J.
Ana.
Num.
Theor.
2,No.
2,59-63(2014)59JournalofAnalysis&NumberTheoryAnInternationalJournalhttp://dx.
doi.
org/10.
12785/jant/020206NewGeneralizationofEulerianPolynomialsandtheirApplicationsSerkanAraci1,,MehmetAcikgoz1,andErdoganSen2,1DepartmentofMathematics,FacultyofScienceandArts,UniversityofGaziantep,27310Gaziantep,Turkey2DepartmentofMathematics,FacultyofScienceandLetters,NamkKemalUniversity,59030Tekirdag,TurkeyReceived:14Feb.
2014,Revised:20Apr.
2014,Accepted:22Apr.
2014Publishedonline:1Jul.
2014Abstract:Inthepresentpaper,weintroduceEulerianpolynomialswithparametersaandbandgivethedenitionofthem.
Byusingthedenitionofgeneratingfunctionforourpolynomials,wederivesomenewidentitiesinAnalyticNumbersTheory.
Also,wegiverelationsbetweenEulerianpolynomialswithparametersaandb,Bernsteinpolynomials,Poly-logarithmfunctions,BernoulliandEulernumbers.
Moreover,weseethatourpolynomialsata=1arerelatedtoEuler-Zetafunctionatnegativeinetegers.
Finally,wegetWitt'sformulafornewgeneralizationofEulerianpolynomialswhichweexpressinthispaper.
Keywords:Eulerianpolynomials,Poly-logarithmfunctions,Stirlingnumbersofthesecondkind,Bernsteinpolynomials,Bernoullinumbers,EulernumbersandEuler-Zetafunction,p-adicfermionicintegralonZp.
2010MATHEMATICSSUBJECTCLASSIFICATION.
Primary05A10,11B65;Secondary11B68,11B73.
1IntroductionTheBernoullinumbersandpolynomials,Eulernumbersandpolynomials,Genocchinumbersandpolynomials,Stirlingnumbersofthesecondkind,BernsteinpolynomialsandEulerianpolynomialspossessmanyinterestingpropertiesnotonlyincomplexanalysis,andanalyticnumberstheorybutalsoinmathematicalphysicsrelatedtoknottheoryandζ-function,andp-adicanalysis.
Thesepolynomialshavebeenstudiedbymanymathematiciansforalongtime(fordetails,see[1-30]).
Eulerianpolynomialsequence{An(x)}n≥0isgivenbythefollowingsummation:∞∑l=0lnxl=An(x)(1x)n+1,|x|0in(15),becomesAn(a,b)=1a1n1∑k=0nkAk(a,b)(1a)nk(lnb)nk.
(16)Wewanttonotethattakinga=xandb=ein(16)reducestoAn(x)=1x1n1∑k=0nkAk(x)(1x)nk(17)(see[5]and[25]).
Weseethat(17)isproportionalwithBernsteinpolynomialswhichwestateinthefollowingtheorem:c2014NSPNaturalSciencesPublishingCor.
J.
Ana.
Num.
Theor.
2,No.
2,59-63(2014)/www.
naturalspublishing.
com/Journals.
asp61Theorem2.
ThefollowingidentityAn(x)=n1∑k=0Ak(x)Bk,n(x)xk+1xkistrue.
Letusnowconsiderlimt→0dkdtkin(14),thenwereadilyarriveatthefollowingtheorem.
Theorem3.
Letb∈R+anda∈C,thenwehaveAk(a,b)=limt→0dkdtk1abt(1a)a.
(18)By(18),weeasilyconcludethefollowingcorollary.
Corollary1.
ThefollowingCauchy-typeintegralholdstrue:11aAk(a,b)=k!
2πiCtk1bt(1a)adtwhereCisaloopwhichstartsat∞,encirclestheoriginonceinthepositivedirection,andthereturns∞.
By(14),wediscoverthefollowing:∞∑n=0Ana2,b2tnn!
=1abt(1+a)(1a)a1+abt(1a)(1+a)a=∞∑n=0(1+a)nAn(a,b)tnn!
∞∑n=0(1a)nAn(a,b)tnn!
.
ByusingCauchyproductontheaboveequality,thenwegetthefollowingtheorem.
Theorem4.
