J.
Ana.
Num.
Theor.
2,No.
2,59-63(2014)59JournalofAnalysis&NumberTheoryAnInternationalJournalhttp://dx.
doi.
org/10.
12785/jant/020206NewGeneralizationofEulerianPolynomialsandtheirApplicationsSerkanAraci1,,MehmetAcikgoz1,andErdoganSen2,1DepartmentofMathematics,FacultyofScienceandArts,UniversityofGaziantep,27310Gaziantep,Turkey2DepartmentofMathematics,FacultyofScienceandLetters,NamkKemalUniversity,59030Tekirdag,TurkeyReceived:14Feb.
2014,Revised:20Apr.
2014,Accepted:22Apr.
2014Publishedonline:1Jul.
2014Abstract:Inthepresentpaper,weintroduceEulerianpolynomialswithparametersaandbandgivethedenitionofthem.
Byusingthedenitionofgeneratingfunctionforourpolynomials,wederivesomenewidentitiesinAnalyticNumbersTheory.
Also,wegiverelationsbetweenEulerianpolynomialswithparametersaandb,Bernsteinpolynomials,Poly-logarithmfunctions,BernoulliandEulernumbers.
Moreover,weseethatourpolynomialsata=1arerelatedtoEuler-Zetafunctionatnegativeinetegers.
Finally,wegetWitt'sformulafornewgeneralizationofEulerianpolynomialswhichweexpressinthispaper.
Keywords:Eulerianpolynomials,Poly-logarithmfunctions,Stirlingnumbersofthesecondkind,Bernsteinpolynomials,Bernoullinumbers,EulernumbersandEuler-Zetafunction,p-adicfermionicintegralonZp.
2010MATHEMATICSSUBJECTCLASSIFICATION.
Primary05A10,11B65;Secondary11B68,11B73.
1IntroductionTheBernoullinumbersandpolynomials,Eulernumbersandpolynomials,Genocchinumbersandpolynomials,Stirlingnumbersofthesecondkind,BernsteinpolynomialsandEulerianpolynomialspossessmanyinterestingpropertiesnotonlyincomplexanalysis,andanalyticnumberstheorybutalsoinmathematicalphysicsrelatedtoknottheoryandζ-function,andp-adicanalysis.
Thesepolynomialshavebeenstudiedbymanymathematiciansforalongtime(fordetails,see[1-30]).
Eulerianpolynomialsequence{An(x)}n≥0isgivenbythefollowingsummation:∞∑l=0lnxl=An(x)(1x)n+1,|x|0in(15),becomesAn(a,b)=1a1n1∑k=0nkAk(a,b)(1a)nk(lnb)nk.
(16)Wewanttonotethattakinga=xandb=ein(16)reducestoAn(x)=1x1n1∑k=0nkAk(x)(1x)nk(17)(see[5]and[25]).
Weseethat(17)isproportionalwithBernsteinpolynomialswhichwestateinthefollowingtheorem:c2014NSPNaturalSciencesPublishingCor.
J.
Ana.
Num.
Theor.
2,No.
2,59-63(2014)/www.
naturalspublishing.
com/Journals.
asp61Theorem2.
ThefollowingidentityAn(x)=n1∑k=0Ak(x)Bk,n(x)xk+1xkistrue.
Letusnowconsiderlimt→0dkdtkin(14),thenwereadilyarriveatthefollowingtheorem.
Theorem3.
Letb∈R+anda∈C,thenwehaveAk(a,b)=limt→0dkdtk1abt(1a)a.
(18)By(18),weeasilyconcludethefollowingcorollary.
Corollary1.
ThefollowingCauchy-typeintegralholdstrue:11aAk(a,b)=k!
2πiCtk1bt(1a)adtwhereCisaloopwhichstartsat∞,encirclestheoriginonceinthepositivedirection,andthereturns∞.
By(14),wediscoverthefollowing:∞∑n=0Ana2,b2tnn!
=1abt(1+a)(1a)a1+abt(1a)(1+a)a=∞∑n=0(1+a)nAn(a,b)tnn!
∞∑n=0(1a)nAn(a,b)tnn!
.
ByusingCauchyproductontheaboveequality,thenwegetthefollowingtheorem.
Theorem4.
