DDoSEventForecastingusingTwitterDataZhongqingWang1,2andYueZhang21SoochowUniversity,China2SingaporeUniversityofTechnologyandDesignDDoSAttacksADistributedDenialofService(DDoS)attackemploysmultiplecompromisedsystemstointerruptorsuspendservicesofahostconnectedtotheInternet[Carletal.
,2006]BusinessImpactofDDoSAttacksAlmosthalf(45%)oftherespondentsindicatedtheirattacksThosehaving500ormoreemployeesaremostlikelytoexperienceaDDoSassaultTheaverageDDoScostcanbeassessedatabout$500,000AdaptedfromMatthew.
(2014).
Incapsulasurvey:WhatDDoSAttacksReallyCostBusinessesProfileofanAttackDDoSassaultscomeinmanyshapesandsizes,soorganizationsmustbepreparedforanythinginordertoprotectthemselvesAdaptedfromMatthew.
(2014).
Incapsulasurvey:WhatDDoSAttacksReallyCostBusinessesDDoSDetectiononCyberSecurityDomainTraditionally,theaimofaDDoSdetectionsystemistodetectmaliciouspackettrafficfromlegitimatetraffic[MirkovicandReiher,2004].
However,malicioustrafficoccursonlyafteraDDoSattackhasbegun,thereislimitedtimetopreventdamage.
Todayyesterday2daybefore3daybefore4daybefore…TargetiattackdetectForecastnotDetectThispaperinvestigatesthefeasibilityofforecastingthelikelihoodofDDoSattacksbeforetheyhappenbymonitoringsocialmediastream.
Ideally,ifthelikelihoodofDDoSattackscanbeforecasted,itcanbeusedtoguideconfigurationofaDDoSdetectionanddefensesystemoveracertainperiodoftime.
Todayyesterday2daybefore3daybefore4daybefore…TargetiattackforecastAssumptionsofForecastingOurmotivationisthattheattackedtargetsmaybementionedunfavorablyorarousenegativesentimentsinsocialmediatext.
DDoSForecastonTweetStreamOurtaskistopredictwhetheraDDoSeventislikelyoccurinthenextday,giventhetweetstreamoverahistoricalperiodrelatedtothemonitoredtarget.
Todayyesterday2daybefore3daybefore4daybefore…TweetsTweetsTweetsTweetsTargetiIfnextdaywillhappenattackChallengeofModelingTextStreamInputisatextstreamratherthanadocumentAnidealmodelshouldcapturetweet-levelinformationstream-levelinformationburstinesssentimentoverhistoryTodayyesterday2daybefore3daybefore4daybefore…TweetsTweetsTweetsTweetsTargetiHowtoorganizethetextstreaminformationNeuralStreamModelsTweetmodelrepresentstext-levelfeaturesbasedonthetweetcontentDistributedWordEmbeddingslearnsrepresentationofeachwordDaymodelcapturesdailytweetrepresentationsStreammodelcapturesinformationoverthedailystreamhistoryTodayyesterday2ndday1stdayTargetidNpdNp-1d1StreamModel……DayModelTweetModelONp-1CNNCNNCNNCNNCNNCNNO1ONpt1t2tNd…t1t2tNd…t1t2…tNd…hDistributedWordEmbeddingsWerepresenteachwordwkwithbothcommonwordembeddingsandexplicitsentimentembeddings.
AtweettjismappedintoamatrixWeusethesentiment-enrichedembedding[Tangetal.
,2014]ofwordsinsentimentlexiconsasasentimentalrepresentationoftweettjTweetModelWeuseaCNNtoconstructthetweetmodel,representingtext-levelfeaturesforindividualtweets.
Theinputisthesequenceofwordsoftweetti,andtheoutputisavectorrepresentationofthetweetw1wN…Day-levelSubModelWetreatallrelevanttweetsinadayasaunit,anduseaCNNtoextractaunifieddailyrepresentationvector.
…StreamModelsWeusestreammodelstocapturetextstreaminformationontopofthedaymodel.
isusetodenotethestreammodeloutput.
Streammodel…hStreamModels(cont.
)AsimplestreammodelcanbeaonelayerLSTMonthedailytweetsequencedirectly.
MoresophisticatedmodelsonthefollowingcanbeexploitedbycapturingricherfeaturesoveratextstreamVanillaStreamModelShort-andLong-TermStreamModelHierarchicalStreamModelVanillaStreamModelAsabaseline,wemodelatweetstreambyusinganLSTMtorecurrentlycapturedailytweethistory.
