新的夏季优惠促销活动,主要针对旗下的香港CN2 GIA系列的VPS云服务器产品推送的最新的75折优惠码,国内回程三网CN2 GIA,平均延迟50ms以下,硬件配置方面采用E5 2696v2、E5 2696V4 铂金Platinum等,基于KVM虚拟架构,采用SSD硬盘存储,RAID10阵列保障数据安全,有需要香港免备案CN2服务器的朋友可以关注一下。快云科技怎么样?快云科技好不...
Tudcloud是一家新开的主机商,提供VPS和独立服务器租用,数据中心在中国香港(VPS和独立服务器)和美国洛杉矶(独立服务器),商家VPS基于KVM架构,开设在香港机房,可以选择限制流量大带宽或者限制带宽不限流量套餐。目前提供8折优惠码,优惠后最低每月7.2美元起。虽然主机商网站为英文界面,但是支付方式仅支付宝和Stripe,可能是国人商家。下面列出部分VPS主机套餐配置信息。CPU:1cor...
ddos为你推荐
php虚拟主机php程序在虚拟主机上怎么运行美国主机租用国外服务器提供商有哪几家比较好的。。。vps主机云主机和VPS主机之间有什么区别免费国外空间哪里的国外免费空间好?国外主机空间2个国外主机空间,都放了BLOG,看看哪个更快?便宜虚拟主机麻烦各位给我推荐一个比较便宜的虚拟主机,要质量好的。谢谢大家了便宜虚拟主机哪里有国内便宜虚拟主机虚拟主机管理系统推荐几个适合windows的免费虚拟主机管理系统虚拟主机服务商请问哪个服务商的虚拟主机比较好呀虚拟主机mysql怎么管理虚拟主机上的MYSQL?(高分回报)
域名网 美国服务器租用 鲁诺vps 免费申请域名 免费cn域名 Dedicated 香港主机 xen ev证书 免费ftp空间申请 idc是什么 双十一秒杀 中国电信测网速 天翼云盘 电信主机 德隆中文网 服务器防火墙 电信宽带测速软件 godaddy空间 宿迁服务器 更多