ThefollowingequalityAna2,b2=∑nk=0nk(1+a)kAk(a,b)Ank(a,b)(1a)nk(19)istrue.
Afterthebasicoperationsin(19),wediscoverthefollowingcorollary.
Corollary2.
Thefollowingpropertyholds:Ana2,b2=n∑k=01+1akBk,n(a)Ak(a,b)Ank(a,b).
Nowalso,weconsidergeometricseriesin(14),thenwecomputeasfollows:∞∑n=0An(a,b)tnn!
=1aet(1a)lnba=1a11a1et(1a)lnb=11a∞∑j=0ajejt(1a)lnb=11a∞∑j=0aj∞∑n=0jn(1a)n(lnb)ntnn!
=∞∑n=011a∞∑j=0ajjn(1a)n(lnb)ntnn!
.
Bycomparingthecoefcientsoftnn!
ontheaboveequation,thenwereadilyderivethefollowingtheorem.
Theorem5.
Thefollowing1a1nAn(a,b)=(lnb)na(lnb)n∞∑j=1ajjnistrue.
TheabovetheoremisrelatedtoPoly-logarithmfunction,asfollows:1a1nAn(a,b)=(lnb)na(lnb)nLina1.
(20)In[27],itiswell-knownthatLin(x)=xddxnx1x=∑nk=0k!
S(n+1,k+1)x1xk+1(21)whereS(n,k)aretheStirlingnumbersofthesecondkind.
By(20)and(21),wehavethefollowinginterestingtheorem.
Theorem6.
Thefollowingholdstrue:aAn(a,b)=(lnb)nn∑k=0k!
S(n+1,k+1)1a1kn.
3FurtherRemarksNow,weconsider(14)forevaluatingata=1,asfollows:∞∑n=0An(1,b)tnn!
=2b2t+1(22)whereAn(1,b)arecalledEulerianpolynomialswithparameterb.
By(22),wederivethefollowingequalityincomplexplane:∞∑n=0inAn(1,b)tnn!
=2b2it+1=2e2itlnb+1.
Fromthis,wediscoverthefollowing:∞∑n=0inAn(1,b)tnn!
=∞∑n=0En2nin(lnb)tnn!
(23)whereEnaren-thEulernumberswhicharedenedbythefollowingexponentialgeneratingfunction:∞∑n=0Entnn!
=2et+1,|t|0,thenwehaveAn(1,b)=2n+1(lnb)n∞∑j=1(1)jjn.
(26)Asiswellknown,Euler-zetafunctionisdenedbyζE(s)=2∞∑j=1(1)jjs,s∈C(see[3]).
(27)From(26)and(27),weobtaintheinterpolationfunctionofnewgeneralizationofEulerianpolynomialsata=1,asfollow:An(1,b)=2n(lnb)nζE(n).
(28)Equation(28)seemstobeinterpolationfunctionatnegativeintegersforEulerianpolynomialswithparameterb.
LetusnowconsiderWitt'sformulaforourpolynomialsata=1,soweneedthefollowingnotations:Imaginethatpbeaxedoddprimenumber.
Throughoutthispaper,weusethefollowingnotations.
ByZp,wedenotetheringofp-adicrationalintegers,Qdenotestheeldofrationalnumbers,Qpdenotestheeldofp-adicrationalnumbers,andCpdenotesthecompletionofalgebraicclosureofQp.
LetNbethesetofnaturalnumbersandN=N∪{0}.
Thenormalizedp-adicabsolutevalueisdenedby|p|p=1p.
Letqbeanindeterminatewith|q1|pb2t+1=∞∑n=0An(1,b)tnn!
.
(31)By(31)andusingTaylorexpansionofe2tυlnb,weobtainWitt'sformulaforourpolynomialsata=1,asfollows:Theorem11.
Thefollowingholdstrue:An(1,b)=(lnb)n2nXυnd1(υ).
(32)Equation(32)seemstobeinterestingforourfurtherworksintheconceptofp-adicintegrals.
References[1]T.
Kim,IdentitiesinvolvingFrobenius-Eulerpolynomialsarisingfromnon-lineardifferentialequations,JournalofNumberTheory,132,2854-2865(2012).
[2]T.
