英文版b2t

b2t  时间:2021-02-21  阅读:()
Commun.
Theor.
Phys.
(Beijing,China)40(2003)pp.
137–142cInternationalAcademicPublishersVol.
40,No.
2,August15,2003SymbolicComputationandConstructionofSoliton-LikeSolutionstothe(2+1)-DimensionalBreakingSolitonEquationCHENYong,LIBiao,andZHANGHong-QingDepartmentofAppliedMathematics,DalianUniversityofTechnology,Dalian116024,China(ReceivedOctober14,2002;RevisedDecember17,2002)AbstractBasedonthecomputerizedsymbolicsystemMaple,anewgeneralizedexpansionmethodofRiccatiequationforconstructingnon-travellingwaveandcoecientfunctions'soliton-likesolutionsispresentedbyanewgeneralans¨atz.
Makinguseofthemethod,weconsiderthe(2+1)-dimensionalbreakingsolitonequation,ut+buxxy+4buvx+4buxv=0,uy=vx,andobtainrichnewfamiliesoftheexactsolutionsofthebreakingsolitonequation,includingthenon-travellingwaveandconstantfunctionsoliton-likesolutions,singularsoliton-likesolutions,andtriangularfunctionsolutions.
PACSnumbers:03.
40.
KfKeywords:generalizedexpansionmethodofRiccatiequation,symboliccomputation,breakingsolitonequa-tion,soliton-likesolutions,solitons1IntroductionInrecentyears,muchattentionhasbeenpaidonthestudyof(2+1)-dimensionalsolitonsystemsparticu-larlyaftertheadventofdromionswhichareexponen-tiallylocalizedinthestructuresdrivenbysomestraight-lineghostsolitonsunearthedbyBoitiandhisco-workes[1]andForkasandSantini.
[2]SomesignicantmodelssuchastheKadomtsev–Petviashvili(KP)equation,[3]Davey–Stewartson(DS)equation,[4,5]Nizhnik–Noviko–Vesselov(NNV)equation,[6,7]theasymmetricNNV(ANNV)equation,[6,8]andbreakingsolitonequation,[9,10]etc.
havealsobeenestablishedinnonlinearphysics.
Tondsomeexactphysicallysignicantcoherentsoli-tonsolutions(whicharelocalizedinalldirections)in(2+1)dimensionsismuchmoredicultthanin(1+1)dimensions.
Recently,twokindsof"variableseparating"procedureshavebeenestablishedforsometypesof(2+1)-dimensionalintegrablemodels(seeRefs.
[5],[7],[8],and[10]–[13]).
Thesecondtypeofvariableseparationmethodhadbeenestablishedforsometypesof(2+1)-dimensionalintegrablemodelliketheDSequation,[5]NNVandANNVequations,[7,8]andsomespecialtypesofexactsolutionsoftheseequationscanbeobtainedbyselectingthearbitraryfunctionsappropriately.
Inthispaper,wewouldpresentanewmethodnamedgeneralizedexpansionmethodofRiccatiequation,whichismainlystemmedfromthetanhmethod,[14,15]extendedtanh-functionmethod,[1621]modiedextendedtanh-functionmethod,[22]andgeneralizedhyperbolic-functionmethod,[23]anduseittoconsiderthesoliton-likesolutionsforthe(2+1)-dimensionalbreakingsolitonequation,[9,10]ut+buxxy+4buvx+4buxv=0,uy=vx.
(1)Equations(1)describesthe(2+1)-dimensionalinteractionofaRiemannwavepropagatingalongthey-axiswithalongwavealongthex-axis,anditseemstohavebeengenerated.
[24]Recently,byuseofavariableseparationap-proach,Ruan[10]studiedthecoherentstructuresofEq.
(1)andobtainedsomespecialtypesofthedriomionsolutions,lumps,ringsolutions,curvedsolitons,andbreathersbyselectingthearbitraryfunctionsappropriately.
Inthispaper,usingourmethod,weobtainrichnewfamiliesoftheexactsolutionsofthe(2+1)-dimensionalbreakingsolitonequation,includingthenon-travellingwaveandconstantfunctionsoliton-likesolutions,singu-larsoliton-likesolutions,triangularfunctionsolutions.
