sentimentddos

ddos  时间:2021-01-03  阅读:()
DDoSEventForecastingusingTwitterDataZhongqingWang1,2andYueZhang21SoochowUniversity,China2SingaporeUniversityofTechnologyandDesignDDoSAttacksADistributedDenialofService(DDoS)attackemploysmultiplecompromisedsystemstointerruptorsuspendservicesofahostconnectedtotheInternet[Carletal.
,2006]BusinessImpactofDDoSAttacksAlmosthalf(45%)oftherespondentsindicatedtheirattacksThosehaving500ormoreemployeesaremostlikelytoexperienceaDDoSassaultTheaverageDDoScostcanbeassessedatabout$500,000AdaptedfromMatthew.
(2014).
Incapsulasurvey:WhatDDoSAttacksReallyCostBusinessesProfileofanAttackDDoSassaultscomeinmanyshapesandsizes,soorganizationsmustbepreparedforanythinginordertoprotectthemselvesAdaptedfromMatthew.
(2014).
Incapsulasurvey:WhatDDoSAttacksReallyCostBusinessesDDoSDetectiononCyberSecurityDomainTraditionally,theaimofaDDoSdetectionsystemistodetectmaliciouspackettrafficfromlegitimatetraffic[MirkovicandReiher,2004].
However,malicioustrafficoccursonlyafteraDDoSattackhasbegun,thereislimitedtimetopreventdamage.
Todayyesterday2daybefore3daybefore4daybefore…TargetiattackdetectForecastnotDetectThispaperinvestigatesthefeasibilityofforecastingthelikelihoodofDDoSattacksbeforetheyhappenbymonitoringsocialmediastream.
Ideally,ifthelikelihoodofDDoSattackscanbeforecasted,itcanbeusedtoguideconfigurationofaDDoSdetectionanddefensesystemoveracertainperiodoftime.
Todayyesterday2daybefore3daybefore4daybefore…TargetiattackforecastAssumptionsofForecastingOurmotivationisthattheattackedtargetsmaybementionedunfavorablyorarousenegativesentimentsinsocialmediatext.
DDoSForecastonTweetStreamOurtaskistopredictwhetheraDDoSeventislikelyoccurinthenextday,giventhetweetstreamoverahistoricalperiodrelatedtothemonitoredtarget.
Todayyesterday2daybefore3daybefore4daybefore…TweetsTweetsTweetsTweetsTargetiIfnextdaywillhappenattackChallengeofModelingTextStreamInputisatextstreamratherthanadocumentAnidealmodelshouldcapturetweet-levelinformationstream-levelinformationburstinesssentimentoverhistoryTodayyesterday2daybefore3daybefore4daybefore…TweetsTweetsTweetsTweetsTargetiHowtoorganizethetextstreaminformationNeuralStreamModelsTweetmodelrepresentstext-levelfeaturesbasedonthetweetcontentDistributedWordEmbeddingslearnsrepresentationofeachwordDaymodelcapturesdailytweetrepresentationsStreammodelcapturesinformationoverthedailystreamhistoryTodayyesterday2ndday1stdayTargetidNpdNp-1d1StreamModel……DayModelTweetModelONp-1CNNCNNCNNCNNCNNCNNO1ONpt1t2tNd…t1t2tNd…t1t2…tNd…hDistributedWordEmbeddingsWerepresenteachwordwkwithbothcommonwordembeddingsandexplicitsentimentembeddings.
AtweettjismappedintoamatrixWeusethesentiment-enrichedembedding[Tangetal.
,2014]ofwordsinsentimentlexiconsasasentimentalrepresentationoftweettjTweetModelWeuseaCNNtoconstructthetweetmodel,representingtext-levelfeaturesforindividualtweets.
Theinputisthesequenceofwordsoftweetti,andtheoutputisavectorrepresentationofthetweetw1wN…Day-levelSubModelWetreatallrelevanttweetsinadayasaunit,anduseaCNNtoextractaunifieddailyrepresentationvector.
…StreamModelsWeusestreammodelstocapturetextstreaminformationontopofthedaymodel.
isusetodenotethestreammodeloutput.
Streammodel…hStreamModels(cont.
)AsimplestreammodelcanbeaonelayerLSTMonthedailytweetsequencedirectly.
MoresophisticatedmodelsonthefollowingcanbeexploitedbycapturingricherfeaturesoveratextstreamVanillaStreamModelShort-andLong-TermStreamModelHierarchicalStreamModelVanillaStreamModelAsabaseline,wemodelatweetstreambyusinganLSTMtorecurrentlycapturedailytweethistory.
Formally,givenfromthedaymodel,weobtainacorrespondingsequenceofhiddenstatevectorswhere,DrawbacksofVanillaStreamModelThevanillastreammodeldoesnotexplicitlymodelthedifferencebetweenshortandlongtermhistories,whichcanbeusefulfortwomajorreasons:acontrastbetweenshortandlongtermhistorycanrevealburstinessandtrends.
therelativeimportanceoflongertermhistoryshouldbesmallercomparedtothatofshortertermhistory.
Short-andLong-TermStreamModelToaddressthedrawbacksofvanillastreammodel,wedevelopastreammodelthatcapturesshort-termandlong-termhistoriesseparatelywithdifferentLSTMs.
long-termhistoryshort-termhistoryShort-andLong-TermStreamModel(cont.
)WeeklyLSTMmodelisusedtocaptureshort-termhistory{d7,d6,.
.
.
,d1}.