Kim,Someidentitiesontheq-Eulerpolynomialsofhigherorderandq-stirlingnumbersbythefermionicp-adicintegralonZp,RussianJ.
Math.
Phys.
,16,484–491(2009).
[3]T.
Kim,Eulernumbersandpolynomialsassociatedwithzetafunctions,AbstractandAppliedAnalysis,vol.
2008,ArticleID581582,11pages,2008.
[4]T.
Kim,SomeidentitiesfortheBernoulli,theEulerandtheGenocchinumbersandpolynomials,AdvStudContempMath.
,20,23–28(2010).
[5]D.
S.
Kim,T.
Kim,W.
J.
KimandD.
V.
Dolgy,AnoteonEulerianpolynomials,AbstractandAppliedAnalysis,Volume2012(2012),ArticleID269640,10pages.
[6]D.
S.
Kim,T.
Kim,Y.
H.
Kim,andD.
V.
Dolgy,AnoteonEulerianpolynomialsassociatedwithBernoulliandEulernumbersandpolynomials,AdvancedStudiesinContemporaryMathematics,22,342–353(2012).
[7]M.
AcikgozandY.
Simsek,OnmultipleinterpolationfunctionsoftheN¨orlund-typeq-Eulerpolynomials,AbstractandAppliedAnalysis,2009,ArticleID382574,14pages.
[8]M.
AcikgozandS.
Araci,OnthegeneratingfunctionsforBernsteinpolynomials,NumericalAnalysisandAppliedMathematics,Amer.
Inst.
Phys.
Conf.
Proc.
CP1281,1141-1143(2010).
[9]S.
Araci,M.
AcikgozandD.
Gao,OntheDirichlet'stypeofEulerianpolynomials,arXiv:1207.
1834[math.
NT][10]S.
AraciandM.
Acikgoz,Dirichlet'stypeoftwistedEulerianpolynomialsinconnectionwithtwistedDirichlet'stype-L-function,arXiv:1208.
0589[math.
NT][11]S.
Araci,D.
ErdalandJ.
J.
Seo,Astudyonthefermionicp-adicq-integralrepresentationonZpassociatedwithweightedq-Bernsteinandq-Genocchipolynomials,AbstractandAppliedAnalysis,2011,ArticleID649248,10pages.
[12]S.
Araci,M.
Acikgoz,andJ.
J.
Seo,Explicitformulasinvolvingq-Eulernumbersandpolynomials,AbstractandAppliedAnalysis,2012,ArticleID298531,11pages.
[13]E.
Cetin,M.
Acikgoz,I.
N.
Cangul,andS.
Araci,Anoteonthe(h,q)-Zeta-typefunctionwithweightα,JournalofInequalitiesandApplications,2013,2013:100.
[14]S.
Araci,M.
Acikgoz,andA.
Kilicman,Extendedp-adicq-invariantintegralsonZpassociatedwithapplicationsofumbralcalculus,AdvancesinDifferenceEquations2013,2013:96.
[15]S.
Araci,M.
Acikgoz,andF.
Qi,Ontheq-Genocchinumbersandpolynomialswithweightzeroandtheirinterpolationfunctions,NonlinearFunctionalAnalysisandApplications,18,193-203(2013).
[16]G.
Birkhoff,C.
deBoor,Piecewisepolynomialinterpolationandapproximation,Proc.
Sympos.
GeneralMotorsRes.
Lab.
,,ElsevierPubl.
Co.
,Amsterdam,1965,164–190(1964).
[17]I.
N.
Cangul,H.
Ozden,andY.
Simsek,Generatingfunctionsofthe(h,q)extensionoftwistedEulerpolynomialsandnumbers,ActaMathematicaHungarica,120,281–299(2008).
[18]L.
Carlitz,Euleriannumbersandpolynomials,MathematicsMagazine,32,247-260.
[19]L.
Carlitz,q-BernoulliandEuleriannumbers,TransactionsoftheAmericanMathematicalSociety,76,332-350(1954).
[20]L.
Carlitz,Acombinatorialpropertyofq-Euleriannumbers,Amer.
Math.
Monthly,82,51–54(1975).
[21]F.
Hirzebruch,Eulerianpolynomials,M¨unsterJ.
ofMath.
,1,9–14(2008).
[22]L.
C.
Jang,V.
Kurt,Y.
