deviceddos

ddos  时间:2021-01-03  阅读:()
DDoSAttacksDetectionusingMachineLearningAlgorithmsQianLiCommunicationUniversityofChinaBeijing,Chinaliqian0716@cuc.
edu.
cnLinhaiMengCommunicationUniversityofChinaBeijing,Chinaxmenglinhai@outlook.
comJinyaoYanCommunicationUniversityofChinaBeijing,Chinajyan@cuc.
edu.
cnYuanZhangCommunicationUniversityofChinaBeijing,Chinayuanzhang@cuc.
edu.
cnABSTRACTAdistributeddenial-of-service(DDoS)attackisamaliciousattempttodisruptnormaltrafficofatargetedserver,serviceornetworkbyoverwhelmingthetargetoritssurroundinginfrastructurewithafloodofInternettraffic.
Ithascausedgreatharmtothesecurityofthenetworkenvironment.
ThispaperdevelopsanovelframeworkcalledPCA-RNN(PrincipalComponentAnalysis-RecurrentNeuralNetwork)toidentifyDDoSattacks.
Inordertocomprehensivelyunderstandthenetworktraffic,weselectmostnetworkcharacteristicstodescribethetraffic.
WefurtherusethePCAalgorithmtoreducethedimensionsofthefeaturesinordertoreducethetimecomplexityofdetection.
ByapplyingPCA,thepredictiontimecanbesignificantlyreducedwhilemostoftheoriginalinformationcanstillbecontained.
DataafterdimensionsreductionisfedintoRNNtotrainandgetdetectionmodel.
Evaluationresultshowsthatfortherealdataset,PCA-RNNcanachievesignificantperformanceimprovementintermsofaccuracy,sensitivity,precision,andF-scorecomparedtotheseveralexistingDDoSattacksdetectionmethods.
CCSCONCEPTSSecurityandprivacyNetworksecurityDenial-of-serviceattacksKEYWORDSDDoSattacks,RNN,PCA,trafficfeatures1MotivationsDDoSattackisdistributedinthewaythattheattackerisusingmultiplecomputerstolaunchthedenialofserviceattack.
AnewstudythattriestomeasurethedirectcostofthatoneDDoSattackforIoT(InternetofThings)deviceuserswhosemachinesweresweptupintheassaultfoundthatitmayhavecostdeviceownersatotalof$323,973.
75inexcesspowerandaddedbandwidthconsumption[1].
Itisurgenttodomorein-depthresearchonDDoSattacks,andDDoSattacksdetectionasaveryimportantparthasbecomeahottopicoftheresearcharea.
Currently,thereexistmanystatisticalDDoSdetectionmethods,suchasnetworktrafficstatisticsfeaturesbaseddetection,sourceIPanddestinationIPaddresses-baseddetection,portentropyvalues-baseddetection,andwavelet-basedanalysis[2,3],anddestinationentropy[4],etc.
However,withthedevelopmentofInternettechnology,theDDoSattackmodelischangingfasterandfaster.
Constructionofanewstatisticalmodelrequiresalotoftimetobuild,sothatitdoesnotadaptwelltotherapidlychangingnetworkenvironment.
Thestatisticalmodelhasasingleapplicationscenarioandalotofcomplexityofbuildingorupgradingthemodel.
Inordertosolvetheaboveproblems,thewayofDDoSattacksdetectionthroughmachinelearningalgorithmshasgraduallybecomethefocusofresearch.
Themachinelearningalgorithmcanfindouttheabnormalinformationbehindthemassivedata,whichiswidelylovedbyresearchers.
Theadvantageofthemachinelearningdetectionmodelisthatnewdatacanquicklyupdatethedetectionmodel.
Therearestillsomedeficiencies.
Duetothehighcomputationalcomplexityofmachinelearningalgorithms,itrequireslongerpredictiontime.
ThemachinelearningalgorithmsusedtodetectDDoSattacksdonotconsiderthetimecorrelationoftrafficdata.
Motivatedbythesechallenges,thispaperpresentsPrincipalComponentAnalysis-RecurrentNeuralNetwork(PCA-RNN)toidentifyDDoSattacks.
Wefirstextractallrelevantfeaturestoensureouralgorithmcancoveralltheattacktypes,whichimprovessingleapplicationscenarioproblem.
Thefeaturesincludesfouraspects,namely,floodfeature,slowattackfeature,flowtimefeatureandwebattackfeature.
