naturalspublishingb2t

b2t  时间:2021-02-21  阅读:()
J.
Ana.
Num.
Theor.
2,No.
2,59-63(2014)59JournalofAnalysis&NumberTheoryAnInternationalJournalhttp://dx.
doi.
org/10.
12785/jant/020206NewGeneralizationofEulerianPolynomialsandtheirApplicationsSerkanAraci1,,MehmetAcikgoz1,andErdoganSen2,1DepartmentofMathematics,FacultyofScienceandArts,UniversityofGaziantep,27310Gaziantep,Turkey2DepartmentofMathematics,FacultyofScienceandLetters,NamkKemalUniversity,59030Tekirdag,TurkeyReceived:14Feb.
2014,Revised:20Apr.
2014,Accepted:22Apr.
2014Publishedonline:1Jul.
2014Abstract:Inthepresentpaper,weintroduceEulerianpolynomialswithparametersaandbandgivethedenitionofthem.
Byusingthedenitionofgeneratingfunctionforourpolynomials,wederivesomenewidentitiesinAnalyticNumbersTheory.
Also,wegiverelationsbetweenEulerianpolynomialswithparametersaandb,Bernsteinpolynomials,Poly-logarithmfunctions,BernoulliandEulernumbers.
Moreover,weseethatourpolynomialsata=1arerelatedtoEuler-Zetafunctionatnegativeinetegers.
Finally,wegetWitt'sformulafornewgeneralizationofEulerianpolynomialswhichweexpressinthispaper.
Keywords:Eulerianpolynomials,Poly-logarithmfunctions,Stirlingnumbersofthesecondkind,Bernsteinpolynomials,Bernoullinumbers,EulernumbersandEuler-Zetafunction,p-adicfermionicintegralonZp.
2010MATHEMATICSSUBJECTCLASSIFICATION.
Primary05A10,11B65;Secondary11B68,11B73.
1IntroductionTheBernoullinumbersandpolynomials,Eulernumbersandpolynomials,Genocchinumbersandpolynomials,Stirlingnumbersofthesecondkind,BernsteinpolynomialsandEulerianpolynomialspossessmanyinterestingpropertiesnotonlyincomplexanalysis,andanalyticnumberstheorybutalsoinmathematicalphysicsrelatedtoknottheoryandζ-function,andp-adicanalysis.
Thesepolynomialshavebeenstudiedbymanymathematiciansforalongtime(fordetails,see[1-30]).
Eulerianpolynomialsequence{An(x)}n≥0isgivenbythefollowingsummation:∞∑l=0lnxl=An(x)(1x)n+1,|x|0in(15),becomesAn(a,b)=1a1n1∑k=0nkAk(a,b)(1a)nk(lnb)nk.
(16)Wewanttonotethattakinga=xandb=ein(16)reducestoAn(x)=1x1n1∑k=0nkAk(x)(1x)nk(17)(see[5]and[25]).
Weseethat(17)isproportionalwithBernsteinpolynomialswhichwestateinthefollowingtheorem:c2014NSPNaturalSciencesPublishingCor.
J.
Ana.
Num.
Theor.
2,No.
2,59-63(2014)/www.
naturalspublishing.
com/Journals.
asp61Theorem2.
ThefollowingidentityAn(x)=n1∑k=0Ak(x)Bk,n(x)xk+1xkistrue.
Letusnowconsiderlimt→0dkdtkin(14),thenwereadilyarriveatthefollowingtheorem.
Theorem3.
Letb∈R+anda∈C,thenwehaveAk(a,b)=limt→0dkdtk1abt(1a)a.
(18)By(18),weeasilyconcludethefollowingcorollary.
Corollary1.
ThefollowingCauchy-typeintegralholdstrue:11aAk(a,b)=k!
2πiCtk1bt(1a)adtwhereCisaloopwhichstartsat∞,encirclestheoriginonceinthepositivedirection,andthereturns∞.
By(14),wediscoverthefollowing:∞∑n=0Ana2,b2tnn!
=1abt(1+a)(1a)a1+abt(1a)(1+a)a=∞∑n=0(1+a)nAn(a,b)tnn!
∞∑n=0(1a)nAn(a,b)tnn!
.
ByusingCauchyproductontheaboveequality,thenwegetthefollowingtheorem.
Theorem4.
ThefollowingequalityAna2,b2=∑nk=0nk(1+a)kAk(a,b)Ank(a,b)(1a)nk(19)istrue.
Afterthebasicoperationsin(19),wediscoverthefollowingcorollary.
Corollary2.
Thefollowingpropertyholds:Ana2,b2=n∑k=01+1akBk,n(a)Ak(a,b)Ank(a,b).
Nowalso,weconsidergeometricseriesin(14),thenwecomputeasfollows:∞∑n=0An(a,b)tnn!