Simsek,andS.
H.
Rim,q-analogueofthep-adictwistedl-function,JournalofConcreteandApplicableMathematics,6,169–176,(2008).
[23]H.
Jolany,R.
E.
AlikelayeandS.
S.
Mohamad,SomeresultsonthegeneralizationofBernoulli,EulerandGenocchipolynomials,ActaUniversitatisApulensis,299-306(2011).
[24]H.
JolanyandH.
Shari,SomeresultsfortheApostol-Genocchipolynomialsofhigherorder,Bull.
Malays.
Math.
Sci.
Soc.
,36,465-479(2013).
[25]D.
Foata,Eulerianpolynomials:fromEuler'stimetothepresent,ThelegacyofAlladiRamakrishnaninthemathematicalsciences,253–273,Springer,NewYork,2010.
[26]J.
ChoiandH.
M.
Srivastava,ThemultipleHurwitzZetafunctionandthemultipleHurwitz-Eulerzetafunction,TaiwaneseJournalofMathematics,15,501-522(2011).
[27]L.
Lewin,Polylogarithmsandassociatedfunctions,NorthHolland,(1981).
[28]Q.
M.
Luo,F.
Qi,andL.
Debnath,GeneralizationsofEulernumbersandpolynomials,IJMMS.
2003,3893-3901(2003).
[29]Q.
M.
Luo,B.
N.
Guo,F.
Qi,andL.
Debnath,GeneralizationofBernoullinumbersandpolynomials,IJMMS,2003,3769-3776(2003).
[30]H.
M.
SrivastavaandJ.
Choi,SeriesAssociatedwiththeZetaandRelatedFunctions,KluwerAcademicPublishers,Dordrecht,BostonandLondon,(2001).
c2014NSPNaturalSciencesPublishingCor.
Tudcloud是一家新开的主机商,提供VPS和独立服务器租用,数据中心在中国香港(VPS和独立服务器)和美国洛杉矶(独立服务器),商家VPS基于KVM架构,开设在香港机房,可以选择限制流量大带宽或者限制带宽不限流量套餐。目前提供8折优惠码,优惠后最低每月7.2美元起。虽然主机商网站为英文界面,但是支付方式仅支付宝和Stripe,可能是国人商家。下面列出部分VPS主机套餐配置信息。CPU:1cor...
ThomasHost域名注册自2012年,部落最早分享始于2016年,还算成立了有几年了,商家提供基于KVM架构的VPS,数据中心包括美国、法国、英国、加拿大和爱尔兰等6个地区机房,VPS主机套餐最低2GB内存起步,支持Windows或者Linux操作系统,1Gbps端口不限制流量。最近商家提供了一个5折优惠码,优惠后最低套餐月付5美元起。下面列出部分套餐配置信息。CPU:1core内存:2GB硬...
ZJI原名维翔主机,是原来Wordpress圈知名主机商家,成立于2011年,2018年9月更名为ZJI,提供香港、日本、美国独立服务器(自营/数据中心直营)租用及VDS、虚拟主机空间、域名注册业务。ZJI今年全新上架了台湾CN2线路服务器,本月针对香港高主频服务器和台湾CN2服务器提供7折优惠码,其他机房及产品提供8折优惠码,优惠后台湾CN2线路E5服务器月付595元起。台湾一型CPU:Inte...
b2t为你推荐
斗转星移明星合成图片斗转星移范冰冰合成图中国电信互联星空电信不明不白收了我200元互联星空信息费 求解淘宝店推广淘宝店铺推广有哪些渠道?数据库损坏数据库坏了怎么办xp系统停止服务XP系统为什么要停止服务?mate8价格华为mate8 128g售价多少钱iphone6上市时间苹果6是什么时候出的 ?bluestack安卓模拟器bluestacks怎么用?网站推广外链在网站推广中,有着一种“购买外链”是什么意思263企业邮箱设置263企业邮箱如何修改密码
香港bgp机房 photonvps 服务器评测 美国主机评测 host1plus cve-2014-6271 国外idc 全能主机 云鼎网络 个人域名 165邮箱 200g硬盘 cdn加速原理 1g内存 空间合租 web服务器安全 服务器硬件防火墙 如何建立邮箱 注册阿里云邮箱 广东主机托管 更多