ThefollowingequalityAna2,b2=∑nk=0nk(1+a)kAk(a,b)Ank(a,b)(1a)nk(19)istrue.
Afterthebasicoperationsin(19),wediscoverthefollowingcorollary.
Corollary2.
Thefollowingpropertyholds:Ana2,b2=n∑k=01+1akBk,n(a)Ak(a,b)Ank(a,b).
Nowalso,weconsidergeometricseriesin(14),thenwecomputeasfollows:∞∑n=0An(a,b)tnn!
=1aet(1a)lnba=1a11a1et(1a)lnb=11a∞∑j=0ajejt(1a)lnb=11a∞∑j=0aj∞∑n=0jn(1a)n(lnb)ntnn!
=∞∑n=011a∞∑j=0ajjn(1a)n(lnb)ntnn!
.
Bycomparingthecoefcientsoftnn!
ontheaboveequation,thenwereadilyderivethefollowingtheorem.
Theorem5.
Thefollowing1a1nAn(a,b)=(lnb)na(lnb)n∞∑j=1ajjnistrue.
TheabovetheoremisrelatedtoPoly-logarithmfunction,asfollows:1a1nAn(a,b)=(lnb)na(lnb)nLina1.
(20)In[27],itiswell-knownthatLin(x)=xddxnx1x=∑nk=0k!
S(n+1,k+1)x1xk+1(21)whereS(n,k)aretheStirlingnumbersofthesecondkind.
By(20)and(21),wehavethefollowinginterestingtheorem.
Theorem6.
Thefollowingholdstrue:aAn(a,b)=(lnb)nn∑k=0k!
S(n+1,k+1)1a1kn.
3FurtherRemarksNow,weconsider(14)forevaluatingata=1,asfollows:∞∑n=0An(1,b)tnn!
=2b2t+1(22)whereAn(1,b)arecalledEulerianpolynomialswithparameterb.
By(22),wederivethefollowingequalityincomplexplane:∞∑n=0inAn(1,b)tnn!
=2b2it+1=2e2itlnb+1.
Fromthis,wediscoverthefollowing:∞∑n=0inAn(1,b)tnn!
=∞∑n=0En2nin(lnb)tnn!
(23)whereEnaren-thEulernumberswhicharedenedbythefollowingexponentialgeneratingfunction:∞∑n=0Entnn!
=2et+1,|t|0,thenwehaveAn(1,b)=2n+1(lnb)n∞∑j=1(1)jjn.
(26)Asiswellknown,Euler-zetafunctionisdenedbyζE(s)=2∞∑j=1(1)jjs,s∈C(see[3]).
(27)From(26)and(27),weobtaintheinterpolationfunctionofnewgeneralizationofEulerianpolynomialsata=1,asfollow:An(1,b)=2n(lnb)nζE(n).
(28)Equation(28)seemstobeinterpolationfunctionatnegativeintegersforEulerianpolynomialswithparameterb.
LetusnowconsiderWitt'sformulaforourpolynomialsata=1,soweneedthefollowingnotations:Imaginethatpbeaxedoddprimenumber.
Throughoutthispaper,weusethefollowingnotations.
ByZp,wedenotetheringofp-adicrationalintegers,Qdenotestheeldofrationalnumbers,Qpdenotestheeldofp-adicrationalnumbers,andCpdenotesthecompletionofalgebraicclosureofQp.
LetNbethesetofnaturalnumbersandN=N∪{0}.
Thenormalizedp-adicabsolutevalueisdenedby|p|p=1p.
Letqbeanindeterminatewith|q1|pb2t+1=∞∑n=0An(1,b)tnn!
.
(31)By(31)andusingTaylorexpansionofe2tυlnb,weobtainWitt'sformulaforourpolynomialsata=1,asfollows:Theorem11.
Thefollowingholdstrue:An(1,b)=(lnb)n2nXυnd1(υ).
(32)Equation(32)seemstobeinterestingforourfurtherworksintheconceptofp-adicintegrals.
References[1]T.
Kim,IdentitiesinvolvingFrobenius-Eulerpolynomialsarisingfromnon-lineardifferentialequations,JournalofNumberTheory,132,2854-2865(2012).
[2]T.
Kim,Someidentitiesontheq-Eulerpolynomialsofhigherorderandq-stirlingnumbersbythefermionicp-adicintegralonZp,RussianJ.