Theplanofthispaperisasfollows.
InSec.
2,wedescribebrieythegeneralizedexpansionmethodofRic-catiequation.
InSec.
3,weapplythemethodto(2+1)-dimensionalbreakingsolitonequationandbringoutrichsoliton-likesolutions.
Conclusionswillbepresented-nally.
2GeneralizedExpansionMethodofRiccatiEquationLetussimplydescribethegeneralizedexpansionme-thodofRiccatiequation.
Foragivensystemofnonlinearevolutionequations(NEES)inthreevariablesx,y,andt,E1(u,v,ut,vt,ux,vx,uy,vy,uxx,vxx,uxt,vxt,uxy,vxy,uyt,vyt,0,E2(u,v,ut,vt,ux,vx,uy,vy,uxx,vxx,uxt,vxt,uxy,vxy,uyt,vyt,0,(2)weseekthefollowingformalsolutionsofthegivensystembythenewmoregeneralans¨atz,u(x,y,t)=a0+mi=1[aiφi(ξ)+biφi1(ξ)R+φ2(ξ)+kiφi(ξ)],TheprojectsupportedbyNationalNaturalScienceFoundationofChinaunderGrantNo.
1007201andtheNationalKeyBasicResearchDevelopmentProjectProgramunderGrantNo.
G1998030600Email:chenyong@dlut.
edu.
cn万方数据138CHENYong,LIBiao,andZHANGHong-QingVol.
40v(x,y,t)=A0+nj=1[Ajφi(ξ)+Bjφj1(ξ)R+φ2(ξ)+Kjφj(ξ)],(3)wherem,nareintegerstobedeterminedbybalancingthehighestorderderivativetermswiththenonlineartermsinEq.
(2),Risarealconstant,whilea0=a0(x,y,t),A0=A0(x,y,t),ai=gi(x,y,t),bi=bi(x,y,t),ki=ki(x,y,t),Aj=Ai(x,y,t),Bj=Bj(x,y,t),Kj=Kj(x,y,t)(i=1,m;j=1,n),andξ=ξ(x,y,t)arealldierentiablefunctions,andφ(ξ)satisesdφ(ξ)dξ=R+φ2(ξ).
(4)Itiseasytoseethattheans¨atz(3)ismoregeneralthantheans¨atzinthegeneralizedhyperbolic-functionmethod,[23]tanhmethod,[14,15]extendedtanh-functionmethod,[1621]modiedextendedtanh-functionmethod.
[22]Firstly,com-paredwiththetanhmethod,extendedtanh-function,aswellasthemodiedextendedtanh-functionmethod,therestrictiononξ(x,y,t)asmerelyalinearfunctionx,y,tandtherestrictiononthecoecientsai,bi,ki,Aj,Bj,Kj(i=0,m;j=0,n)andξasconstantsareremoved.
Secondly,comparedwiththegeneralizedhyperbolic-functionmethod,wecannotonlyrecovertheexactsolutionsforagivenNEEswhicharethesuperposi-tionofdierentpowersofthesechξfunction,tanhξfunc-tionortheircombinations,butalsowecan,withnoextraeorts,ndothernewandmoregeneraltypesofsolutions,suchassingularsoliton-likesolutions,coth-typesolutions,triangularperiodic-likesolutions,tan-typesolutions,andtheseformalfunctions'combination,evenrationalsolu-tions,etal.
Moreimportantly,weaddtermskiφi(ξ)innewans¨atz(3),somoretypesofsolutionswouldbeexpectedforsomeequations.
Thereexistthefollowingstepstobeconsideredfur-ther:Step1Determiningthevaluesofmandnofsystem(3)byrespectivelybalancingthehighest-orderpartialderiva-tivetermsandthenonlineartermsinsystem(2).
Step2SubstitutingEqs.
(3)alongwithEq.
(4)intoEq.
(2),multiplyingthemostsimplifyingcommonde-nominatorintheobtainedsystem,settingthecoecientsofφr(ξ)(R+φ2(ξ))s(r=0,1,s=0,1).
