sentimentddos

ddos  时间:2021-01-03  阅读:()
DDoSEventForecastingusingTwitterDataZhongqingWang1,2andYueZhang21SoochowUniversity,China2SingaporeUniversityofTechnologyandDesignDDoSAttacksADistributedDenialofService(DDoS)attackemploysmultiplecompromisedsystemstointerruptorsuspendservicesofahostconnectedtotheInternet[Carletal.
,2006]BusinessImpactofDDoSAttacksAlmosthalf(45%)oftherespondentsindicatedtheirattacksThosehaving500ormoreemployeesaremostlikelytoexperienceaDDoSassaultTheaverageDDoScostcanbeassessedatabout$500,000AdaptedfromMatthew.
(2014).
Incapsulasurvey:WhatDDoSAttacksReallyCostBusinessesProfileofanAttackDDoSassaultscomeinmanyshapesandsizes,soorganizationsmustbepreparedforanythinginordertoprotectthemselvesAdaptedfromMatthew.
(2014).
Incapsulasurvey:WhatDDoSAttacksReallyCostBusinessesDDoSDetectiononCyberSecurityDomainTraditionally,theaimofaDDoSdetectionsystemistodetectmaliciouspackettrafficfromlegitimatetraffic[MirkovicandReiher,2004].
However,malicioustrafficoccursonlyafteraDDoSattackhasbegun,thereislimitedtimetopreventdamage.
Todayyesterday2daybefore3daybefore4daybefore…TargetiattackdetectForecastnotDetectThispaperinvestigatesthefeasibilityofforecastingthelikelihoodofDDoSattacksbeforetheyhappenbymonitoringsocialmediastream.
Ideally,ifthelikelihoodofDDoSattackscanbeforecasted,itcanbeusedtoguideconfigurationofaDDoSdetectionanddefensesystemoveracertainperiodoftime.
Todayyesterday2daybefore3daybefore4daybefore…TargetiattackforecastAssumptionsofForecastingOurmotivationisthattheattackedtargetsmaybementionedunfavorablyorarousenegativesentimentsinsocialmediatext.
DDoSForecastonTweetStreamOurtaskistopredictwhetheraDDoSeventislikelyoccurinthenextday,giventhetweetstreamoverahistoricalperiodrelatedtothemonitoredtarget.
Todayyesterday2daybefore3daybefore4daybefore…TweetsTweetsTweetsTweetsTargetiIfnextdaywillhappenattackChallengeofModelingTextStreamInputisatextstreamratherthanadocumentAnidealmodelshouldcapturetweet-levelinformationstream-levelinformationburstinesssentimentoverhistoryTodayyesterday2daybefore3daybefore4daybefore…TweetsTweetsTweetsTweetsTargetiHowtoorganizethetextstreaminformationNeuralStreamModelsTweetmodelrepresentstext-levelfeaturesbasedonthetweetcontentDistributedWordEmbeddingslearnsrepresentationofeachwordDaymodelcapturesdailytweetrepresentationsStreammodelcapturesinformationoverthedailystreamhistoryTodayyesterday2ndday1stdayTargetidNpdNp-1d1StreamModel……DayModelTweetModelONp-1CNNCNNCNNCNNCNNCNNO1ONpt1t2tNd…t1t2tNd…t1t2…tNd…hDistributedWordEmbeddingsWerepresenteachwordwkwithbothcommonwordembeddingsandexplicitsentimentembeddings.
AtweettjismappedintoamatrixWeusethesentiment-enrichedembedding[Tangetal.
,2014]ofwordsinsentimentlexiconsasasentimentalrepresentationoftweettjTweetModelWeuseaCNNtoconstructthetweetmodel,representingtext-levelfeaturesforindividualtweets.
Theinputisthesequenceofwordsoftweetti,andtheoutputisavectorrepresentationofthetweetw1wN…Day-levelSubModelWetreatallrelevanttweetsinadayasaunit,anduseaCNNtoextractaunifieddailyrepresentationvector.
…StreamModelsWeusestreammodelstocapturetextstreaminformationontopofthedaymodel.
isusetodenotethestreammodeloutput.
Streammodel…hStreamModels(cont.
)AsimplestreammodelcanbeaonelayerLSTMonthedailytweetsequencedirectly.
MoresophisticatedmodelsonthefollowingcanbeexploitedbycapturingricherfeaturesoveratextstreamVanillaStreamModelShort-andLong-TermStreamModelHierarchicalStreamModelVanillaStreamModelAsabaseline,wemodelatweetstreambyusinganLSTMtorecurrentlycapturedailytweethistory.
Formally,givenfromthedaymodel,weobtainacorrespondingsequenceofhiddenstatevectorswhere,DrawbacksofVanillaStreamModelThevanillastreammodeldoesnotexplicitlymodelthedifferencebetweenshortandlongtermhistories,whichcanbeusefulfortwomajorreasons:acontrastbetweenshortandlongtermhistorycanrevealburstinessandtrends.
therelativeimportanceoflongertermhistoryshouldbesmallercomparedtothatofshortertermhistory.
Short-andLong-TermStreamModelToaddressthedrawbacksofvanillastreammodel,wedevelopastreammodelthatcapturesshort-termandlong-termhistoriesseparatelywithdifferentLSTMs.
long-termhistoryshort-termhistoryShort-andLong-TermStreamModel(cont.
)WeeklyLSTMmodelisusedtocaptureshort-termhistory{d7,d6,.
.
.
,d1}.