Duetothelargenumberoffeaturesselectedinthefirststep,thecomputationalcomplexityofthedetectionalgorithmislargelyincreased.
Wehandlethisproblembyreducingthedimensionofinputfeatures.
WeusePCAasourdimension-reductionmethod,whichisanefficientandflexiblelineardimension-reductionmethod.
Finally,sincenetworktraffichasshorttimecorrelation,itisbeneficialifthedetectionalgorithmcouldincorporatetheshorttimefeaturesoftheinputdata.
Inthisway,weselectRNNalgorithmwhichhasshort-termmemoryandistimelyefficientasourtrainingmodule.
2MethodWedescribethedesigndetailsinthissection.
WefirstselectallrelevantfeaturestoensurethattheneuralnetworkcanthoroughlylearntheDDoSattacksinformation.
Toreducethetimecomplexity,weusePCAtoreducethefeaturevectordimensionsandsimplifytheneuralnetworkmodel.
ComparedwithLinearDiscriminantAnalysis(LDA)andotherlineardimensionalityreductionmethods,PCAismoreflexibletoselecttheoutputdimensionaccordingtoactualrequirements,sowechosePCAasthedimensionreductionmethod.
Finally,weconstructafront-to-backcorrelationofnetworkbyRNNalgorithmsothatDDoSdetectioncanbeperformedfrommultipleperspectives.
ThearchitectureoftheproposedframeworkisillustratedinFigure1.
APNet2018,August2-32018,Beijing,ChinaQianLietal.
Figure1:PCA-RNNModel3PreliminaryResultsWeevaluateouralgorithmandcomparewithseveralexistingdetectionalgorithmusingKDDdataset[5].
TheKDDdatasetisa9weeknetworkconnectiondatacollectedfromasimulatedUnitedStatesAirForceLAN,dividedintoidentifiedtrainingdataandnotidentifiedtestdata.
Thetestdataandthetrainingdatahaveadifferentprobabilitydistribution,andthetestdatacontainssometypesofattackthatdonotappearinthetrainingdata,whichmakestheintrusiondetectionmorerealistic.
Figure2:Performancemetrics.
Figure3:PredictiontimeofPCA-RNNcomparedwithexistingmethods.
AscanbeseeninFigure2andFigure3,thepredictiontimeofPCA-RNNcanbesignificantlydecreasedcomparingtheRNNalgorithmswithsimilaraccuracyrateandF1value.
TheaccuracyandF1ofPCA-BP,BPandPCA-LSTMalgorithmsarelowerthanPCA-RNN.
PCA-SVMpredictiontakes83.
3326sandtakestoolongtodraweasily.
WecanalsoseefromFigure3,PCA-RNNneedstheminimumpredictiontimeabovetheaccuracyof98.
7%.
Figure4.
DetectionaccuracyofPCA-RNNcomparedwithexistingmethods.
WealsocompareourPCA-RNNwithseveralexistingstatisticalalgorithms.
AscanbeseeninFigure4,statisticaldetectionalgorithmscanonlyperformwelloncertaintypesofattacks,whileourPCA-RNNalgorithmshowsgooddetectionaccuracyonalltestingscenarios.
4ConclusionandFutureWorkThispaperpresentsanovelmachinelearningbasedDDoSdetectionmethodwithbothaccuracyandefficiency.
Inthefuturework,wewilltestthealgorithmthroughmorerealdatasetandtrytostudytheinherentcharacteristicsundertheselectedfeatures.
REFERENCES[1]Study:AttackonKrebsOnSecurityCostIoTDeviceOwners$323K,Available:https://krebsonsecurity.
com/2018/05/study-attack-on-krebsonsecurity-cost-iot-device-owners-323k/[2]Tao,Y.
,&Yu,S.
(2013).
DDoSAttackDetectionatLocalAreaNetworksUsingInformationTheoreticalMetrics.
IEEEInternationalConferenceonTrust,SecurityandPrivacyinComputingandCommunications(Vol.
8,pp.
233-240).
IEEE.
[3]Dong,P.
,Du,X.
,Zhang,H.
,&Xu,T.
(2016).
AdetectionmethodforanovelDDoSattackagainstSDNcontrollersbyvastnewlow-trafficflows.
IEEEInternationalConferenceonCommunications(pp.
1-6).
IEEE.
[4]Mousavi,S.
M.
,&Sthilaire,M.
(2015).
EarlydetectionofDDoSattacksagainstSDNcontrollers.
InternationalConferenceonComputing,NETWORKINGandCommunications(Vol.
17,pp.
77-81).
IEEEComputerSociety.
[5]KDDCupData,http://kdd.
ics.
uci.
edu/databases/kddcup99/kddcup99.
html.