=1aet(1a)lnba=1a11a1et(1a)lnb=11a∞∑j=0ajejt(1a)lnb=11a∞∑j=0aj∞∑n=0jn(1a)n(lnb)ntnn!
=∞∑n=011a∞∑j=0ajjn(1a)n(lnb)ntnn!
.
Bycomparingthecoefcientsoftnn!
ontheaboveequation,thenwereadilyderivethefollowingtheorem.
Theorem5.
Thefollowing1a1nAn(a,b)=(lnb)na(lnb)n∞∑j=1ajjnistrue.
TheabovetheoremisrelatedtoPoly-logarithmfunction,asfollows:1a1nAn(a,b)=(lnb)na(lnb)nLina1.
(20)In[27],itiswell-knownthatLin(x)=xddxnx1x=∑nk=0k!
S(n+1,k+1)x1xk+1(21)whereS(n,k)aretheStirlingnumbersofthesecondkind.
By(20)and(21),wehavethefollowinginterestingtheorem.
Theorem6.
Thefollowingholdstrue:aAn(a,b)=(lnb)nn∑k=0k!
S(n+1,k+1)1a1kn.
3FurtherRemarksNow,weconsider(14)forevaluatingata=1,asfollows:∞∑n=0An(1,b)tnn!
=2b2t+1(22)whereAn(1,b)arecalledEulerianpolynomialswithparameterb.
By(22),wederivethefollowingequalityincomplexplane:∞∑n=0inAn(1,b)tnn!
=2b2it+1=2e2itlnb+1.
Fromthis,wediscoverthefollowing:∞∑n=0inAn(1,b)tnn!
=∞∑n=0En2nin(lnb)tnn!
(23)whereEnaren-thEulernumberswhicharedenedbythefollowingexponentialgeneratingfunction:∞∑n=0Entnn!
=2et+1,|t|0,thenwehaveAn(1,b)=2n+1(lnb)n∞∑j=1(1)jjn.
(26)Asiswellknown,Euler-zetafunctionisdenedbyζE(s)=2∞∑j=1(1)jjs,s∈C(see[3]).
(27)From(26)and(27),weobtaintheinterpolationfunctionofnewgeneralizationofEulerianpolynomialsata=1,asfollow:An(1,b)=2n(lnb)nζE(n).
(28)Equation(28)seemstobeinterpolationfunctionatnegativeintegersforEulerianpolynomialswithparameterb.
LetusnowconsiderWitt'sformulaforourpolynomialsata=1,soweneedthefollowingnotations:Imaginethatpbeaxedoddprimenumber.
Throughoutthispaper,weusethefollowingnotations.
ByZp,wedenotetheringofp-adicrationalintegers,Qdenotestheeldofrationalnumbers,Qpdenotestheeldofp-adicrationalnumbers,andCpdenotesthecompletionofalgebraicclosureofQp.
LetNbethesetofnaturalnumbersandN=N∪{0}.
Thenormalizedp-adicabsolutevalueisdenedby|p|p=1p.
Letqbeanindeterminatewith|q1|pb2t+1=∞∑n=0An(1,b)tnn!
.
(31)By(31)andusingTaylorexpansionofe2tυlnb,weobtainWitt'sformulaforourpolynomialsata=1,asfollows:Theorem11.
Thefollowingholdstrue:An(1,b)=(lnb)n2nXυnd1(υ).
(32)Equation(32)seemstobeinterestingforourfurtherworksintheconceptofp-adicintegrals.
References[1]T.
Kim,IdentitiesinvolvingFrobenius-Eulerpolynomialsarisingfromnon-lineardifferentialequations,JournalofNumberTheory,132,2854-2865(2012).
[2]T.
Kim,Someidentitiesontheq-Eulerpolynomialsofhigherorderandq-stirlingnumbersbythefermionicp-adicintegralonZp,RussianJ.
Math.
Phys.
,16,484–491(2009).
[3]T.
Kim,Eulernumbersandpolynomialsassociatedwithzetafunctions,AbstractandAppliedAnalysis,vol.
2008,ArticleID581582,11pages,2008.
[4]T.
Kim,SomeidentitiesfortheBernoulli,theEulerandtheGenocchinumbersandpolynomials,AdvStudContempMath.
,20,23–28(2010).
[5]D.
S.
Kim,T.
Kim,W.
J.
KimandD.
V.
Dolgy,AnoteonEulerianpolynomials,AbstractandAppliedAnalysis,Volume2012(2012),ArticleID269640,10pages.
[6]D.
S.
Kim,T.
Kim,Y.
H.
Kim,andD.
V.
Dolgy,AnoteonEulerianpolynomialsassociatedwithBernoulliandEulernumbersandpolynomials,AdvancedStudiesinContemporaryMathematics,22,342–353(2012).
[7]M.
AcikgozandY.
Simsek,OnmultipleinterpolationfunctionsoftheN¨orlund-typeq-Eulerpolynomials,AbstractandAppliedAnalysis,2009,ArticleID382574,14pages.