Thehiddenstatevectorsare:MonthlyLSTMmodelisusedtocapturelong-termhistory{d30,d29,.
.
.
,d1}.
Thehiddenstatevectorsare:Thestatevectorsoftheweeklyandmonthlymodelsareconcatenatedwiththedailystatevectorintoasinglevector:long-termshort-termlastdayHierarchicalStreamModelAdrawbackoftheShort-andLong-TermModelaboveisthatthesizeofutilizinghistoryislimitedto30days.
Weproposeafine-grainedstackedLSTMmodel,arrangingdaily,weekly,andmonthlyhistoryintoahierarchicalstructure,tocaptureinfinitelylonghistorywithoutlosingshortandlongtermdifference.
HierarchicalStreamModel(cont.
)Day-levelisthesameasthevanillasequencemodel,whichmapsthedailytweetrepresentationintoahiddenstatesequenceHierarchicalStreamModel(cont.
)Week-levelisstackedontopoftheday-levelmodel,takingthesequenceofhiddenstatevectorsofevery7days,namelyasinput.
Theweeklyhiddenstatevectorsare:HierarchicalStreamModel(cont.
)Month-levelisstackedontopoftheweek-levelmodel,takingthesequenceofhiddenstatevectorsofevery4weeks,asinput.
Themonthlyhiddenstatevectorsare:HierarchicalStreamModel(cont.
)Thehierarchicalstatevectorsareconcatenatedintoasinglevector,whichisfedtothepredictionmodel.
PredictionSubModelWeuseasoftmaxclassifiertopredicttheattacklabelybasedonh,wherelabelprobabilitiesarecalculatedas:DataCollectionDDoSEventCollection.
ADDoSeventcanbedefinedasatriplet(e,t,d),wheree,t,ddenoteevent,targetanddate,respectively.
wecollectthesethreetypesofinformationfromddosattacks.
net.
weobtain170gold-standardeventsbasedonasemi-automaticprocess.
Eacheventturnsouttohaveauniquetarget.
ExampleeventtriplesDataCollection(cont.
)EventRelatedTweetsCollection.
Thetargetnamesareusedaskeywordstosearchandcollecttherelatedtweets.
HistorytweetdataarecollectedfromAugust,2015toApril,2016thesamespanforcollectingDDoSnewsevent.
Foreachtarget,wecollectabout200postspermonth,obtaining17760tweetsrelatedtoallthe170targets.
NOTEweonlycollectthosetweetswhichmentionatargetexplicitlyinordertomakesurethatthetweetsarerelatedtothetarget.
ExperimentalSettingsTraining&TestingData.
Weuse80randomtargetsfortraining,60fordevelopment,andtheremaining30fortesting.
Positive&NegativeSamples.
Foreachtarget,thereisexactlyonedayinthedatasetwhenaDDoSattackoccurred,whichisregardedasapositivesample.
theremainingdaysareconsiderednegativesamples.
Metric.
Weusetheareaundertheprecision-recallcurve(AUC)[DavisandGoadrich,2006].
ExperimentonImbalancedDataOurdatasetishighlyimbalanced,withtheratiobetweenpositiveandnegativesamplesbeingverysmall.
Weinvestigatefourtypicalstrategiestoaddresstheissue.
under-sampling-1,usingonesampleofnegativedataforeachpositivedata.
Itoutperformsallotherapproaches.
Itisusedinthefollowingsubsections.
CorrelationbetweenTweetsandDDoSEventsWeuseasetofvanillastreammodelstoverifythecorrelationbetweenhistorytweetsandDDoSevents.
Neg-Term-countmeanscountthenegativewordsfromtweetseachday,forecastinganattackifthenumberofnegativewordsislargerthanathreshold.
SVMisabasicSVMmodelwithbag-of-wordfeatures.
SVM-embuseswordembeddingsvectorsforSVMfeatures.
SVM-emb-sentiusesbothcommonwordembeddingandsentiment-enrichedembeddings.
LSTM-embistheproposedvanillastreammodelusingwordembeddings.
LSTM-sentiisthevanillastreammodelwithsentimentenrichedwordembeddings.
LSTM-emb-sentiisthevanillastreammodelwithbothcommonwordembeddingandsentiment-enrichedembeddings.
CorrelationbetweenTweetsandDDoSEvents(cont.
)IstextusefulforDDoSforecastingalltext-basedmodelsoutperformtherandombaselinesignificantly,whichdemonstratesthattextfromsocialmediaisindeedinformativeforDDoSforecast.
UsefulfactorssentimentinformationhighlyusefulforDDoSeventforecasting.
LSTMcanleveragenon-localsemanticinformationforsentencerepresentationbeyondsentimentsignals.
InfluenceofDateRangeIfthedaterangeistoosmall,thestreammodelcannotcapturesufficienthistoricalinformationforprediction.
However,averylargehistorydaterangemaycontainnoiseandirrelevantinformation.
Thissuggeststheusefulnessofcombiningdifferenthistorygranularities.
InfluenceofStreamModelsWecomparethedifferentstreammodels.
LSTMVSisthevanillastreammodelLSTMSListheLSTMbasedstreammodelwithshortandlongtermhistoryLSTMHSisthehierarchicalLSTMstreammodelFinalResultsThefinalresultsonthetestdatasetareonthefollowing:Thankswangzq.
antony@gmail.
com,yue_zhang@sutd.
edu.
sg