(Notehereφr(ξ)denotesrpowerofφ(ξ)and(R+φ2(ξ))sdenotesspowerofR+φ2(ξ))tozero,weobtainasetofover-determinedpartialdierentialequationswithregardtodierentialfunctionsai,bi,ki,Aj,Bj,Kj(i=0,m;j=0,n)andξ.
Step3Solvingtheover-determinedpartialdierentialequationsbyuseofthePDEtoolspackageofMaple,wewouldendupwiththeexplicitexpressionsforai,bi,ki,Aj,Bj,Kj(i=0,m;j=0,n)andξ,orthecon-strainsamongthem.
Step4ItiswellknownthatthegeneralsolutionsofRiccatiequation(4)areφ(ξ)=√Rtanh(√Rξ),R0,√Rcot(√Rξ),R>0,1/ξ,R=0.
(5)ThusaccordingtoEqs.
(3),(5)andtheconclusionsinStep3,thesoliton-likesolutionsofEqs.
(2)canbeob-tained.
Forthegeneralizationoftheans¨atz,naturallymorecomplicatedcomputationisexpectedthaneverbefore.
EveniftheavailabilityofcomputersymbolicsystemslikeMapleorMathematicaallowsustoperformthecom-plicatedandtediousalgebraiccalculationanddierentialcalculationonacomputer,ingeneral,itisverydicult,sometimeimpossible,tosolvethesetofover-determinedpartialdierentialequationsinStep3.
Asthecalcula-tiongoeson,inordertodrasticallysimplifytheworkormaketheworkfeasible,weoftenchoosespecialfunctionformsforai,bi,ki,Aj,Bj,Kj(i=0,m;j=0,n)andξonatrial-and-errorbasis.
3The(2+1)-DimensionalBreakingSolitonEquationInthissection,byusethegeneralizedexpansionmethodofRiccatiequation,weconsiderthe(2+1)-dimensionalbreakingsolitonequation,i.
e.
,Eqs.
(1).
[9,10]Bybalancingthehighest-ordercontributionsfromboththelinearandnonlineartermsinEqs.
(1),weobtainm=2,n=2inEq.
(3).
Thereforeweassumethesolu-tionsofEqs.
(1)intheformu(x,y,t)=a0+a1φ(ξ)+a2φ(ξ)+b1R+φ2(ξ)+b2φ(ξ)R+φ2(ξ)+k1φ1(ξ)+k2φ2(ξ),(6)v(x,y,t)=A0+A1φ(ξ)+A2φ2(ξ)+B1R+φ2(ξ)+B2φ(ξ)R+φ2(ξ)+K1φ1(ξ)+K2φ2(ξ),(7)whereai=ai(y,t)(i=0,1,2),bi=bi(y,t)(i=1,2),ki=ki(y,t)(i=1,2),Ai=Ai(y,t)(i=0,1,2),Bi=Bi(y,t)(i=1,2),Ki=Ki(y,t)(i=1,2)andξ=xp+q(pisaconstantandq=q(y,t))arealldierentialfunctions,andφ(ξ)satisesEq.
(4).
SubstitutingEqs.
(6)and(7)alongwithEq.
(4)intoEq.
(1),multiplyingφ5(ξ)R+φ(ξ)2andφ3(ξ)intherstequationandthesecondequation,respectively,thensettingthecoecientsofφs(ξ)(R+φ(ξ)2)r/2(r=0,1;s=0,1,2,tozerointheobtainedsystemofpartialdierentialequation,wecandeducethefollowingsetofover-determinedpartialdierentiableequationswithrespecttotheunknowndierentiablefunctionsa0,a1,a2,b1,b2,k1,k2,A0,A1,A2,B1,B2,K1,K2,andq(Noteinthispaper,aiy=ai(y,t)/y,andsoon.
)4bpk1A04bpa0K14bpk2A1+4bpb1B2R2+4bpa2K1R+4bpb2B1R2+a0t+4bpa1RA0+4bpa0A1R万方数据No.