Thehiddenstatevectorsare:MonthlyLSTMmodelisusedtocapturelong-termhistory{d30,d29,.
.
.
,d1}.
Thehiddenstatevectorsare:Thestatevectorsoftheweeklyandmonthlymodelsareconcatenatedwiththedailystatevectorintoasinglevector:long-termshort-termlastdayHierarchicalStreamModelAdrawbackoftheShort-andLong-TermModelaboveisthatthesizeofutilizinghistoryislimitedto30days.
Weproposeafine-grainedstackedLSTMmodel,arrangingdaily,weekly,andmonthlyhistoryintoahierarchicalstructure,tocaptureinfinitelylonghistorywithoutlosingshortandlongtermdifference.
HierarchicalStreamModel(cont.
)Day-levelisthesameasthevanillasequencemodel,whichmapsthedailytweetrepresentationintoahiddenstatesequenceHierarchicalStreamModel(cont.
)Week-levelisstackedontopoftheday-levelmodel,takingthesequenceofhiddenstatevectorsofevery7days,namelyasinput.
Theweeklyhiddenstatevectorsare:HierarchicalStreamModel(cont.
)Month-levelisstackedontopoftheweek-levelmodel,takingthesequenceofhiddenstatevectorsofevery4weeks,asinput.
Themonthlyhiddenstatevectorsare:HierarchicalStreamModel(cont.
)Thehierarchicalstatevectorsareconcatenatedintoasinglevector,whichisfedtothepredictionmodel.
PredictionSubModelWeuseasoftmaxclassifiertopredicttheattacklabelybasedonh,wherelabelprobabilitiesarecalculatedas:DataCollectionDDoSEventCollection.
ADDoSeventcanbedefinedasatriplet(e,t,d),wheree,t,ddenoteevent,targetanddate,respectively.
wecollectthesethreetypesofinformationfromddosattacks.
net.
weobtain170gold-standardeventsbasedonasemi-automaticprocess.
Eacheventturnsouttohaveauniquetarget.
ExampleeventtriplesDataCollection(cont.
)EventRelatedTweetsCollection.
Thetargetnamesareusedaskeywordstosearchandcollecttherelatedtweets.
HistorytweetdataarecollectedfromAugust,2015toApril,2016thesamespanforcollectingDDoSnewsevent.
Foreachtarget,wecollectabout200postspermonth,obtaining17760tweetsrelatedtoallthe170targets.
NOTEweonlycollectthosetweetswhichmentionatargetexplicitlyinordertomakesurethatthetweetsarerelatedtothetarget.
ExperimentalSettingsTraining&TestingData.
Weuse80randomtargetsfortraining,60fordevelopment,andtheremaining30fortesting.
Positive&NegativeSamples.
Foreachtarget,thereisexactlyonedayinthedatasetwhenaDDoSattackoccurred,whichisregardedasapositivesample.
theremainingdaysareconsiderednegativesamples.
Metric.
Weusetheareaundertheprecision-recallcurve(AUC)[DavisandGoadrich,2006].
ExperimentonImbalancedDataOurdatasetishighlyimbalanced,withtheratiobetweenpositiveandnegativesamplesbeingverysmall.
Weinvestigatefourtypicalstrategiestoaddresstheissue.
under-sampling-1,usingonesampleofnegativedataforeachpositivedata.
Itoutperformsallotherapproaches.
Itisusedinthefollowingsubsections.
CorrelationbetweenTweetsandDDoSEventsWeuseasetofvanillastreammodelstoverifythecorrelationbetweenhistorytweetsandDDoSevents.
Neg-Term-countmeanscountthenegativewordsfromtweetseachday,forecastinganattackifthenumberofnegativewordsislargerthanathreshold.
SVMisabasicSVMmodelwithbag-of-wordfeatures.
SVM-embuseswordembeddingsvectorsforSVMfeatures.
SVM-emb-sentiusesbothcommonwordembeddingandsentiment-enrichedembeddings.
LSTM-embistheproposedvanillastreammodelusingwordembeddings.
LSTM-sentiisthevanillastreammodelwithsentimentenrichedwordembeddings.
LSTM-emb-sentiisthevanillastreammodelwithbothcommonwordembeddingandsentiment-enrichedembeddings.
CorrelationbetweenTweetsandDDoSEvents(cont.
)IstextusefulforDDoSforecastingalltext-basedmodelsoutperformtherandombaselinesignificantly,whichdemonstratesthattextfromsocialmediaisindeedinformativeforDDoSforecast.
UsefulfactorssentimentinformationhighlyusefulforDDoSeventforecasting.
LSTMcanleveragenon-localsemanticinformationforsentencerepresentationbeyondsentimentsignals.
InfluenceofDateRangeIfthedaterangeistoosmall,thestreammodelcannotcapturesufficienthistoricalinformationforprediction.
However,averylargehistorydaterangemaycontainnoiseandirrelevantinformation.
Thissuggeststheusefulnessofcombiningdifferenthistorygranularities.
InfluenceofStreamModelsWecomparethedifferentstreammodels.
LSTMVSisthevanillastreammodelLSTMSListheLSTMbasedstreammodelwithshortandlongtermhistoryLSTMHSisthehierarchicalLSTMstreammodelFinalResultsThefinalresultsonthetestdatasetareonthefollowing:Thankswangzq.
antony@gmail.
com,yue_zhang@sutd.
edu.
sg

