sentimentddos

ddos  时间:2021-01-03  阅读:()
DDoSEventForecastingusingTwitterDataZhongqingWang1,2andYueZhang21SoochowUniversity,China2SingaporeUniversityofTechnologyandDesignDDoSAttacksADistributedDenialofService(DDoS)attackemploysmultiplecompromisedsystemstointerruptorsuspendservicesofahostconnectedtotheInternet[Carletal.
,2006]BusinessImpactofDDoSAttacksAlmosthalf(45%)oftherespondentsindicatedtheirattacksThosehaving500ormoreemployeesaremostlikelytoexperienceaDDoSassaultTheaverageDDoScostcanbeassessedatabout$500,000AdaptedfromMatthew.
(2014).
Incapsulasurvey:WhatDDoSAttacksReallyCostBusinessesProfileofanAttackDDoSassaultscomeinmanyshapesandsizes,soorganizationsmustbepreparedforanythinginordertoprotectthemselvesAdaptedfromMatthew.
(2014).
Incapsulasurvey:WhatDDoSAttacksReallyCostBusinessesDDoSDetectiononCyberSecurityDomainTraditionally,theaimofaDDoSdetectionsystemistodetectmaliciouspackettrafficfromlegitimatetraffic[MirkovicandReiher,2004].
However,malicioustrafficoccursonlyafteraDDoSattackhasbegun,thereislimitedtimetopreventdamage.
Todayyesterday2daybefore3daybefore4daybefore…TargetiattackdetectForecastnotDetectThispaperinvestigatesthefeasibilityofforecastingthelikelihoodofDDoSattacksbeforetheyhappenbymonitoringsocialmediastream.
Ideally,ifthelikelihoodofDDoSattackscanbeforecasted,itcanbeusedtoguideconfigurationofaDDoSdetectionanddefensesystemoveracertainperiodoftime.
Todayyesterday2daybefore3daybefore4daybefore…TargetiattackforecastAssumptionsofForecastingOurmotivationisthattheattackedtargetsmaybementionedunfavorablyorarousenegativesentimentsinsocialmediatext.
DDoSForecastonTweetStreamOurtaskistopredictwhetheraDDoSeventislikelyoccurinthenextday,giventhetweetstreamoverahistoricalperiodrelatedtothemonitoredtarget.
Todayyesterday2daybefore3daybefore4daybefore…TweetsTweetsTweetsTweetsTargetiIfnextdaywillhappenattackChallengeofModelingTextStreamInputisatextstreamratherthanadocumentAnidealmodelshouldcapturetweet-levelinformationstream-levelinformationburstinesssentimentoverhistoryTodayyesterday2daybefore3daybefore4daybefore…TweetsTweetsTweetsTweetsTargetiHowtoorganizethetextstreaminformationNeuralStreamModelsTweetmodelrepresentstext-levelfeaturesbasedonthetweetcontentDistributedWordEmbeddingslearnsrepresentationofeachwordDaymodelcapturesdailytweetrepresentationsStreammodelcapturesinformationoverthedailystreamhistoryTodayyesterday2ndday1stdayTargetidNpdNp-1d1StreamModel……DayModelTweetModelONp-1CNNCNNCNNCNNCNNCNNO1ONpt1t2tNd…t1t2tNd…t1t2…tNd…hDistributedWordEmbeddingsWerepresenteachwordwkwithbothcommonwordembeddingsandexplicitsentimentembeddings.
AtweettjismappedintoamatrixWeusethesentiment-enrichedembedding[Tangetal.
,2014]ofwordsinsentimentlexiconsasasentimentalrepresentationoftweettjTweetModelWeuseaCNNtoconstructthetweetmodel,representingtext-levelfeaturesforindividualtweets.
Theinputisthesequenceofwordsoftweetti,andtheoutputisavectorrepresentationofthetweetw1wN…Day-levelSubModelWetreatallrelevanttweetsinadayasaunit,anduseaCNNtoextractaunifieddailyrepresentationvector.
…StreamModelsWeusestreammodelstocapturetextstreaminformationontopofthedaymodel.
isusetodenotethestreammodeloutput.
Streammodel…hStreamModels(cont.
)AsimplestreammodelcanbeaonelayerLSTMonthedailytweetsequencedirectly.
MoresophisticatedmodelsonthefollowingcanbeexploitedbycapturingricherfeaturesoveratextstreamVanillaStreamModelShort-andLong-TermStreamModelHierarchicalStreamModelVanillaStreamModelAsabaseline,wemodelatweetstreambyusinganLSTMtorecurrentlycapturedailytweethistory.
Formally,givenfromthedaymodel,weobtainacorrespondingsequenceofhiddenstatevectorswhere,DrawbacksofVanillaStreamModelThevanillastreammodeldoesnotexplicitlymodelthedifferencebetweenshortandlongtermhistories,whichcanbeusefulfortwomajorreasons:acontrastbetweenshortandlongtermhistorycanrevealburstinessandtrends.
therelativeimportanceoflongertermhistoryshouldbesmallercomparedtothatofshortertermhistory.
Short-andLong-TermStreamModelToaddressthedrawbacksofvanillastreammodel,wedevelopastreammodelthatcapturesshort-termandlong-termhistoriesseparatelywithdifferentLSTMs.
long-termhistoryshort-termhistoryShort-andLong-TermStreamModel(cont.
)WeeklyLSTMmodelisusedtocaptureshort-termhistory{d7,d6,.
.
.
,d1}.