2SymbolicComputationandConstructionofSoliton-LikeSolutionstothe(2+1)-DimensionalBreakingSolitonEquation139+2bp2k2yqtk1+4bpk1A2R+2bp2qya1R22bp2qyk1R+2bp2a2yR2+qta1R4bpa1K2=0,(8)qya1pA1+a2y=0,(9)2pK2+k1y2qyk2=0,(10)pK1R+k2yqyk1R=0,(11)6bpR(pqyk1R2pk2yR+2K1k2+2k1K2)=0,(12)2pA2R+a1y+2qya2R=0,(13)12bpR(b1K2+B1k2)=0,(14)pB2R+b1y+qyb2R=0,(15)2pB2+2qyb2=0,(16)4bpb1A0R4bpk2B14bpb1K2+5bp2b2yR2+8bpb1A2R2+8bpa1B2R2+5bp2qyb1R2+8bpa2R2B1+qtb1R+8bpb2A1R2+b2tR+4bpb2K1R+4bpk1B2R+4bpa0B1R=0,(17)6bp(pb1qy+pb2y+2a1B2+2B1a2+2A2b1+2A1b2)=0,(18)12bpa1B1R+b1t+3bp2b1yR+12bpb2A2R2+33bp2qyb2R2+12bpb2A0R+12bpb1A1R+12bpa0B2R+12bpa2B2R2+3qtb2R=0,(19)4bpR2(B1k1+b1K1+K2b2+B2k2)=0,(20)R(5bp2qyb2R2+4bpa1B1R+qtb2R+4bpa0B2R+4bpb2A0R+bp2b1yR+4bpb1A1R4bpb2K2+b1t4bpk2B24bpb1K14bpk1B1)=0,(21)4bpa0B1+4bpb1A0+qtb1+20bpa1B2R+11bp2b2yR+b2t+20bpa2B1R+4bpb2K1+20bpb1A2R+4bpk1B2+20bpb2A1R+11bp2qyb1R=0,(22)8bpa1B1+2bp2b1y+8bpb2A0+28bpa2B2R+52bp2qyb2R+8bpb1A1+28bpb2A2R+2qtb2+8bpa0B2=0,(23)8bp(3b2qyp+2B2a2+2A2b2)=0,(24)4bpa1K2R8bp2qyk1R2qtk1R12bpk2K14bpa0K1R+8bp2k2yR+k2t12bpk1K24bpk2A1R4bpk1RA0=0,(25)8bpb1B1R+16bp2qya2R2+a1t+8bpa0A2R+8bpb2B2R2+8bpa2RA0+8bpa1A1R+2qta2R+2bp2a1yR=0,(26)4bpa2K1+diff(a2,t)+12bpa1A2R+4bpa1A0+16bpb1B2R+16bpb2B1R+8bp2qya1R+12bpa2A1R+8bp2a2yR+4bpk1A2+4bpa0A1+qta1=0,(27)8bpb1B1+24bpb2B2R+8bpa0A2+2qta2+16bpa2A2R+2bp2a1y+8bpa1A1+40bp2qya2R+8bpa2A0=0,(28)6bp(pa2y+pqya1+2B1b2+2B2b1+2A1a2+2a1A2)=0,(29)8bpa0K2R8bpk2RA040bp2qyk2R28bpk1K1R2qtk2R+2bp2k1yR216bpk2K2=0,(30)2bp2k1yR16bp2qyk2R8bpk2A08bpk1K12qtk28bpa0K2+k1t=0,(31)8bpR2(b1K2+B1k2)=0,(32)8bp(3qya2p+2a2A2+2B2b2)=0,(33)8bpk2R(3qyR2p+2K2)=0,(34)a0yqyk1+qya1RpA1R+pK1=0,(35)2pA2+2qya2=0,(36)2R(qyk2pK2)=0,(37)pB1+b2y+qyb1=0.
(38)UsingthepowerfulPDEtoolspackageofMaple,solvingthesetofpartialdierentialequations(8)(38),wecanobtainthefollowingresults.
(Noteintherestofthispaper,q(y,t)denotesarbitraryfunctionwithrespecttoy,t,andC1,C2arearbitraryconstants).