hypervmart:英国/荷兰vps,2核/3GB内存/25GB NVMe空间/不限流量/1Gbps端口/Hyper-V,$10.97/季

hypervmart怎么样?hypervmart是一家国外主机商,成立于2011年,提供虚拟主机、VPS等,vps基于Hyper-V 2012 R2,宣称不超售,支持linux和windows,有荷兰和英国2个数据中心,特色是1Gbps带宽、不限流量。现在配置提高,价格不变,性价比提高了很多。(数据中心不太清楚,按以前的记录,应该是欧洲),支持Paypal付款。点击进入:hypervmart官方网...

RackNerd:美国便宜VPS,洛杉矶DC-02/纽约/芝加哥机房,4TB月流量套餐16.55美元/年

racknerd怎么样?racknerd美国便宜vps又开启促销模式了,机房优秀,有洛杉矶DC-02、纽约、芝加哥机房可选,最低配置4TB月流量套餐16.55美元/年,此外商家之前推出的最便宜的9.49美元/年套餐也补货上架,同时RackNerd美国AMD VPS套餐最低才14.18美元/年,是全网最便宜的AMD VPS套餐!RackNerd主要经营美国圣何塞、洛杉矶、达拉斯、芝加哥、亚特兰大、新...

RackNerd 黑色星期五5款年付套餐

RackNerd 商家从2019年上线以来争议也是比较大的,一直低价促销很多网友都认为坚持时间不长可能会跑路。不过,目前看到RackNerd还是在坚持且这次黑五活动也有发布,且活动促销也是比较多的,不过对于我们用户来说选择这些低价服务商尽量的不要将长远项目放在上面,低价年付套餐服务商一般都是用来临时业务的。RackNerd商家这次发布黑五促销活动,一共有五款年付套餐,涉及到多个机房。最低年付的套餐...

ddos为你推荐
全能虚拟主机时代互联的全能云虚拟主机怎么样,稳不稳定,速度怎么样的?免费com域名注册有没有永久免费的.com之类的域名免费国外空间哪些免费的国外空间最好?速度快.功能大?美国网站空间购买美国网站空间使用会不会麻烦呢,网站空间商网站备案为什么是空间商备案?求解asp网站空间说ASP空间是做网站的空间是啥意思?apache虚拟主机linux apache虚拟主机有几种方式虚拟主机mysql怎么管理虚拟主机上的MYSQL?(高分回报)论坛虚拟主机我想买个论坛虚拟主机,但是去了好多网站都不怎么样?windows虚拟主机windows10用什么虚拟机
欧洲免费vps 花生壳免费域名申请 快速域名备案 59.99美元 mobaxterm 申请空间 促正网秒杀 申请个人网站 新天域互联 789电视 常州联通宽带 腾讯总部在哪 独享主机 服务器硬件配置 江苏双线 windows2008 cdn加速 cpu使用率过高怎么办 压力测试工具 以下 更多