Formally,givenfromthedaymodel,weobtainacorrespondingsequenceofhiddenstatevectorswhere,DrawbacksofVanillaStreamModelThevanillastreammodeldoesnotexplicitlymodelthedifferencebetweenshortandlongtermhistories,whichcanbeusefulfortwomajorreasons:acontrastbetweenshortandlongtermhistorycanrevealburstinessandtrends.
therelativeimportanceoflongertermhistoryshouldbesmallercomparedtothatofshortertermhistory.
Short-andLong-TermStreamModelToaddressthedrawbacksofvanillastreammodel,wedevelopastreammodelthatcapturesshort-termandlong-termhistoriesseparatelywithdifferentLSTMs.
long-termhistoryshort-termhistoryShort-andLong-TermStreamModel(cont.
)WeeklyLSTMmodelisusedtocaptureshort-termhistory{d7,d6,.
.
.
,d1}.
Thehiddenstatevectorsare:MonthlyLSTMmodelisusedtocapturelong-termhistory{d30,d29,.
.
.
,d1}.
Thehiddenstatevectorsare:Thestatevectorsoftheweeklyandmonthlymodelsareconcatenatedwiththedailystatevectorintoasinglevector:long-termshort-termlastdayHierarchicalStreamModelAdrawbackoftheShort-andLong-TermModelaboveisthatthesizeofutilizinghistoryislimitedto30days.
Weproposeafine-grainedstackedLSTMmodel,arrangingdaily,weekly,andmonthlyhistoryintoahierarchicalstructure,tocaptureinfinitelylonghistorywithoutlosingshortandlongtermdifference.
HierarchicalStreamModel(cont.
)Day-levelisthesameasthevanillasequencemodel,whichmapsthedailytweetrepresentationintoahiddenstatesequenceHierarchicalStreamModel(cont.
)Week-levelisstackedontopoftheday-levelmodel,takingthesequenceofhiddenstatevectorsofevery7days,namelyasinput.
Theweeklyhiddenstatevectorsare:HierarchicalStreamModel(cont.
)Month-levelisstackedontopoftheweek-levelmodel,takingthesequenceofhiddenstatevectorsofevery4weeks,asinput.
Themonthlyhiddenstatevectorsare:HierarchicalStreamModel(cont.
)Thehierarchicalstatevectorsareconcatenatedintoasinglevector,whichisfedtothepredictionmodel.
PredictionSubModelWeuseasoftmaxclassifiertopredicttheattacklabelybasedonh,wherelabelprobabilitiesarecalculatedas:DataCollectionDDoSEventCollection.
ADDoSeventcanbedefinedasatriplet(e,t,d),wheree,t,ddenoteevent,targetanddate,respectively.
wecollectthesethreetypesofinformationfromddosattacks.
net.
weobtain170gold-standardeventsbasedonasemi-automaticprocess.
Eacheventturnsouttohaveauniquetarget.
ExampleeventtriplesDataCollection(cont.
)EventRelatedTweetsCollection.
Thetargetnamesareusedaskeywordstosearchandcollecttherelatedtweets.
HistorytweetdataarecollectedfromAugust,2015toApril,2016thesamespanforcollectingDDoSnewsevent.
Foreachtarget,wecollectabout200postspermonth,obtaining17760tweetsrelatedtoallthe170targets.
NOTEweonlycollectthosetweetswhichmentionatargetexplicitlyinordertomakesurethatthetweetsarerelatedtothetarget.
ExperimentalSettingsTraining&TestingData.
Weuse80randomtargetsfortraining,60fordevelopment,andtheremaining30fortesting.
Positive&NegativeSamples.
Foreachtarget,thereisexactlyonedayinthedatasetwhenaDDoSattackoccurred,whichisregardedasapositivesample.
theremainingdaysareconsiderednegativesamples.
Metric.
Weusetheareaundertheprecision-recallcurve(AUC)[DavisandGoadrich,2006].
ExperimentonImbalancedDataOurdatasetishighlyimbalanced,withtheratiobetweenpositiveandnegativesamplesbeingverysmall.
Weinvestigatefourtypicalstrategiestoaddresstheissue.
under-sampling-1,usingonesampleofnegativedataforeachpositivedata.
Itoutperformsallotherapproaches.
Itisusedinthefollowingsubsections.
CorrelationbetweenTweetsandDDoSEventsWeuseasetofvanillastreammodelstoverifythecorrelationbetweenhistorytweetsandDDoSevents.
