DDoSAttacksDetectionusingMachineLearningAlgorithmsQianLiCommunicationUniversityofChinaBeijing,Chinaliqian0716@cuc.
edu.
cnLinhaiMengCommunicationUniversityofChinaBeijing,Chinaxmenglinhai@outlook.
comJinyaoYanCommunicationUniversityofChinaBeijing,Chinajyan@cuc.
edu.
cnYuanZhangCommunicationUniversityofChinaBeijing,Chinayuanzhang@cuc.
edu.
cnABSTRACTAdistributeddenial-of-service(DDoS)attackisamaliciousattempttodisruptnormaltrafficofatargetedserver,serviceornetworkbyoverwhelmingthetargetoritssurroundinginfrastructurewithafloodofInternettraffic.
Ithascausedgreatharmtothesecurityofthenetworkenvironment.
ThispaperdevelopsanovelframeworkcalledPCA-RNN(PrincipalComponentAnalysis-RecurrentNeuralNetwork)toidentifyDDoSattacks.
Inordertocomprehensivelyunderstandthenetworktraffic,weselectmostnetworkcharacteristicstodescribethetraffic.
WefurtherusethePCAalgorithmtoreducethedimensionsofthefeaturesinordertoreducethetimecomplexityofdetection.
ByapplyingPCA,thepredictiontimecanbesignificantlyreducedwhilemostoftheoriginalinformationcanstillbecontained.
DataafterdimensionsreductionisfedintoRNNtotrainandgetdetectionmodel.
Evaluationresultshowsthatfortherealdataset,PCA-RNNcanachievesignificantperformanceimprovementintermsofaccuracy,sensitivity,precision,andF-scorecomparedtotheseveralexistingDDoSattacksdetectionmethods.
CCSCONCEPTSSecurityandprivacyNetworksecurityDenial-of-serviceattacksKEYWORDSDDoSattacks,RNN,PCA,trafficfeatures1MotivationsDDoSattackisdistributedinthewaythattheattackerisusingmultiplecomputerstolaunchthedenialofserviceattack.
AnewstudythattriestomeasurethedirectcostofthatoneDDoSattackforIoT(InternetofThings)deviceuserswhosemachinesweresweptupintheassaultfoundthatitmayhavecostdeviceownersatotalof$323,973.
75inexcesspowerandaddedbandwidthconsumption[1].
Itisurgenttodomorein-depthresearchonDDoSattacks,andDDoSattacksdetectionasaveryimportantparthasbecomeahottopicoftheresearcharea.
Currently,thereexistmanystatisticalDDoSdetectionmethods,suchasnetworktrafficstatisticsfeaturesbaseddetection,sourceIPanddestinationIPaddresses-baseddetection,portentropyvalues-baseddetection,andwavelet-basedanalysis[2,3],anddestinationentropy[4],etc.
However,withthedevelopmentofInternettechnology,theDDoSattackmodelischangingfasterandfaster.
Constructionofanewstatisticalmodelrequiresalotoftimetobuild,sothatitdoesnotadaptwelltotherapidlychangingnetworkenvironment.
Thestatisticalmodelhasasingleapplicationscenarioandalotofcomplexityofbuildingorupgradingthemodel.
Inordertosolvetheaboveproblems,thewayofDDoSattacksdetectionthroughmachinelearningalgorithmshasgraduallybecomethefocusofresearch.
Themachinelearningalgorithmcanfindouttheabnormalinformationbehindthemassivedata,whichiswidelylovedbyresearchers.
Theadvantageofthemachinelearningdetectionmodelisthatnewdatacanquicklyupdatethedetectionmodel.
Therearestillsomedeficiencies.
Duetothehighcomputationalcomplexityofmachinelearningalgorithms,itrequireslongerpredictiontime.
ThemachinelearningalgorithmsusedtodetectDDoSattacksdonotconsiderthetimecorrelationoftrafficdata.
Motivatedbythesechallenges,thispaperpresentsPrincipalComponentAnalysis-RecurrentNeuralNetwork(PCA-RNN)toidentifyDDoSattacks.
Wefirstextractallrelevantfeaturestoensureouralgorithmcancoveralltheattacktypes,whichimprovessingleapplicationscenarioproblem.
Thefeaturesincludesfouraspects,namely,floodfeature,slowattackfeature,flowtimefeatureandwebattackfeature.
Duetothelargenumberoffeaturesselectedinthefirststep,thecomputationalcomplexityofthedetectionalgorithmislargelyincreased.
Wehandlethisproblembyreducingthedimensionofinputfeatures.
WeusePCAasourdimension-reductionmethod,whichisanefficientandflexiblelineardimension-reductionmethod.
Finally,sincenetworktraffichasshorttimecorrelation,itisbeneficialifthedetectionalgorithmcouldincorporatetheshorttimefeaturesoftheinputdata.
Inthisway,weselectRNNalgorithmwhichhasshort-termmemoryandistimelyefficientasourtrainingmodule.
2MethodWedescribethedesigndetailsinthissection.
WefirstselectallrelevantfeaturestoensurethattheneuralnetworkcanthoroughlylearntheDDoSattacksinformation.
Toreducethetimecomplexity,weusePCAtoreducethefeaturevectordimensionsandsimplifytheneuralnetworkmodel.
ComparedwithLinearDiscriminantAnalysis(LDA)andotherlineardimensionalityreductionmethods,PCAismoreflexibletoselecttheoutputdimensionaccordingtoactualrequirements,sowechosePCAasthedimensionreductionmethod.
Finally,weconstructafront-to-backcorrelationofnetworkbyRNNalgorithmsothatDDoSdetectioncanbeperformedfrommultipleperspectives.