Case1a1=b1=k1=k2=b2=A1=B1=B2=K1=K2=0,a0=2Rp2,a2=32p2,A0=qt4bp,A2=32pqy,q=q(y,t).
(39)Case2a1=b1=b2=k1=k2=A1=B1=B2=K1=K2=0,万方数据140CHENYong,LIBiao,andZHANGHong-QingVol.
40a0=1110Rp2,a2=32p2,A0=18bp2qyR+5qt20bp,A2=32pqy,q=q(y,t).
(40)Case3a1=b1=b2=k1=k2=A1=B1=B2=K1=K2=0,a0=C1,a2=32p2,A0=8bp2qyR+qt+4bC1qy4bp,A2=32pqy,q=q(y,t).
(41)Case4a1=a2=b1=b2=k1=A1=A2=B1=B2=K1=0,a0=C1,k2=32p2R2,A0=8bp2qyR+qt+4bC1qy4bp,K2=32qyR2p,q=q(y,t).
(42)Case5a1=b1=k1=k2=A1=B1=K1=K2=0,a0=54Rp2,a2=34p2,b2=34p2,A0=qt4bp,A2=34pqy,B2=34pqy,q=q(y,t).
(43)Case6a1=b1=k1=k2=A1=B1=K1=K2=0,a0=54Rp2,a2=34p2,b2=34p2,A0=qt4bp,A2=34pqy,B2=34pqy,q=q(y,t).
(44)Case7a1=b1=k1=k2=A1=B1=K1=K2=0,a0=C2,a2=34p2,b2=34p2,A0=5bp2qyR+qt+4bC2qy4bp,A2=34pqy,B2=34pqy,q=q(y,t).
(45)Case8a1=b1=k1=k2=A1=B1=K1=K2=0,a0=C1,a2=34p2,b2=34p2,A0=5bp2qyR+qt+4bC1qy4bp,A2=34pqy,B2=34pqy,q=q(y,t).
(46)Case9a1=b1=b2=k1=A1=B1=B2=K1=0,a0=C1,a2=32p2,k2=32p2R2,A0=8bp2qyR+qt+4bC1qy4bp,A2=32pqy,K2=32qyR2p,q=q(y,t).
(47)FromEqs.
(5)(7)and(39)(47),wecanobtainthefollowingsolutionsforthe(2+1)-dimensionalbreakingsolitonequation.
Type1FromCase1,wecanobtainthefollowingsolutions:u11=2Rp2+32p2Rtanh2[√R(xp+q(y,t))],v11=qt4bp+32pqyRtanh2[√R(xp+q(y,t))],R0,(50)u14=2Rp232p2Rcot2[√R(xp+q(y,t))],v14=qt4bp32pqyRcot2[√R(xp+q(y,t))],R>0.
(51)Type2FromCase2,wecanobtainthefollowingsolutions:u21=1110Rp2+32p2Rtanh2[√R(xp+q(y,t))],v21=18bp2qyR+5qt20bp+32pqyRtanh2[√R(xp+q(y,t))],R0,(54)万方数据No.
2SymbolicComputationandConstructionofSoliton-LikeSolutionstothe(2+1)-DimensionalBreakingSolitonEquation141u24=1110Rp232p2Rcot2[√R(xp+q(y,t))],v24=18bp2qyR+5qt20bp32pqyRcot2[√R(xp+q(y,t))],R>0.
(55)Type3FromCases3and4,wecanobtainthefollowingsolutions:u21=C1+32p2Rtanh2[√R(xp+q(y,t))],v21=8bp2qyR+qt+4bC1qy4bp+32pqyRtanh2[√R(xp+q(y,t))],R0,(58)u24=C132p2Rcot2[√R(xp+q(y,t))],v24=8bp2qyR+qt+4bC1qy4bp32pqyRcot2[√R(xp+q(y,t))],R>0.
