deviceddos

ddos  时间:2021-01-03  阅读:()
DDoSAttacksDetectionusingMachineLearningAlgorithmsQianLiCommunicationUniversityofChinaBeijing,Chinaliqian0716@cuc.
edu.
cnLinhaiMengCommunicationUniversityofChinaBeijing,Chinaxmenglinhai@outlook.
comJinyaoYanCommunicationUniversityofChinaBeijing,Chinajyan@cuc.
edu.
cnYuanZhangCommunicationUniversityofChinaBeijing,Chinayuanzhang@cuc.
edu.
cnABSTRACTAdistributeddenial-of-service(DDoS)attackisamaliciousattempttodisruptnormaltrafficofatargetedserver,serviceornetworkbyoverwhelmingthetargetoritssurroundinginfrastructurewithafloodofInternettraffic.
Ithascausedgreatharmtothesecurityofthenetworkenvironment.
ThispaperdevelopsanovelframeworkcalledPCA-RNN(PrincipalComponentAnalysis-RecurrentNeuralNetwork)toidentifyDDoSattacks.
Inordertocomprehensivelyunderstandthenetworktraffic,weselectmostnetworkcharacteristicstodescribethetraffic.
WefurtherusethePCAalgorithmtoreducethedimensionsofthefeaturesinordertoreducethetimecomplexityofdetection.
ByapplyingPCA,thepredictiontimecanbesignificantlyreducedwhilemostoftheoriginalinformationcanstillbecontained.
DataafterdimensionsreductionisfedintoRNNtotrainandgetdetectionmodel.
Evaluationresultshowsthatfortherealdataset,PCA-RNNcanachievesignificantperformanceimprovementintermsofaccuracy,sensitivity,precision,andF-scorecomparedtotheseveralexistingDDoSattacksdetectionmethods.
CCSCONCEPTSSecurityandprivacyNetworksecurityDenial-of-serviceattacksKEYWORDSDDoSattacks,RNN,PCA,trafficfeatures1MotivationsDDoSattackisdistributedinthewaythattheattackerisusingmultiplecomputerstolaunchthedenialofserviceattack.
AnewstudythattriestomeasurethedirectcostofthatoneDDoSattackforIoT(InternetofThings)deviceuserswhosemachinesweresweptupintheassaultfoundthatitmayhavecostdeviceownersatotalof$323,973.
75inexcesspowerandaddedbandwidthconsumption[1].
Itisurgenttodomorein-depthresearchonDDoSattacks,andDDoSattacksdetectionasaveryimportantparthasbecomeahottopicoftheresearcharea.
Currently,thereexistmanystatisticalDDoSdetectionmethods,suchasnetworktrafficstatisticsfeaturesbaseddetection,sourceIPanddestinationIPaddresses-baseddetection,portentropyvalues-baseddetection,andwavelet-basedanalysis[2,3],anddestinationentropy[4],etc.
However,withthedevelopmentofInternettechnology,theDDoSattackmodelischangingfasterandfaster.
Constructionofanewstatisticalmodelrequiresalotoftimetobuild,sothatitdoesnotadaptwelltotherapidlychangingnetworkenvironment.
Thestatisticalmodelhasasingleapplicationscenarioandalotofcomplexityofbuildingorupgradingthemodel.
Inordertosolvetheaboveproblems,thewayofDDoSattacksdetectionthroughmachinelearningalgorithmshasgraduallybecomethefocusofresearch.
Themachinelearningalgorithmcanfindouttheabnormalinformationbehindthemassivedata,whichiswidelylovedbyresearchers.
Theadvantageofthemachinelearningdetectionmodelisthatnewdatacanquicklyupdatethedetectionmodel.
Therearestillsomedeficiencies.
Duetothehighcomputationalcomplexityofmachinelearningalgorithms,itrequireslongerpredictiontime.
ThemachinelearningalgorithmsusedtodetectDDoSattacksdonotconsiderthetimecorrelationoftrafficdata.
Motivatedbythesechallenges,thispaperpresentsPrincipalComponentAnalysis-RecurrentNeuralNetwork(PCA-RNN)toidentifyDDoSattacks.
Wefirstextractallrelevantfeaturestoensureouralgorithmcancoveralltheattacktypes,whichimprovessingleapplicationscenarioproblem.
Thefeaturesincludesfouraspects,namely,floodfeature,slowattackfeature,flowtimefeatureandwebattackfeature.