ThearchitectureoftheproposedframeworkisillustratedinFigure1.
APNet2018,August2-32018,Beijing,ChinaQianLietal.
Figure1:PCA-RNNModel3PreliminaryResultsWeevaluateouralgorithmandcomparewithseveralexistingdetectionalgorithmusingKDDdataset[5].
TheKDDdatasetisa9weeknetworkconnectiondatacollectedfromasimulatedUnitedStatesAirForceLAN,dividedintoidentifiedtrainingdataandnotidentifiedtestdata.
Thetestdataandthetrainingdatahaveadifferentprobabilitydistribution,andthetestdatacontainssometypesofattackthatdonotappearinthetrainingdata,whichmakestheintrusiondetectionmorerealistic.
Figure2:Performancemetrics.
Figure3:PredictiontimeofPCA-RNNcomparedwithexistingmethods.
AscanbeseeninFigure2andFigure3,thepredictiontimeofPCA-RNNcanbesignificantlydecreasedcomparingtheRNNalgorithmswithsimilaraccuracyrateandF1value.
TheaccuracyandF1ofPCA-BP,BPandPCA-LSTMalgorithmsarelowerthanPCA-RNN.
PCA-SVMpredictiontakes83.
3326sandtakestoolongtodraweasily.
WecanalsoseefromFigure3,PCA-RNNneedstheminimumpredictiontimeabovetheaccuracyof98.
7%.
Figure4.
DetectionaccuracyofPCA-RNNcomparedwithexistingmethods.
WealsocompareourPCA-RNNwithseveralexistingstatisticalalgorithms.
AscanbeseeninFigure4,statisticaldetectionalgorithmscanonlyperformwelloncertaintypesofattacks,whileourPCA-RNNalgorithmshowsgooddetectionaccuracyonalltestingscenarios.
4ConclusionandFutureWorkThispaperpresentsanovelmachinelearningbasedDDoSdetectionmethodwithbothaccuracyandefficiency.
Inthefuturework,wewilltestthealgorithmthroughmorerealdatasetandtrytostudytheinherentcharacteristicsundertheselectedfeatures.
REFERENCES[1]Study:AttackonKrebsOnSecurityCostIoTDeviceOwners$323K,Available:https://krebsonsecurity.
com/2018/05/study-attack-on-krebsonsecurity-cost-iot-device-owners-323k/[2]Tao,Y.
,&Yu,S.
(2013).
DDoSAttackDetectionatLocalAreaNetworksUsingInformationTheoreticalMetrics.
IEEEInternationalConferenceonTrust,SecurityandPrivacyinComputingandCommunications(Vol.
8,pp.
233-240).
IEEE.
[3]Dong,P.
,Du,X.
,Zhang,H.
,&Xu,T.
(2016).
AdetectionmethodforanovelDDoSattackagainstSDNcontrollersbyvastnewlow-trafficflows.
IEEEInternationalConferenceonCommunications(pp.
1-6).
IEEE.
[4]Mousavi,S.
M.
,&Sthilaire,M.
(2015).
EarlydetectionofDDoSattacksagainstSDNcontrollers.
InternationalConferenceonComputing,NETWORKINGandCommunications(Vol.
17,pp.
77-81).
IEEEComputerSociety.
[5]KDDCupData,http://kdd.
ics.
uci.
edu/databases/kddcup99/kddcup99.
html.
justhost怎么样?justhost服务器好不好?JustHost是一家成立于2006年的俄罗斯服务器提供商,支持支付宝付款,服务器价格便宜,200Mbps大带宽不限流量,支持免费更换5次IP,支持控制面板自由切换机房,目前JustHost有俄罗斯6个机房可以自由切换选择,最重要的还是价格真的特别便宜,最低只需要87卢布/月,约8.5元/月起!总体来说,性价比很高,性价比不错,有需要的朋友可以...
racknerd从成立到现在发展是相当迅速,用最低的价格霸占了大部分低端便宜vps市场,虽然VPS价格便宜,但是VPS的质量和服务一点儿都不拉跨,服务器稳定、性能给力,尤其是售后方面时间短技术解决能力强,估计这也是racknerd这个品牌能如此成功的原因吧! 官方网站:https://www.racknerd.com 多种加密数字货币、信用卡、PayPal、支付宝、银联、webmoney,可...
inlicloud怎么样?inlicloud(引力主机)主要产品为国内NAT系列VPS,目前主要有:上海联通NAT(200Mbps带宽)、宿州联通NAT(200Mbps带宽)、广州移动NAT(200Mbps带宽)。根据官方的说法国内的NAT系列VPS不要求备案、不要求实名、对中转要求也不严格,但是,禁止任何形式的回国!安徽nat/上海联通/广州移动/江门移动nat云主机,2核1G/200Mbps仅...
ddos为你推荐
免费国外空间哪里的国外免费空间好?vps试用请问有什么网站可以提供免费vps试用的?想用它来刷一下外国pt站网站服务器租用公司想建个网站,请问租服务器按年收费是多少钱域名购买为什么要购买域名,域名是干嘛用的?美国网站空间购买美国网站空间使用会不会麻烦呢,深圳网站空间深圳网站设计 哪家好一些?上海虚拟主机帮忙推荐一下哪里的虚拟主机比较好?山东虚拟主机400电话哪家代理商办理得比较好二级域名什么是二级域名中文域名中文域名有哪写类型?
山东虚拟主机 香港vps主机 查询ip地址 冰山互联 免费主机 私人服务器 mediafire下载 空间打开慢 火车票抢票攻略 好看的桌面背景图 地址大全 北京主机 上海域名 qingyun 圣诞促销 qq云端 上海服务器 申请网页 帽子云排名 华为云建站 更多