(59)Type4FromCases5and6,wecanobtainthefollowingsolutions:u41=54Rp2+34p2Rtanh2(√Rξ)±itanh(√Rξ)sech(√Rξ),v41=qt4bp+34pqyRtanh2(√Rξ)±itanh(√Rξ)sech(√Rξ),R0,(62)u44=54Rp234p2Rcot2(√Rξ)±cot(√Rξ)csc(√Rξ),v44=qt4bp34pqyRcot2(√Rξ)±cot(√Rξ)csc(√Rξ),R>0,(63)whereξ=xp+q(y,t).
Type5FromCases7and8,wecanobtainthefollowingsolutions:u51=C2+34p2Rtanh2(√Rξ)±itanh(√Rξ)sech(√Rξ),v51=5bp2qyR+qt+4bC2qy4bp+34pqyRtanh2(√Rξ)±itanh(√Rξ)sech(√Rξ),R0,(66)万方数据142CHENYong,LIBiao,andZHANGHong-QingVol.
40u54=C234p2Rcot2(√Rξ)±cot(√Rξ)csc(√Rξ),v54=5bp2qyR+qt+4bC2qy4bp34pqyRcot2(√Rξ)±cot(√Rξ)csc(√Rξ),R>0,(67)whereξ=xp+q(y,t).
WhensettingC2=C1intheabovesolutions,wecanobtainanothersetofsolutionsforEq.
(1).
Type6FromCase9,wecanobtainthefollowingsolutions:u61=C1+32p2tanh2(√Rξ)±coth2(√Rξ),v61=8bp2qyR+qt+4bC1qy4bp+32pqyRtanh2(√Rξ)±coth2(√Rξ),R<0,(68)u62=C132p2tan2(√Rξ)±cot2(√Rξ),v62=8bp2qyR+qt+4bC1qy4bp32pqyRtan2(√Rξ)±cot2(√Rξ),R<0,(69)whereξ=xp+q(y,t).
4ConclusionsInsummary,basedonthecomputerizedsymboliccomputation,byintroducinganewmoregeneralans¨atzthantheans¨atzintheextendedtanh-functionmethod,modiedextendedtanh-functionmethod,andgeneralizedhyperbolic-functionmethod,wehaveproposedageneralizedexpansionmethodofRiccatiequationforsearchingforexactsolutionsofNEEsandimplementedincomputerizedsymbolicsystemMaple.
MakinguseofourmethodandwiththeaidofMaple,westudythe(2+1)-dimensionalbreakingsolitonequationandobtainnewfamiliesoftheexactsolutions.
Inourobtainedexactsolutionstherestrictiononξ(x,y,t)asmerelyalinearfunctionx,y,tandtherestrictiononthecoecientsai,bi,ki,Aj,Bj,Kj(i=0,m;j=0,n)andξasconstantsareremoved,andwithnoextraeorts,thesingularsolitonicsolutionandtriangularfunctionsolutionscouldbeobtained.
Tomaketheworkfeasible,howtochoosetheformsforai,bi,ki,Aj,Bj,Kj(i=0,m;j=0,n)andξintheans¨atzwouldbethekeystepinthecomputationofourmethod.
Themethodproposedinthispaperforthe(2+1)-dimensionalbreakingsolitonequationmaybeextendedtondexactsoliton-likesolutionsofotherNEEs.
AcknowledgmentTheauthorswouldliketoexpresstheirsincerethankstotherefereesfortheirhelpfulsuggestion.
References[1]M.
Boiti,J.
J.
P.
Leon,L.
Martina,andF.
Pempinelli,Phys.
Lett.
A132(1998)432.
[2]A.
S.
FokasandP.
M.
Santini,PhysicaD44(1990)99.
[3]B.
B.
KadomtsovandV.
I.
Petviashivili,Sov.
Phys.
Dokl.
15(1970)539.
[4]A.
DaveyandK.
Stewartson,Proc.
R.
Soc.
(London)A338(1974)17.
[5]S.
Y.
LouandJ.
Z.
Lu,J.
Phys.
A29(1996)4029.
[6]S.
P.
NovikovandA.
P.
Veselov,PhysicaD18(1986)267.
[7]S.
Y.
Lou,Phys.
Lett.
A277(2000)94.
[8]S.
Y.