Duetothelargenumberoffeaturesselectedinthefirststep,thecomputationalcomplexityofthedetectionalgorithmislargelyincreased.
Wehandlethisproblembyreducingthedimensionofinputfeatures.
WeusePCAasourdimension-reductionmethod,whichisanefficientandflexiblelineardimension-reductionmethod.
Finally,sincenetworktraffichasshorttimecorrelation,itisbeneficialifthedetectionalgorithmcouldincorporatetheshorttimefeaturesoftheinputdata.
Inthisway,weselectRNNalgorithmwhichhasshort-termmemoryandistimelyefficientasourtrainingmodule.
2MethodWedescribethedesigndetailsinthissection.
WefirstselectallrelevantfeaturestoensurethattheneuralnetworkcanthoroughlylearntheDDoSattacksinformation.
Toreducethetimecomplexity,weusePCAtoreducethefeaturevectordimensionsandsimplifytheneuralnetworkmodel.
ComparedwithLinearDiscriminantAnalysis(LDA)andotherlineardimensionalityreductionmethods,PCAismoreflexibletoselecttheoutputdimensionaccordingtoactualrequirements,sowechosePCAasthedimensionreductionmethod.
Finally,weconstructafront-to-backcorrelationofnetworkbyRNNalgorithmsothatDDoSdetectioncanbeperformedfrommultipleperspectives.
ThearchitectureoftheproposedframeworkisillustratedinFigure1.
APNet2018,August2-32018,Beijing,ChinaQianLietal.
Figure1:PCA-RNNModel3PreliminaryResultsWeevaluateouralgorithmandcomparewithseveralexistingdetectionalgorithmusingKDDdataset[5].
TheKDDdatasetisa9weeknetworkconnectiondatacollectedfromasimulatedUnitedStatesAirForceLAN,dividedintoidentifiedtrainingdataandnotidentifiedtestdata.
Thetestdataandthetrainingdatahaveadifferentprobabilitydistribution,andthetestdatacontainssometypesofattackthatdonotappearinthetrainingdata,whichmakestheintrusiondetectionmorerealistic.
Figure2:Performancemetrics.
Figure3:PredictiontimeofPCA-RNNcomparedwithexistingmethods.
AscanbeseeninFigure2andFigure3,thepredictiontimeofPCA-RNNcanbesignificantlydecreasedcomparingtheRNNalgorithmswithsimilaraccuracyrateandF1value.
TheaccuracyandF1ofPCA-BP,BPandPCA-LSTMalgorithmsarelowerthanPCA-RNN.
PCA-SVMpredictiontakes83.
3326sandtakestoolongtodraweasily.
WecanalsoseefromFigure3,PCA-RNNneedstheminimumpredictiontimeabovetheaccuracyof98.
7%.
Figure4.
DetectionaccuracyofPCA-RNNcomparedwithexistingmethods.
WealsocompareourPCA-RNNwithseveralexistingstatisticalalgorithms.
AscanbeseeninFigure4,statisticaldetectionalgorithmscanonlyperformwelloncertaintypesofattacks,whileourPCA-RNNalgorithmshowsgooddetectionaccuracyonalltestingscenarios.
4ConclusionandFutureWorkThispaperpresentsanovelmachinelearningbasedDDoSdetectionmethodwithbothaccuracyandefficiency.
Inthefuturework,wewilltestthealgorithmthroughmorerealdatasetandtrytostudytheinherentcharacteristicsundertheselectedfeatures.
REFERENCES[1]Study:AttackonKrebsOnSecurityCostIoTDeviceOwners$323K,Available:https://krebsonsecurity.
com/2018/05/study-attack-on-krebsonsecurity-cost-iot-device-owners-323k/[2]Tao,Y.
,&Yu,S.
(2013).
DDoSAttackDetectionatLocalAreaNetworksUsingInformationTheoreticalMetrics.
IEEEInternationalConferenceonTrust,SecurityandPrivacyinComputingandCommunications(Vol.
8,pp.
233-240).
IEEE.
[3]Dong,P.
,Du,X.
,Zhang,H.
,&Xu,T.
(2016).
AdetectionmethodforanovelDDoSattackagainstSDNcontrollersbyvastnewlow-trafficflows.
IEEEInternationalConferenceonCommunications(pp.
1-6).
IEEE.
[4]Mousavi,S.
M.
,&Sthilaire,M.
(2015).
EarlydetectionofDDoSattacksagainstSDNcontrollers.
InternationalConferenceonComputing,NETWORKINGandCommunications(Vol.
17,pp.
77-81).
IEEEComputerSociety.
[5]KDDCupData,http://kdd.
ics.
uci.
edu/databases/kddcup99/kddcup99.
html.