Math.
Phys.
,16,484–491(2009).
[3]T.
Kim,Eulernumbersandpolynomialsassociatedwithzetafunctions,AbstractandAppliedAnalysis,vol.
2008,ArticleID581582,11pages,2008.
[4]T.
Kim,SomeidentitiesfortheBernoulli,theEulerandtheGenocchinumbersandpolynomials,AdvStudContempMath.
,20,23–28(2010).
[5]D.
S.
Kim,T.
Kim,W.
J.
KimandD.
V.
Dolgy,AnoteonEulerianpolynomials,AbstractandAppliedAnalysis,Volume2012(2012),ArticleID269640,10pages.
[6]D.
S.
Kim,T.
Kim,Y.
H.
Kim,andD.
V.
Dolgy,AnoteonEulerianpolynomialsassociatedwithBernoulliandEulernumbersandpolynomials,AdvancedStudiesinContemporaryMathematics,22,342–353(2012).
[7]M.
AcikgozandY.
Simsek,OnmultipleinterpolationfunctionsoftheN¨orlund-typeq-Eulerpolynomials,AbstractandAppliedAnalysis,2009,ArticleID382574,14pages.
[8]M.
AcikgozandS.
Araci,OnthegeneratingfunctionsforBernsteinpolynomials,NumericalAnalysisandAppliedMathematics,Amer.
Inst.
Phys.
Conf.
Proc.
CP1281,1141-1143(2010).
[9]S.
Araci,M.
AcikgozandD.
Gao,OntheDirichlet'stypeofEulerianpolynomials,arXiv:1207.
1834[math.
NT][10]S.
AraciandM.
Acikgoz,Dirichlet'stypeoftwistedEulerianpolynomialsinconnectionwithtwistedDirichlet'stype-L-function,arXiv:1208.
0589[math.
NT][11]S.
Araci,D.
ErdalandJ.
J.
Seo,Astudyonthefermionicp-adicq-integralrepresentationonZpassociatedwithweightedq-Bernsteinandq-Genocchipolynomials,AbstractandAppliedAnalysis,2011,ArticleID649248,10pages.
[12]S.
Araci,M.
Acikgoz,andJ.
J.
Seo,Explicitformulasinvolvingq-Eulernumbersandpolynomials,AbstractandAppliedAnalysis,2012,ArticleID298531,11pages.
[13]E.
Cetin,M.
Acikgoz,I.
N.
Cangul,andS.
Araci,Anoteonthe(h,q)-Zeta-typefunctionwithweightα,JournalofInequalitiesandApplications,2013,2013:100.
[14]S.
Araci,M.
Acikgoz,andA.
Kilicman,Extendedp-adicq-invariantintegralsonZpassociatedwithapplicationsofumbralcalculus,AdvancesinDifferenceEquations2013,2013:96.
[15]S.
Araci,M.
Acikgoz,andF.
Qi,Ontheq-Genocchinumbersandpolynomialswithweightzeroandtheirinterpolationfunctions,NonlinearFunctionalAnalysisandApplications,18,193-203(2013).
[16]G.
Birkhoff,C.
deBoor,Piecewisepolynomialinterpolationandapproximation,Proc.
Sympos.
GeneralMotorsRes.
Lab.
,,ElsevierPubl.
Co.
,Amsterdam,1965,164–190(1964).
[17]I.
N.
Cangul,H.
Ozden,andY.
Simsek,Generatingfunctionsofthe(h,q)extensionoftwistedEulerpolynomialsandnumbers,ActaMathematicaHungarica,120,281–299(2008).
[18]L.
Carlitz,Euleriannumbersandpolynomials,MathematicsMagazine,32,247-260.
[19]L.
Carlitz,q-BernoulliandEuleriannumbers,TransactionsoftheAmericanMathematicalSociety,76,332-350(1954).
[20]L.
Carlitz,Acombinatorialpropertyofq-Euleriannumbers,Amer.
Math.
Monthly,82,51–54(1975).
[21]F.
Hirzebruch,Eulerianpolynomials,M¨unsterJ.
ofMath.
,1,9–14(2008).
[22]L.
C.
Jang,V.
Kurt,Y.
