deviceddos

ddos  时间:2021-01-03  阅读:()
DDoSAttacksDetectionusingMachineLearningAlgorithmsQianLiCommunicationUniversityofChinaBeijing,Chinaliqian0716@cuc.
edu.
cnLinhaiMengCommunicationUniversityofChinaBeijing,Chinaxmenglinhai@outlook.
comJinyaoYanCommunicationUniversityofChinaBeijing,Chinajyan@cuc.
edu.
cnYuanZhangCommunicationUniversityofChinaBeijing,Chinayuanzhang@cuc.
edu.
cnABSTRACTAdistributeddenial-of-service(DDoS)attackisamaliciousattempttodisruptnormaltrafficofatargetedserver,serviceornetworkbyoverwhelmingthetargetoritssurroundinginfrastructurewithafloodofInternettraffic.
Ithascausedgreatharmtothesecurityofthenetworkenvironment.
ThispaperdevelopsanovelframeworkcalledPCA-RNN(PrincipalComponentAnalysis-RecurrentNeuralNetwork)toidentifyDDoSattacks.
Inordertocomprehensivelyunderstandthenetworktraffic,weselectmostnetworkcharacteristicstodescribethetraffic.
WefurtherusethePCAalgorithmtoreducethedimensionsofthefeaturesinordertoreducethetimecomplexityofdetection.
ByapplyingPCA,thepredictiontimecanbesignificantlyreducedwhilemostoftheoriginalinformationcanstillbecontained.
DataafterdimensionsreductionisfedintoRNNtotrainandgetdetectionmodel.
Evaluationresultshowsthatfortherealdataset,PCA-RNNcanachievesignificantperformanceimprovementintermsofaccuracy,sensitivity,precision,andF-scorecomparedtotheseveralexistingDDoSattacksdetectionmethods.
CCSCONCEPTSSecurityandprivacyNetworksecurityDenial-of-serviceattacksKEYWORDSDDoSattacks,RNN,PCA,trafficfeatures1MotivationsDDoSattackisdistributedinthewaythattheattackerisusingmultiplecomputerstolaunchthedenialofserviceattack.
AnewstudythattriestomeasurethedirectcostofthatoneDDoSattackforIoT(InternetofThings)deviceuserswhosemachinesweresweptupintheassaultfoundthatitmayhavecostdeviceownersatotalof$323,973.
75inexcesspowerandaddedbandwidthconsumption[1].
Itisurgenttodomorein-depthresearchonDDoSattacks,andDDoSattacksdetectionasaveryimportantparthasbecomeahottopicoftheresearcharea.
Currently,thereexistmanystatisticalDDoSdetectionmethods,suchasnetworktrafficstatisticsfeaturesbaseddetection,sourceIPanddestinationIPaddresses-baseddetection,portentropyvalues-baseddetection,andwavelet-basedanalysis[2,3],anddestinationentropy[4],etc.
However,withthedevelopmentofInternettechnology,theDDoSattackmodelischangingfasterandfaster.
Constructionofanewstatisticalmodelrequiresalotoftimetobuild,sothatitdoesnotadaptwelltotherapidlychangingnetworkenvironment.
Thestatisticalmodelhasasingleapplicationscenarioandalotofcomplexityofbuildingorupgradingthemodel.
Inordertosolvetheaboveproblems,thewayofDDoSattacksdetectionthroughmachinelearningalgorithmshasgraduallybecomethefocusofresearch.
Themachinelearningalgorithmcanfindouttheabnormalinformationbehindthemassivedata,whichiswidelylovedbyresearchers.
Theadvantageofthemachinelearningdetectionmodelisthatnewdatacanquicklyupdatethedetectionmodel.
Therearestillsomedeficiencies.
Duetothehighcomputationalcomplexityofmachinelearningalgorithms,itrequireslongerpredictiontime.
ThemachinelearningalgorithmsusedtodetectDDoSattacksdonotconsiderthetimecorrelationoftrafficdata.
Motivatedbythesechallenges,thispaperpresentsPrincipalComponentAnalysis-RecurrentNeuralNetwork(PCA-RNN)toidentifyDDoSattacks.
Wefirstextractallrelevantfeaturestoensureouralgorithmcancoveralltheattacktypes,whichimprovessingleapplicationscenarioproblem.
Thefeaturesincludesfouraspects,namely,floodfeature,slowattackfeature,flowtimefeatureandwebattackfeature.