Neg-Term-countmeanscountthenegativewordsfromtweetseachday,forecastinganattackifthenumberofnegativewordsislargerthanathreshold.
SVMisabasicSVMmodelwithbag-of-wordfeatures.
SVM-embuseswordembeddingsvectorsforSVMfeatures.
SVM-emb-sentiusesbothcommonwordembeddingandsentiment-enrichedembeddings.
LSTM-embistheproposedvanillastreammodelusingwordembeddings.
LSTM-sentiisthevanillastreammodelwithsentimentenrichedwordembeddings.
LSTM-emb-sentiisthevanillastreammodelwithbothcommonwordembeddingandsentiment-enrichedembeddings.
CorrelationbetweenTweetsandDDoSEvents(cont.
)IstextusefulforDDoSforecastingalltext-basedmodelsoutperformtherandombaselinesignificantly,whichdemonstratesthattextfromsocialmediaisindeedinformativeforDDoSforecast.
UsefulfactorssentimentinformationhighlyusefulforDDoSeventforecasting.
LSTMcanleveragenon-localsemanticinformationforsentencerepresentationbeyondsentimentsignals.
InfluenceofDateRangeIfthedaterangeistoosmall,thestreammodelcannotcapturesufficienthistoricalinformationforprediction.
However,averylargehistorydaterangemaycontainnoiseandirrelevantinformation.
Thissuggeststheusefulnessofcombiningdifferenthistorygranularities.
InfluenceofStreamModelsWecomparethedifferentstreammodels.
LSTMVSisthevanillastreammodelLSTMSListheLSTMbasedstreammodelwithshortandlongtermhistoryLSTMHSisthehierarchicalLSTMstreammodelFinalResultsThefinalresultsonthetestdatasetareonthefollowing:Thankswangzq.
antony@gmail.
com,yue_zhang@sutd.
edu.
sg
虎跃科技怎么样?虎跃科技(虎跃云)是一家成立于2017年的国内专业服务商,专业主营云服务器和独立服务器(物理机)高防机房有着高端华为T级清洗能力,目前产品地区有:山东,江苏,浙江等多地区云服务器和独立服务器,今天虎跃云给大家带来了优惠活动,为了更好的促销,枣庄高防BGP服务器最高配置16核32G仅需550元/月,有需要的小伙伴可以来看看哦!产品可以支持24H无条件退款(活动产品退款请以活动规则为准...
2022年春节假期陆续结束,根据惯例在春节之后各大云服务商会继续开始一年的促销活动。今年二月中旬会开启新春采购季的活动,我们已经看到腾讯云商家在春节期间已经有预告活动。当时已经看到有抢先优惠促销活动,目前我们企业和个人可以领取腾讯云代金券满减活动,以及企业用户可以领取域名优惠低至.COM域名1元。 直达链接 - 腾讯云新春采购活动抢先看活动时间:2022年1月20日至2022年2月15日我们可以在...
今天上午有网友在群里聊到是不是有新注册域名的海外域名商家的优惠活动。如果我们并非一定要在国外注册域名的话,最近年中促销期间,国内的服务商优惠力度还是比较大的,以前我们可能较多选择海外域名商家注册域名在于海外商家便宜,如今这几年国内的商家价格也不贵的。比如在前一段时间有分享到几个商家的年中活动:1、DNSPOD域名欢购活动 - 提供域名抢购活动、DNS解析折扣、SSL证书活动2、难得再次关注新网商家...
ddos为你推荐
主机租用独立主机出租是什么意思广东虚拟主机有什么便宜又好用的虚拟主机吗?国外域名注册国外注册域名种类这么多,我们要怎么选择?美国服务器托管美国服务器租用有那些机房,他们的优缺点是什么?免费域名空间免费空间和免费域名成都虚拟空间成都市规划信息技术中心如何?深圳网站空间菜鸟问:网站空间如何选择,与空间的基本知识?免费网站空间申请如何申请到免费的网站空间重庆网站空间重庆建网站选择哪家比较好,还有域名空间等,1g虚拟主机打算买个1G的虚拟主机,用来做什么好?
域名服务商 查询ip地址 汉邦高科域名申请 187邮箱 申请空间 小米数据库 台湾谷歌地址 双拼域名 双11秒杀 爱奇艺vip免费领取 raid10 cloudlink 服务器维护 免费asp空间申请 畅行云 大化网 博客域名 免费获得q币 .htaccess forwarder 更多