Thehiddenstatevectorsare:MonthlyLSTMmodelisusedtocapturelong-termhistory{d30,d29,.
.
.
,d1}.
Thehiddenstatevectorsare:Thestatevectorsoftheweeklyandmonthlymodelsareconcatenatedwiththedailystatevectorintoasinglevector:long-termshort-termlastdayHierarchicalStreamModelAdrawbackoftheShort-andLong-TermModelaboveisthatthesizeofutilizinghistoryislimitedto30days.
Weproposeafine-grainedstackedLSTMmodel,arrangingdaily,weekly,andmonthlyhistoryintoahierarchicalstructure,tocaptureinfinitelylonghistorywithoutlosingshortandlongtermdifference.
HierarchicalStreamModel(cont.
)Day-levelisthesameasthevanillasequencemodel,whichmapsthedailytweetrepresentationintoahiddenstatesequenceHierarchicalStreamModel(cont.
)Week-levelisstackedontopoftheday-levelmodel,takingthesequenceofhiddenstatevectorsofevery7days,namelyasinput.
Theweeklyhiddenstatevectorsare:HierarchicalStreamModel(cont.
)Month-levelisstackedontopoftheweek-levelmodel,takingthesequenceofhiddenstatevectorsofevery4weeks,asinput.
Themonthlyhiddenstatevectorsare:HierarchicalStreamModel(cont.
)Thehierarchicalstatevectorsareconcatenatedintoasinglevector,whichisfedtothepredictionmodel.
PredictionSubModelWeuseasoftmaxclassifiertopredicttheattacklabelybasedonh,wherelabelprobabilitiesarecalculatedas:DataCollectionDDoSEventCollection.
ADDoSeventcanbedefinedasatriplet(e,t,d),wheree,t,ddenoteevent,targetanddate,respectively.
wecollectthesethreetypesofinformationfromddosattacks.
net.
weobtain170gold-standardeventsbasedonasemi-automaticprocess.
Eacheventturnsouttohaveauniquetarget.
ExampleeventtriplesDataCollection(cont.
)EventRelatedTweetsCollection.
Thetargetnamesareusedaskeywordstosearchandcollecttherelatedtweets.
HistorytweetdataarecollectedfromAugust,2015toApril,2016thesamespanforcollectingDDoSnewsevent.
Foreachtarget,wecollectabout200postspermonth,obtaining17760tweetsrelatedtoallthe170targets.
NOTEweonlycollectthosetweetswhichmentionatargetexplicitlyinordertomakesurethatthetweetsarerelatedtothetarget.
ExperimentalSettingsTraining&TestingData.
Weuse80randomtargetsfortraining,60fordevelopment,andtheremaining30fortesting.
Positive&NegativeSamples.
Foreachtarget,thereisexactlyonedayinthedatasetwhenaDDoSattackoccurred,whichisregardedasapositivesample.
theremainingdaysareconsiderednegativesamples.
Metric.
Weusetheareaundertheprecision-recallcurve(AUC)[DavisandGoadrich,2006].
ExperimentonImbalancedDataOurdatasetishighlyimbalanced,withtheratiobetweenpositiveandnegativesamplesbeingverysmall.
Weinvestigatefourtypicalstrategiestoaddresstheissue.
under-sampling-1,usingonesampleofnegativedataforeachpositivedata.
Itoutperformsallotherapproaches.
Itisusedinthefollowingsubsections.
CorrelationbetweenTweetsandDDoSEventsWeuseasetofvanillastreammodelstoverifythecorrelationbetweenhistorytweetsandDDoSevents.
Neg-Term-countmeanscountthenegativewordsfromtweetseachday,forecastinganattackifthenumberofnegativewordsislargerthanathreshold.
SVMisabasicSVMmodelwithbag-of-wordfeatures.
SVM-embuseswordembeddingsvectorsforSVMfeatures.
SVM-emb-sentiusesbothcommonwordembeddingandsentiment-enrichedembeddings.
LSTM-embistheproposedvanillastreammodelusingwordembeddings.
LSTM-sentiisthevanillastreammodelwithsentimentenrichedwordembeddings.
LSTM-emb-sentiisthevanillastreammodelwithbothcommonwordembeddingandsentiment-enrichedembeddings.
CorrelationbetweenTweetsandDDoSEvents(cont.
)IstextusefulforDDoSforecastingalltext-basedmodelsoutperformtherandombaselinesignificantly,whichdemonstratesthattextfromsocialmediaisindeedinformativeforDDoSforecast.
UsefulfactorssentimentinformationhighlyusefulforDDoSeventforecasting.
LSTMcanleveragenon-localsemanticinformationforsentencerepresentationbeyondsentimentsignals.
InfluenceofDateRangeIfthedaterangeistoosmall,thestreammodelcannotcapturesufficienthistoricalinformationforprediction.
However,averylargehistorydaterangemaycontainnoiseandirrelevantinformation.
Thissuggeststheusefulnessofcombiningdifferenthistorygranularities.
InfluenceofStreamModelsWecomparethedifferentstreammodels.
LSTMVSisthevanillastreammodelLSTMSListheLSTMbasedstreammodelwithshortandlongtermhistoryLSTMHSisthehierarchicalLSTMstreammodelFinalResultsThefinalresultsonthetestdatasetareonthefollowing:Thankswangzq.
antony@gmail.
com,yue_zhang@sutd.
edu.
sg