Duetothelargenumberoffeaturesselectedinthefirststep,thecomputationalcomplexityofthedetectionalgorithmislargelyincreased.
Wehandlethisproblembyreducingthedimensionofinputfeatures.
WeusePCAasourdimension-reductionmethod,whichisanefficientandflexiblelineardimension-reductionmethod.
Finally,sincenetworktraffichasshorttimecorrelation,itisbeneficialifthedetectionalgorithmcouldincorporatetheshorttimefeaturesoftheinputdata.
Inthisway,weselectRNNalgorithmwhichhasshort-termmemoryandistimelyefficientasourtrainingmodule.
2MethodWedescribethedesigndetailsinthissection.
WefirstselectallrelevantfeaturestoensurethattheneuralnetworkcanthoroughlylearntheDDoSattacksinformation.
Toreducethetimecomplexity,weusePCAtoreducethefeaturevectordimensionsandsimplifytheneuralnetworkmodel.
ComparedwithLinearDiscriminantAnalysis(LDA)andotherlineardimensionalityreductionmethods,PCAismoreflexibletoselecttheoutputdimensionaccordingtoactualrequirements,sowechosePCAasthedimensionreductionmethod.
Finally,weconstructafront-to-backcorrelationofnetworkbyRNNalgorithmsothatDDoSdetectioncanbeperformedfrommultipleperspectives.
ThearchitectureoftheproposedframeworkisillustratedinFigure1.
APNet2018,August2-32018,Beijing,ChinaQianLietal.
Figure1:PCA-RNNModel3PreliminaryResultsWeevaluateouralgorithmandcomparewithseveralexistingdetectionalgorithmusingKDDdataset[5].
TheKDDdatasetisa9weeknetworkconnectiondatacollectedfromasimulatedUnitedStatesAirForceLAN,dividedintoidentifiedtrainingdataandnotidentifiedtestdata.
Thetestdataandthetrainingdatahaveadifferentprobabilitydistribution,andthetestdatacontainssometypesofattackthatdonotappearinthetrainingdata,whichmakestheintrusiondetectionmorerealistic.
Figure2:Performancemetrics.
Figure3:PredictiontimeofPCA-RNNcomparedwithexistingmethods.
AscanbeseeninFigure2andFigure3,thepredictiontimeofPCA-RNNcanbesignificantlydecreasedcomparingtheRNNalgorithmswithsimilaraccuracyrateandF1value.
TheaccuracyandF1ofPCA-BP,BPandPCA-LSTMalgorithmsarelowerthanPCA-RNN.
PCA-SVMpredictiontakes83.
3326sandtakestoolongtodraweasily.
WecanalsoseefromFigure3,PCA-RNNneedstheminimumpredictiontimeabovetheaccuracyof98.
7%.
Figure4.
DetectionaccuracyofPCA-RNNcomparedwithexistingmethods.
WealsocompareourPCA-RNNwithseveralexistingstatisticalalgorithms.
AscanbeseeninFigure4,statisticaldetectionalgorithmscanonlyperformwelloncertaintypesofattacks,whileourPCA-RNNalgorithmshowsgooddetectionaccuracyonalltestingscenarios.
4ConclusionandFutureWorkThispaperpresentsanovelmachinelearningbasedDDoSdetectionmethodwithbothaccuracyandefficiency.
Inthefuturework,wewilltestthealgorithmthroughmorerealdatasetandtrytostudytheinherentcharacteristicsundertheselectedfeatures.
REFERENCES[1]Study:AttackonKrebsOnSecurityCostIoTDeviceOwners$323K,Available:https://krebsonsecurity.
com/2018/05/study-attack-on-krebsonsecurity-cost-iot-device-owners-323k/[2]Tao,Y.
,&Yu,S.
(2013).
DDoSAttackDetectionatLocalAreaNetworksUsingInformationTheoreticalMetrics.
IEEEInternationalConferenceonTrust,SecurityandPrivacyinComputingandCommunications(Vol.
8,pp.
233-240).
IEEE.
[3]Dong,P.
,Du,X.
,Zhang,H.
,&Xu,T.
(2016).
AdetectionmethodforanovelDDoSattackagainstSDNcontrollersbyvastnewlow-trafficflows.
IEEEInternationalConferenceonCommunications(pp.
1-6).
IEEE.
[4]Mousavi,S.
M.
,&Sthilaire,M.
(2015).
EarlydetectionofDDoSattacksagainstSDNcontrollers.
InternationalConferenceonComputing,NETWORKINGandCommunications(Vol.
17,pp.
77-81).
IEEEComputerSociety.
[5]KDDCupData,http://kdd.
ics.
uci.
edu/databases/kddcup99/kddcup99.
html.

