J.
Ana.
Num.
Theor.
2,No.
2,59-63(2014)59JournalofAnalysis&NumberTheoryAnInternationalJournalhttp://dx.
doi.
org/10.
12785/jant/020206NewGeneralizationofEulerianPolynomialsandtheirApplicationsSerkanAraci1,,MehmetAcikgoz1,andErdoganSen2,1DepartmentofMathematics,FacultyofScienceandArts,UniversityofGaziantep,27310Gaziantep,Turkey2DepartmentofMathematics,FacultyofScienceandLetters,NamkKemalUniversity,59030Tekirdag,TurkeyReceived:14Feb.
2014,Revised:20Apr.
2014,Accepted:22Apr.
2014Publishedonline:1Jul.
2014Abstract:Inthepresentpaper,weintroduceEulerianpolynomialswithparametersaandbandgivethedenitionofthem.
Byusingthedenitionofgeneratingfunctionforourpolynomials,wederivesomenewidentitiesinAnalyticNumbersTheory.
Also,wegiverelationsbetweenEulerianpolynomialswithparametersaandb,Bernsteinpolynomials,Poly-logarithmfunctions,BernoulliandEulernumbers.
Moreover,weseethatourpolynomialsata=1arerelatedtoEuler-Zetafunctionatnegativeinetegers.
Finally,wegetWitt'sformulafornewgeneralizationofEulerianpolynomialswhichweexpressinthispaper.
Keywords:Eulerianpolynomials,Poly-logarithmfunctions,Stirlingnumbersofthesecondkind,Bernsteinpolynomials,Bernoullinumbers,EulernumbersandEuler-Zetafunction,p-adicfermionicintegralonZp.
2010MATHEMATICSSUBJECTCLASSIFICATION.
Primary05A10,11B65;Secondary11B68,11B73.
1IntroductionTheBernoullinumbersandpolynomials,Eulernumbersandpolynomials,Genocchinumbersandpolynomials,Stirlingnumbersofthesecondkind,BernsteinpolynomialsandEulerianpolynomialspossessmanyinterestingpropertiesnotonlyincomplexanalysis,andanalyticnumberstheorybutalsoinmathematicalphysicsrelatedtoknottheoryandζ-function,andp-adicanalysis.
Thesepolynomialshavebeenstudiedbymanymathematiciansforalongtime(fordetails,see[1-30]).
Eulerianpolynomialsequence{An(x)}n≥0isgivenbythefollowingsummation:∞∑l=0lnxl=An(x)(1x)n+1,|x|0in(15),becomesAn(a,b)=1a1n1∑k=0nkAk(a,b)(1a)nk(lnb)nk.
(16)Wewanttonotethattakinga=xandb=ein(16)reducestoAn(x)=1x1n1∑k=0nkAk(x)(1x)nk(17)(see[5]and[25]).
Weseethat(17)isproportionalwithBernsteinpolynomialswhichwestateinthefollowingtheorem:c2014NSPNaturalSciencesPublishingCor.
J.
Ana.
Num.
Theor.
2,No.
2,59-63(2014)/www.
naturalspublishing.
com/Journals.
asp61Theorem2.
ThefollowingidentityAn(x)=n1∑k=0Ak(x)Bk,n(x)xk+1xkistrue.
Letusnowconsiderlimt→0dkdtkin(14),thenwereadilyarriveatthefollowingtheorem.
Theorem3.
Letb∈R+anda∈C,thenwehaveAk(a,b)=limt→0dkdtk1abt(1a)a.
(18)By(18),weeasilyconcludethefollowingcorollary.
Corollary1.
ThefollowingCauchy-typeintegralholdstrue:11aAk(a,b)=k!
2πiCtk1bt(1a)adtwhereCisaloopwhichstartsat∞,encirclestheoriginonceinthepositivedirection,andthereturns∞.
By(14),wediscoverthefollowing:∞∑n=0Ana2,b2tnn!
=1abt(1+a)(1a)a1+abt(1a)(1+a)a=∞∑n=0(1+a)nAn(a,b)tnn!
∞∑n=0(1a)nAn(a,b)tnn!
.
ByusingCauchyproductontheaboveequality,thenwegetthefollowingtheorem.
Theorem4.