Simsek,andS.
H.
Rim,q-analogueofthep-adictwistedl-function,JournalofConcreteandApplicableMathematics,6,169–176,(2008).
[23]H.
Jolany,R.
E.
AlikelayeandS.
S.
Mohamad,SomeresultsonthegeneralizationofBernoulli,EulerandGenocchipolynomials,ActaUniversitatisApulensis,299-306(2011).
[24]H.
JolanyandH.
Shari,SomeresultsfortheApostol-Genocchipolynomialsofhigherorder,Bull.
Malays.
Math.
Sci.
Soc.
,36,465-479(2013).
[25]D.
Foata,Eulerianpolynomials:fromEuler'stimetothepresent,ThelegacyofAlladiRamakrishnaninthemathematicalsciences,253–273,Springer,NewYork,2010.
[26]J.
ChoiandH.
M.
Srivastava,ThemultipleHurwitzZetafunctionandthemultipleHurwitz-Eulerzetafunction,TaiwaneseJournalofMathematics,15,501-522(2011).
[27]L.
Lewin,Polylogarithmsandassociatedfunctions,NorthHolland,(1981).
[28]Q.
M.
Luo,F.
Qi,andL.
Debnath,GeneralizationsofEulernumbersandpolynomials,IJMMS.
2003,3893-3901(2003).
[29]Q.
M.
Luo,B.
N.
Guo,F.
Qi,andL.
Debnath,GeneralizationofBernoullinumbersandpolynomials,IJMMS,2003,3769-3776(2003).
[30]H.
M.
SrivastavaandJ.
Choi,SeriesAssociatedwiththeZetaandRelatedFunctions,KluwerAcademicPublishers,Dordrecht,BostonandLondon,(2001).
c2014NSPNaturalSciencesPublishingCor.
火数云怎么样?火数云主要提供数据中心基础服务、互联网业务解决方案,及专属服务器租用、云服务器、专属服务器托管、带宽租用等产品和服务。火数云提供洛阳、新乡、安徽、香港、美国等地骨干级机房优质资源,包括BGP国际多线网络,CN2点对点直连带宽以及国际顶尖品牌硬件。专注为个人开发者用户,中小型,大型企业用户提供一站式核心网络云端服务部署,促使用户云端部署化简为零,轻松快捷运用云计算!多年云计算领域服务经...
无忧云怎么样?无忧云服务器好不好?无忧云值不值得购买?无忧云是一家成立于2017年的老牌商家旗下的服务器销售品牌,现由深圳市云上无忧网络科技有限公司运营,是正规持证IDC/ISP/IRCS商家,主要销售国内、中国香港、国外服务器产品,线路有腾讯云国外线路、自营香港CN2线路等,都是中国大陆直连线路,非常适合免备案建站业务需求和各种负载较高的项目,同时国内服务器也有多个BGP以及高防节点...
pacificrack在最新的7月促销里面增加了2个更加便宜的,一个月付1.5美元,一个年付12美元,带宽都是1Gbps。整个系列都是PR-M,也就是魔方的后台管理。2G内存起步的支持Windows 7、10、Server 2003\2008\2012\2016\2019以及常规版本的Linux!官方网站:https://pacificrack.com支持PayPal、支付宝等方式付款7月秒杀VP...
b2t为你推荐
淘宝收费淘宝网的收费项目有哪些在线漏洞检测如何查看网站的漏洞?最新qq空间代码qq空间都是有哪些免费代码!(要全部)无线路由器限速设置路由器里面限速参数如何设置?中国电信互联星空互联星空是什么?是电信公司的吗?什么是电子邮件 什么是电子邮件吴晓波频道买粉《吴晓波频道》《罗辑思维》《专栏精粹》怎么评价?今日热点怎么删除千牛里面的今日热点怎么取消_?唱吧电脑版官方下载唱吧有电脑版吗qq怎么发邮件qq怎么发文件和邮件
花生壳动态域名 高防服务器租用选锐一 科迈动态域名 hostigation 亚洲大于500m 香港cdn 国外空间服务商 realvnc evssl 40g硬盘 qingyun web服务器的架设 789电视 美国在线代理服务器 免费phpmysql空间 metalink 中国电信宽带测速器 drupal安装 atom处理器 lamp架构 更多