萤光云(20元/月),香港CN2国庆特惠

可以看到这次国庆萤光云搞了一个不错的折扣,香港CN2产品6.5折促销,还送50的国庆红包。萤光云是2002年创立的商家,本次国庆活动主推的是香港CN2优化的机器,其另外还有国内BGP和高防服务器。本次活动力度较大,CN2优化套餐低至20/月(需买三个月,用上折扣+代金券组合),有需求的可以看看。官方网站:https://www.lightnode.cn/地区CPU内存SSDIP带宽/流量价格备注购...

Megalayer促销:美国圣何塞CN2线路VPS月付48元起/香港VPS月付59元起/香港E3独服月付499元起

Megalayer是新晋崛起的国外服务器商,成立于2019年,一直都处于稳定发展的状态,机房目前有美国机房,香港机房,菲律宾机房。其中圣何塞包括CN2或者国际线路,Megalayer商家提供了一些VPS特价套餐,譬如15M带宽CN2线路主机最低每月48元起,基于KVM架构,支持windows或者Linux操作系统。。Megalayer技术团队行业经验丰富,分别来自于蓝汛、IBM等知名企业。Mega...

昔日数据月付12元起,湖北十堰机房10M带宽月付19元起

昔日数据怎么样?昔日数据是一个来自国内服务器销售商,成立于2020年底,主要销售国内海外云服务器,目前有国内湖北十堰云服务器和香港hkbn云服务器 采用KVM虚拟化技术构架,湖北十堰机房10M带宽月付19元起;香港HKBN,月付12元起; 此次夏日活动全部首月5折促销,有需要的可以关注一下。点击进入:昔日数据官方网站地址昔日数据优惠码:优惠码: XR2021 全场通用(活动持续半个月 2021/7...

ddos为你推荐
服务器租赁服务器租赁怎么回事的?租服务器我想租服务器,请问会提供哪些服务?国外域名注册选择海外注册域名有什么好处?海外服务器租用国外服务器租用com域名注册com域名是永久注册的吗美国vps租用VPS服务器租用哪里的好?海外域名外贸网站如何选择合适的海外域名?100m网站空间做网站100M的空间够用吗?国外网站空间怎么查看一个网站的空间是在国内还是在国外啊?香港虚拟主机香港的虚拟主机好不好,如何选择虚拟主机?
深圳域名注册 德国vps 查询ip地址 sugarhosts 52测评网 权嘉云 天互数据 softbank邮箱 129邮箱 免费智能解析 服务器硬件防火墙 秒杀品 游戏服务器出租 中国域名 腾讯数据库 97rb hostease umax 什么是dns e-mail 更多