虎跃云-物理机16H/32G/50M山东枣庄高防BGP服务器低至550元每月!

虎跃科技怎么样?虎跃科技(虎跃云)是一家成立于2017年的国内专业服务商,专业主营云服务器和独立服务器(物理机)高防机房有着高端华为T级清洗能力,目前产品地区有:山东,江苏,浙江等多地区云服务器和独立服务器,今天虎跃云给大家带来了优惠活动,为了更好的促销,枣庄高防BGP服务器最高配置16核32G仅需550元/月,有需要的小伙伴可以来看看哦!产品可以支持24H无条件退款(活动产品退款请以活动规则为准...

妮妮云80元/月,香港站群云服务器 1核1G

妮妮云的来历妮妮云是 789 陈总 张总 三方共同投资建立的网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑妮妮云的市场定位妮妮云主要代理市场稳定速度的云服务器产品,避免新手购买云服务器的时候众多商家不知道如何选择,妮妮云就帮你选择好了产品,无需承担购买风险,不用担心出现被跑路 被诈骗的情况。妮妮云的售后保证妮妮云退款 通过于合作商的友好协商,云服务器提供2天内全额退款,超过2天不退款 物...

VoLLcloud:超便宜香港CMI大带宽vps-三网CMI直连-年付四免服务-低至4刀/月-奈飞

vollcloud LLC创立于2020年,是一家以互联网基础业务服务为主的 技术型企业,运营全球数据中心业务。致力于全球服务器租用、托管及云计算、DDOS安 全防护、数据实时存储、 高防服务器加速、域名、智能高防服务器、网络安全服务解决方案等领域的智 能化、规范化的体验服务。所有购买年付产品免费更换香港原生IP(支持解锁奈飞),商家承诺,支持3天内无条件退款(原路退回)!点击进入:vollclo...

ddos为你推荐
免费云主机有永久免费的云主机吗?租服务器租个一般的服务器大概多少钱啊?虚拟主机代理虚拟主机代理哪家好,应该选择哪个家?免费国外空间那个国外空间好啊啊 价格便宜 急需网站空间购买不用备案的网站空间,哪里可以有这样的网站空间购买?免费网站空间申请哪个网站可以申请免费的网页空间虚拟主机软件谁知道这个虚拟机软件叫什么。河南虚拟主机谁那有好的虚拟主机?虚拟主机测评哪一种虚拟主机比较好用?虚拟主机提供商那个提供商的虚拟主机比较便宜,不要小牌子,服务要好
新加坡虚拟主机 国外vps主机 看国外视频直播vps 亚洲大于500m highfrequency blackfriday cve-2014-6271 申请个人网页 免费ftp空间申请 777te 52测评网 91vps 监控服务器 可外链的相册 阿里云邮箱申请 免备案cdn加速 windowsserver2008r2 什么是dns ddos攻击小组 隐士ddos 更多