[8]M.
AcikgozandS.
Araci,OnthegeneratingfunctionsforBernsteinpolynomials,NumericalAnalysisandAppliedMathematics,Amer.
Inst.
Phys.
Conf.
Proc.
CP1281,1141-1143(2010).
[9]S.
Araci,M.
AcikgozandD.
Gao,OntheDirichlet'stypeofEulerianpolynomials,arXiv:1207.
1834[math.
NT][10]S.
AraciandM.
Acikgoz,Dirichlet'stypeoftwistedEulerianpolynomialsinconnectionwithtwistedDirichlet'stype-L-function,arXiv:1208.
0589[math.
NT][11]S.
Araci,D.
ErdalandJ.
J.
Seo,Astudyonthefermionicp-adicq-integralrepresentationonZpassociatedwithweightedq-Bernsteinandq-Genocchipolynomials,AbstractandAppliedAnalysis,2011,ArticleID649248,10pages.
[12]S.
Araci,M.
Acikgoz,andJ.
J.
Seo,Explicitformulasinvolvingq-Eulernumbersandpolynomials,AbstractandAppliedAnalysis,2012,ArticleID298531,11pages.
[13]E.
Cetin,M.
Acikgoz,I.
N.
Cangul,andS.
Araci,Anoteonthe(h,q)-Zeta-typefunctionwithweightα,JournalofInequalitiesandApplications,2013,2013:100.
[14]S.
Araci,M.
Acikgoz,andA.
Kilicman,Extendedp-adicq-invariantintegralsonZpassociatedwithapplicationsofumbralcalculus,AdvancesinDifferenceEquations2013,2013:96.
[15]S.
Araci,M.
Acikgoz,andF.
Qi,Ontheq-Genocchinumbersandpolynomialswithweightzeroandtheirinterpolationfunctions,NonlinearFunctionalAnalysisandApplications,18,193-203(2013).
[16]G.
Birkhoff,C.
deBoor,Piecewisepolynomialinterpolationandapproximation,Proc.
Sympos.
GeneralMotorsRes.
Lab.
,,ElsevierPubl.
Co.
,Amsterdam,1965,164–190(1964).
[17]I.
N.
Cangul,H.
Ozden,andY.
Simsek,Generatingfunctionsofthe(h,q)extensionoftwistedEulerpolynomialsandnumbers,ActaMathematicaHungarica,120,281–299(2008).
[18]L.
Carlitz,Euleriannumbersandpolynomials,MathematicsMagazine,32,247-260.
[19]L.
Carlitz,q-BernoulliandEuleriannumbers,TransactionsoftheAmericanMathematicalSociety,76,332-350(1954).
[20]L.
Carlitz,Acombinatorialpropertyofq-Euleriannumbers,Amer.
Math.
Monthly,82,51–54(1975).
[21]F.
Hirzebruch,Eulerianpolynomials,M¨unsterJ.
ofMath.
,1,9–14(2008).
[22]L.
C.
Jang,V.
Kurt,Y.
Simsek,andS.
H.
Rim,q-analogueofthep-adictwistedl-function,JournalofConcreteandApplicableMathematics,6,169–176,(2008).
[23]H.
Jolany,R.
E.
AlikelayeandS.
S.
Mohamad,SomeresultsonthegeneralizationofBernoulli,EulerandGenocchipolynomials,ActaUniversitatisApulensis,299-306(2011).
[24]H.
JolanyandH.
Shari,SomeresultsfortheApostol-Genocchipolynomialsofhigherorder,Bull.
Malays.
Math.
Sci.
Soc.
,36,465-479(2013).
[25]D.
Foata,Eulerianpolynomials:fromEuler'stimetothepresent,ThelegacyofAlladiRamakrishnaninthemathematicalsciences,253–273,Springer,NewYork,2010.
[26]J.
ChoiandH.
M.
Srivastava,ThemultipleHurwitzZetafunctionandthemultipleHurwitz-Eulerzetafunction,TaiwaneseJournalofMathematics,15,501-522(2011).
[27]L.
Lewin,Polylogarithmsandassociatedfunctions,NorthHolland,(1981).
[28]Q.
M.
Luo,F.
Qi,andL.
Debnath,GeneralizationsofEulernumbersandpolynomials,IJMMS.
2003,3893-3901(2003).
[29]Q.
M.
Luo,B.
N.
Guo,F.
Qi,andL.
Debnath,GeneralizationofBernoullinumbersandpolynomials,IJMMS,2003,3769-3776(2003).
[30]H.
M.
SrivastavaandJ.
Choi,SeriesAssociatedwiththeZetaandRelatedFunctions,KluwerAcademicPublishers,Dordrecht,BostonandLondon,(2001).
c2014NSPNaturalSciencesPublishingCor.