NameCheap 2021年新年首次活动 域名 域名邮局 SSL证书等

NameCheap商家如今发布促销活动也是有不小套路的,比如会在提前一周+的时间告诉你他们未来的活,比如这次2021年的首次活动就有在一周之前看到,但是这不等到他们中午一点左右的时候才有正式开始,而且我确实是有需要注册域名,等着看看是否有真的折扣,但是实际上.COM域名力度也就一般需要51元左右,其他地方也就55元左右。当然,这次新年的首次活动不管如何肯定是比平时便宜一点点的。有新注册域名、企业域...

#消息# contabo:德国老牌机房新增美国“纽约、西雅图”数据中心,免设置费

运作了18年的德国老牌机房contabo在继去年4月开办了第一个美国数据中心(中部城市:圣路易斯)后立马在本月全新上马两个数据中心:纽约、西雅图。当前,为庆祝美国独立日,美国三个数据中心的VPS全部免除设置费,VPS本身的配置很高,价格适中,有较高的性价比!官方网站:https://contabo.com/en/SSD VPSKVM虚拟,纯SSD阵列,不限制流量,自带一个IPv4内存CPUSSD带...

Vultr新注册赠送100美元活动截止月底 需要可免费享30天福利

昨天晚上有收到VULTR服务商的邮件,如果我们有清楚的朋友应该知道VULTR对于新注册用户已经这两年的促销活动是有赠送100美元最高余额,不过这个余额有效期是30天,如果我们到期未使用完的话也会失效的。但是对于我们一般用户来说,这个活动还是不错的,只需要注册新账户充值10美金激活账户就可以。而且我们自己充值的余额还是可以继续使用且无有效期的。如果我们有需要申请的话可以参考"2021年最新可用Vul...

ddos为你推荐
云主机租用我想租用云主机,请问下该如何操作?美国主机租用租用美国服务器有什么优势?vps虚拟主机请通俗解析一下虚拟主机,VPS和云主机?它们各有什么用途?域名服务什么叫主域名服务器?域名服务商最好的域名服务商是哪一家免费网站域名申请哪里可以申请到免费网站域名?台湾vps哪个地区的VPS从大陆访问快呢。免费域名空间哪个免费空间的域名最好重庆虚拟空间重庆那里可以租用VSP主机天津虚拟主机天津哪个是新网互联代理呢,我打算购买邮局?
域名注册商 虚拟主机管理软件 长沙服务器租用 php空间租用 免费注册网站域名 vps.net bluehost 哈喽图床 174.127.195.202 国外网站代理服务器 湖南服务器托管 京东商城双十一活动 本网站在美国维护 天互数据 免费mysql 空间论坛 工信部icp备案号 789电视剧 新睿云 域名dns 更多