Friendhosting 黑色星期五 VDS/VPS可享四五折优惠促销

Friendhosting商家在前面的篇幅中也又陆续介绍到,是一家保加利亚主机商,主要提供销售VPS和独立服务器出租业务,数据中心分布在:荷兰、保加利亚、立陶宛、捷克、乌克兰和美国洛杉矶等。这不近期黑色星期五活动,商家也有推出了黑五优惠,VPS全场一次性45折,虚拟主机4折,全球多机房可选,老用户续费可获9折加送1个月使用时长,VDS折后最低仅€14.53/年,有需要的可以看看。Friendhos...

LOCVPS:美国XEN架构VPS七折,全场八折,日本/新加坡XEN架构月付29.6元起

LOCVPS发来了针对XEN架构VPS的促销方案,其中美国洛杉矶机房7折,其余日本/新加坡/中国香港等机房全部8折,优惠后日本/新加坡机房XEN VPS月付仅29.6元起。这是成立较久的一家国人VPS服务商,目前提供美国洛杉矶(MC/C3)、和中国香港(邦联、沙田电信、大埔)、日本(东京、大阪)、新加坡、德国和荷兰等机房VPS主机,基于XEN或者KVM虚拟架构,均选择国内访问线路不错的机房,适合建...

青云互联:洛杉矶CN2弹性云限时七折,Cera机房三网CN2gia回程,13.3元/月起

青云互联怎么样?青云互联是一家成立于2020年6月份的主机服务商,致力于为用户提供高性价比稳定快速的主机托管服务,目前提供有美国免费主机、香港主机、香港服务器、美国云服务器,让您的网站高速、稳定运行。目前,美国洛杉矶cn2弹性云限时七折,美国cera机房三网CN2gia回程 13.3元/月起,可选Windows/可自定义配置。点击进入:青云互联官网青云互联优惠码:七折优惠码:dVRKp2tP (续...

ddos为你推荐
虚拟主机空间一个虚拟主机空间大小多少合适云南虚拟主机云南服务器托管四川虚拟主机哪些网站适合租用独立服务器?域名交易域名交易的流程是怎么样的?万网域名都说万网的域名好,有哪些优势?免费二级域名谁能告诉我哪里有免费提供永久免费二级域名的网站啊?(要中国的)com域名cc域名和cn或者com域名有区别吗?域名系统全球根域名系统是什么?域名转让网中搜转让信息名址的网站?美国域名全球13台根域名服务器在哪里
什么是域名 动态域名解析 手机域名注册 注册cn域名 plesk t牌 美国主机推荐 香港cdn 68.168.16.150 ubuntu更新源 合肥鹏博士 dd444 web服务器架设 服务器维护方案 softbank邮箱 免费智能解析 台湾谷歌 上海服务器 环聊 域名dns 更多