Gcore(75折)迈阿密E5-2623v4 CPU独立服务器

部落分享过多次G-core(gcorelabs)的产品及评测信息,以VPS主机为主,距离上一次分享商家的独立服务器还在2年多前,本月初商家针对迈阿密机房限定E5-2623v4 CPU的独立服务器推出75折优惠码,活动将在9月30日到期,这里再分享下。G-core(gcorelabs)是一家总部位于卢森堡的国外主机商,主要提供基于KVM架构的VPS主机和独立服务器租用等,数据中心包括俄罗斯、美国、日...

搬瓦工VPS:高端线路,助力企业运营,10Gbps美国 cn2 gia,1Gbps香港cn2 gia,10Gbps日本软银

搬瓦工vps(bandwagonhost)现在面向中国大陆有3条顶级线路:美国 cn2 gia,香港 cn2 gia,日本软银(softbank)。详细带宽是:美国cn2 gia、日本软银,都是2.5Gbps~10Gbps带宽,香港 cn2 gia为1Gbps带宽,搬瓦工是目前为止,全球所有提供这三种带宽的VPS(云服务器)商家里面带宽最大的,成本最高的,没有第二家了! 官方网站:https...

美国G口/香港CTG/美国T级超防云/物理机/CDN大促销 1核 1G 24元/月

[六一云迎国庆]转盘活动实物礼品美国G口/香港CTG/美国T级超防云/物理机/CDN大促销六一云 成立于2018年,归属于西安六一网络科技有限公司,是一家国内正规持有IDC ISP CDN IRCS电信经营许可证书的老牌商家。大陆持证公司受大陆各部门监管不好用支持退款退现,再也不怕被割韭菜了!主要业务有:国内高防云,美国高防云,美国cera大带宽,香港CTG,香港沙田CN2,海外站群服务,物理机,...

b2t为你推荐
cornerradius怎么用代码写一个圆角矩形?赵雨润情人节“我们约会吧”电影DVD_我们约会吧高清DVD下载_qvod快播??绵阳电信绵阳电信营业厅哪家最大手机最全网站运营我想成为网站运营的人我该学什么??手机区号手机号码+86是移动区号还是联通的区号?办公协同软件最好用的协同办公软件是哪个iphone越狱后怎么恢复苹果越狱后如何恢复创维云电视功能创维新出的4K超高清健康云电视有谁用过,功能效果怎么样?人人逛街包公免费逛街打一成语电子商务网站模板做电子商务网站用什么cms或者模版比较好?
虚拟主机试用 qq域名邮箱 ix主机 云图标 魔兽世界台湾服务器 百度云1t 美国堪萨斯 gtt 微软服务器操作系统 免费网页空间 shopex主机 lick 美国盐湖城 国外在线代理服务器 西安主机 实惠 国内空间 沈阳idc 学生机 月付空间 更多