香港2GB内存DIYVM2核(¥50月)香港沙田CN2云服务器

DiyVM 香港沙田机房,也是采用的CN2优化线路,目前也有入手且在使用中,我个人感觉如果中文业务需要用到的话虽然日本机房也是CN2,但是线路的稳定性不如香港机房,所以我们在这篇文章中亲测看看香港机房,然后对比之前看到的日本机房。香港机房的配置信息。CPU内存 硬盘带宽IP价格购买地址2核2G50G2M1¥50/月选择方案4核4G60G3M1¥100/月选择方案4核8G70G3M4¥200/月选择...

Megalayer(48元)新增 美国CN2优化线路特价服务器和VPS方案

Megalayer 商家算是新晋的服务商,商家才开始的时候主要是以香港、美国独立服务器。后来有新增菲律宾机房,包括有VPS云服务器、独立服务器、站群服务器等产品。线路上有CN2优化带宽、全向带宽和国际带宽,这里有看到商家的特价方案有增加至9个,之前是四个的。在这篇文章中,我来整理看看。第一、香港服务器系列这里香港服务器会根据带宽的不同区别。我这里将香港机房的都整理到一个系列里。核心内存硬盘IP带宽...

RAKsmart裸机云/云服务器/VPS全场7折,独立服务器限量秒杀$30/月起

适逢中国农历新年,RAKsmart也发布了2月促销活动,裸机云、云服务器、VPS主机全场7折优惠,新用户注册送10美元,独立服务器每天限量秒杀最低30.62美元/月起,美国洛杉矶/圣何塞、日本、香港站群服务器大量补货,1-10Gbps大带宽、高IO等特色服务器抄底价格,机器可选大陆优化、国际BGP、精品网及CN2等线路,感兴趣的朋友可以持续关注下。裸机云新品7折,秒杀产品5台/天优惠码:Bare-...

ddos为你推荐
免费虚拟空间谁可以推荐一个比较很不错的免费虚拟空间已备案域名查询如何查询网站的域名是否已经备案apache虚拟主机apache里面可以在虚拟主机里边设置虚拟目录吗?急,在线等!下载虚拟主机虚拟机怎么使用和下载华众虚拟主机管理系统华众虚拟主机管理系统怎样才能使用支付宝的双功能支付接口或者担保交易的支付接口域名交易域名过户办理流程/怎样办理域名过户?备案域名购买现在备案一个域名要多少钱?我想备案域名域名批量查询有好米域名批量查询好用吗?美国域名域名的历史是怎么样的西安域名注册做个人网站的详细全过程(比如域名注册,空间什么的)
东莞虚拟主机 host1plus 私服服务器 韩国加速器 免费名片模板 牛人与腾讯客服对话 韩国网名大全 中国智能物流骨干网 韩国名字大全 如何用qq邮箱发邮件 免费dns解析 电信托管 宏讯 重庆电信服务器托管 免费的域名 xuni 免费个人网页 免费主页空间 wordpress空间 装修瓦工培训 更多