ThefollowingequalityAna2,b2=∑nk=0nk(1+a)kAk(a,b)Ank(a,b)(1a)nk(19)istrue.
Afterthebasicoperationsin(19),wediscoverthefollowingcorollary.
Corollary2.
Thefollowingpropertyholds:Ana2,b2=n∑k=01+1akBk,n(a)Ak(a,b)Ank(a,b).
Nowalso,weconsidergeometricseriesin(14),thenwecomputeasfollows:∞∑n=0An(a,b)tnn!
=1aet(1a)lnba=1a11a1et(1a)lnb=11a∞∑j=0ajejt(1a)lnb=11a∞∑j=0aj∞∑n=0jn(1a)n(lnb)ntnn!
=∞∑n=011a∞∑j=0ajjn(1a)n(lnb)ntnn!
.
Bycomparingthecoefcientsoftnn!
ontheaboveequation,thenwereadilyderivethefollowingtheorem.
Theorem5.
Thefollowing1a1nAn(a,b)=(lnb)na(lnb)n∞∑j=1ajjnistrue.
TheabovetheoremisrelatedtoPoly-logarithmfunction,asfollows:1a1nAn(a,b)=(lnb)na(lnb)nLina1.
(20)In[27],itiswell-knownthatLin(x)=xddxnx1x=∑nk=0k!
S(n+1,k+1)x1xk+1(21)whereS(n,k)aretheStirlingnumbersofthesecondkind.
By(20)and(21),wehavethefollowinginterestingtheorem.
Theorem6.
Thefollowingholdstrue:aAn(a,b)=(lnb)nn∑k=0k!
S(n+1,k+1)1a1kn.
3FurtherRemarksNow,weconsider(14)forevaluatingata=1,asfollows:∞∑n=0An(1,b)tnn!
=2b2t+1(22)whereAn(1,b)arecalledEulerianpolynomialswithparameterb.
By(22),wederivethefollowingequalityincomplexplane:∞∑n=0inAn(1,b)tnn!
=2b2it+1=2e2itlnb+1.
Fromthis,wediscoverthefollowing:∞∑n=0inAn(1,b)tnn!
=∞∑n=0En2nin(lnb)tnn!
(23)whereEnaren-thEulernumberswhicharedenedbythefollowingexponentialgeneratingfunction:∞∑n=0Entnn!
=2et+1,|t|0,thenwehaveAn(1,b)=2n+1(lnb)n∞∑j=1(1)jjn.
(26)Asiswellknown,Euler-zetafunctionisdenedbyζE(s)=2∞∑j=1(1)jjs,s∈C(see[3]).
(27)From(26)and(27),weobtaintheinterpolationfunctionofnewgeneralizationofEulerianpolynomialsata=1,asfollow:An(1,b)=2n(lnb)nζE(n).
(28)Equation(28)seemstobeinterpolationfunctionatnegativeintegersforEulerianpolynomialswithparameterb.
LetusnowconsiderWitt'sformulaforourpolynomialsata=1,soweneedthefollowingnotations:Imaginethatpbeaxedoddprimenumber.
Throughoutthispaper,weusethefollowingnotations.
ByZp,wedenotetheringofp-adicrationalintegers,Qdenotestheeldofrationalnumbers,Qpdenotestheeldofp-adicrationalnumbers,andCpdenotesthecompletionofalgebraicclosureofQp.
LetNbethesetofnaturalnumbersandN=N∪{0}.
Thenormalizedp-adicabsolutevalueisdenedby|p|p=1p.
Letqbeanindeterminatewith|q1|pb2t+1=∞∑n=0An(1,b)tnn!
.
(31)By(31)andusingTaylorexpansionofe2tυlnb,weobtainWitt'sformulaforourpolynomialsata=1,asfollows:Theorem11.
Thefollowingholdstrue:An(1,b)=(lnb)n2nXυnd1(υ).
(32)Equation(32)seemstobeinterestingforourfurtherworksintheconceptofp-adicintegrals.
References[1]T.
Kim,IdentitiesinvolvingFrobenius-Eulerpolynomialsarisingfromnon-lineardifferentialequations,JournalofNumberTheory,132,2854-2865(2012).
[2]T.
Kim,Someidentitiesontheq-Eulerpolynomialsofhigherorderandq-stirlingnumbersbythefermionicp-adicintegralonZp,RussianJ.
Math.
Phys.
,16,484–491(2009).
[3]T.
Kim,Eulernumbersandpolynomialsassociatedwithzetafunctions,AbstractandAppliedAnalysis,vol.
2008,ArticleID581582,11pages,2008.
[4]T.
Kim,SomeidentitiesfortheBernoulli,theEulerandtheGenocchinumbersandpolynomials,AdvStudContempMath.
,20,23–28(2010).
[5]D.
S.
Kim,T.
Kim,W.
J.
KimandD.
V.
Dolgy,AnoteonEulerianpolynomials,AbstractandAppliedAnalysis,Volume2012(2012),ArticleID269640,10pages.
[6]D.
S.
Kim,T.
Kim,Y.
H.
Kim,andD.
V.
Dolgy,AnoteonEulerianpolynomialsassociatedwithBernoulliandEulernumbersandpolynomials,AdvancedStudiesinContemporaryMathematics,22,342–353(2012).
[7]M.
AcikgozandY.
Simsek,OnmultipleinterpolationfunctionsoftheN¨orlund-typeq-Eulerpolynomials,AbstractandAppliedAnalysis,2009,ArticleID382574,14pages.
[8]M.
AcikgozandS.
Araci,OnthegeneratingfunctionsforBernsteinpolynomials,NumericalAnalysisandAppliedMathematics,Amer.
Inst.
Phys.
Conf.
Proc.
CP1281,1141-1143(2010).
[9]S.
Araci,M.
AcikgozandD.
Gao,OntheDirichlet'stypeofEulerianpolynomials,arXiv:1207.
1834[math.
NT][10]S.
AraciandM.
Acikgoz,Dirichlet'stypeoftwistedEulerianpolynomialsinconnectionwithtwistedDirichlet'stype-L-function,arXiv:1208.
0589[math.
NT][11]S.
Araci,D.
ErdalandJ.
J.
Seo,Astudyonthefermionicp-adicq-integralrepresentationonZpassociatedwithweightedq-Bernsteinandq-Genocchipolynomials,AbstractandAppliedAnalysis,2011,ArticleID649248,10pages.
[12]S.
Araci,M.
Acikgoz,andJ.
J.
Seo,Explicitformulasinvolvingq-Eulernumbersandpolynomials,AbstractandAppliedAnalysis,2012,ArticleID298531,11pages.
[13]E.
Cetin,M.
Acikgoz,I.
N.
Cangul,andS.
Araci,Anoteonthe(h,q)-Zeta-typefunctionwithweightα,JournalofInequalitiesandApplications,2013,2013:100.
[14]S.
Araci,M.
Acikgoz,andA.
Kilicman,Extendedp-adicq-invariantintegralsonZpassociatedwithapplicationsofumbralcalculus,AdvancesinDifferenceEquations2013,2013:96.
[15]S.
Araci,M.
Acikgoz,andF.
Qi,Ontheq-Genocchinumbersandpolynomialswithweightzeroandtheirinterpolationfunctions,NonlinearFunctionalAnalysisandApplications,18,193-203(2013).
[16]G.
Birkhoff,C.
deBoor,Piecewisepolynomialinterpolationandapproximation,Proc.
Sympos.
GeneralMotorsRes.
Lab.
,,ElsevierPubl.
Co.
,Amsterdam,1965,164–190(1964).
[17]I.
N.
Cangul,H.
Ozden,andY.
Simsek,Generatingfunctionsofthe(h,q)extensionoftwistedEulerpolynomialsandnumbers,ActaMathematicaHungarica,120,281–299(2008).
[18]L.
Carlitz,Euleriannumbersandpolynomials,MathematicsMagazine,32,247-260.
[19]L.
Carlitz,q-BernoulliandEuleriannumbers,TransactionsoftheAmericanMathematicalSociety,76,332-350(1954).
[20]L.
Carlitz,Acombinatorialpropertyofq-Euleriannumbers,Amer.
Math.
Monthly,82,51–54(1975).
[21]F.
Hirzebruch,Eulerianpolynomials,M¨unsterJ.
ofMath.
,1,9–14(2008).
[22]L.
C.
Jang,V.
Kurt,Y.
Simsek,andS.
H.
Rim,q-analogueofthep-adictwistedl-function,JournalofConcreteandApplicableMathematics,6,169–176,(2008).
[23]H.
Jolany,R.
E.
AlikelayeandS.
S.
Mohamad,SomeresultsonthegeneralizationofBernoulli,EulerandGenocchipolynomials,ActaUniversitatisApulensis,299-306(2011).
[24]H.
JolanyandH.
Shari,SomeresultsfortheApostol-Genocchipolynomialsofhigherorder,Bull.
Malays.
Math.
Sci.
Soc.
,36,465-479(2013).
[25]D.
Foata,Eulerianpolynomials:fromEuler'stimetothepresent,ThelegacyofAlladiRamakrishnaninthemathematicalsciences,253–273,Springer,NewYork,2010.
[26]J.
ChoiandH.
M.
Srivastava,ThemultipleHurwitzZetafunctionandthemultipleHurwitz-Eulerzetafunction,TaiwaneseJournalofMathematics,15,501-522(2011).
[27]L.
Lewin,Polylogarithmsandassociatedfunctions,NorthHolland,(1981).
[28]Q.
M.
Luo,F.
Qi,andL.
Debnath,GeneralizationsofEulernumbersandpolynomials,IJMMS.
2003,3893-3901(2003).
[29]Q.
M.
Luo,B.
N.
Guo,F.
Qi,andL.
Debnath,GeneralizationofBernoullinumbersandpolynomials,IJMMS,2003,3769-3776(2003).
[30]H.
M.
SrivastavaandJ.
Choi,SeriesAssociatedwiththeZetaandRelatedFunctions,KluwerAcademicPublishers,Dordrecht,BostonandLondon,(2001).
c2014NSPNaturalSciencesPublishingCor.
新网好不好?新网域名便宜吗?新网怎么样?新网是国内老牌知名域名注册商,企业正规化运营,资质齐全,与阿里云万网和腾讯云DNSPOD同为国内服务商巨头。近日新网发布了最新的七月放价季优惠活动,主要针对域名、云主机、企业邮箱、SSL证书等多款云产品推送了超值的优惠,其中.com顶级域名仅19.9元/首年,.cn域名仅16元/首年,云主机1核心2G内存3Mbps带宽仅9.9元/月,企业邮箱更是免费送1年,...
DMIT.io是成立于2018年的一家国外主机商,提供VPS主机和独立服务器租用,数据中心包括中国香港、美国洛杉矶和日本等,其中日本VPS是新上的节点,基于KVM架构,国际线路,1Gbps带宽,同时提供月付循环8折优惠码,或者年付一次性5折优惠码,优惠后最低每月8.72美元或者首年65.4美元起,支持使用PayPal或者支付宝等付款方式。下面列出部分日本VPS主机配置信息,价格以月付为例。CPU:...
稳爱云(www.wenaiyun.com)是创建于2021年的国人IDC商家,主要目前要出售香港VPS、香港独立服务器、美国高防VPS、美国CERA VPS 等目前在售VPS线路有三网CN2、CN2 GIA,该公司旗下产品均采用KVM虚拟化架构。机房采用业内口碑最好香港沙田机房,稳定,好用,数据安全。线路采用三网(电信,联通,移动)回程电信cn2、cn2 gia优质网络,延迟低,速度快。自行封装的...
b2t为你推荐
暴风影音怎么截图请问如何在暴风影音上截图vista系统重装怎样重装vista系统自助建站什么情况下采用自助建站方式建站好?自助建站自助建站哪个平台最好?微信如何建群微信可以建立两个人的群吗?有一个是自己网站运营网站运营的工作做什么镜像文件是什么什么叫镜像文件,作用是什么?安卓应用平台有没有什么安卓游戏都能找到的应用商店或者游戏中心直播加速请问哪种播放器的可以播放加速,并且可以保存奇虎论坛奇虎问答是什么
深圳虚拟主机 花生壳动态域名 阿里云搜索 秒解服务器 dropbox网盘 cpanel空间 空间论坛 七夕促销 谁的qq空间最好看 php空间购买 微软服务器操作系统 西安服务器托管 我的世界服务器ip smtp服务器地址 ledlamp 免费蓝钻 阿里云个人邮箱 服务器防御 葫芦机 sonya 更多