LouandH.
Y.
Ruan,J.
Phys.
A34(2001)305.
[9]R.
RadhaandM.
Lakshamanan,Phys.
Lett.
A197(1995)7.
[10]H.
Y.
Ruan,J.
Phys.
Soc.
Jpn.
71(2002)453.
[11]S.
Y.
Lou,Phys.
Scr.
65(2000)7.
[12]X.
Y.
Tang,S.
Y.
Lou,andY.
Zhang,Phys.
Rev.
E66(2002)046601.
[13]S.
Y.
Lou,X.
Y.
Tang,andJ.
Lin,Commun.
Theor.
Phys.
(Beijing,China)36(2001)145.
[14]E.
J.
ParkesandB.
R.
Duy,Phys.
Lett.
A229(1997)217.
[15]E.
J.
ParkesandB.
R.
Duy,Comput.
Phys.
Commun.
98(1996)288.
[16]E.
Fan,J.
Zhang,andBennyY.
C.
Hon,Phys.
Lett.
A291(2001)376.
[17]Z.
Y.
Yan,Phys.
Lett.
A292(2001)100.
[18]Y.
Chen,B.
Li,andH.
Q.
Zhang,Commun.
Theor.
Phys.
(Beijing,China)38(2002)261.
[19]B.
Li,Y.
Chen,andH.
Q.
Zhang,J.
Phys.
A:Math.
Gen.
35(2002)8253.
[20]B.
Li,Y.
Chen,andH.
Q.
Zhang,Chaos,SolitonsandFractals15(2003)647.
[21]E.
Fan,Phys.
Lett.
A277(2000)212.
[22]S.
A.
Elwakil,S.
K.
El-labany,M.
A.
Zahran,andR.
Sabry,Phys.
Lett.
A299(2002)179.
[23]Y.
T.
GaoandB.
Tian,Comput.
Phys.
Commun.
133(2001)158.
[24]O.
I.
Bogoyavlensky,Izv.
Akad.
NaukSSSR,Ser.
Mat.
53(1989)243;ibid.
54(1990)123.
万方数据SymbolicComputationandConstructionofSoliton-LikeSolutionstothe(2+1)-DimensionalBreakingSolitonEquation作者:CHENYong,LIBiao,ZHANGHong-Qing作者单位:DepartmentofAppliedMathematics,DalianUniversityofTechnology,Dalian116024,China刊名:理论物理通讯(英文版)英文刊名:COMMUNICATIONSINTHEORETICALPHYSICS年,卷(期):2003,40(8)被引用次数:17次参考文献(25条)1.
SPNovikov;APVeselov查看详情19862.
SYLou;JZLu查看详情19963.
ADavey;KStewartson查看详情19744.
MBoiti;JJPLeon;LMartina;FPempinelli查看详情19985.
RRadha;MLakshamananDROMIONLIKESTRUCTURESINTHE(2+1)-DIMENSIONALBREAKINGSOLITONEQUATION[外文期刊]1995(1)6.
SYLou;HYRuan查看详情20017.
SYLou查看详情20008.
B·B·Kadomtsov;V.
I.
Petviashivili查看详情1970(15)9.
查看详情1990(54)10.
OIBogoyavlensky;IzvAkad查看详情198911.
YTGao;BTian查看详情2001(133)12.
SAElwakil;SKEl-labany;MAZahran;RSabryModifiedextendedtanh-functionmethodforsolvingnonlinearpartialdifferentialequations[外文期刊]2002(2/3)13.
EFan查看详情200014.
BLi;YChen;HQZhang查看详情2003(15)15.
ASFokas;PMSantini查看详情[外文期刊]199016.
BLi;YChen;HQZhang查看详情2002(35)17.
YCHEN;BLi;HQZhangNewExplicitSolitaryWaveSolutionsandPeriodicWaveSolutionsfortheGeneralizedCoupledHirota-SatsumaKdVSystem[期刊论文]-CommunicationsinTheoreticalPhysics2002(38)18.
ZYYAN查看详情200119.
EFan;JZhang;BennyYCHon查看详情200120.
EJParkes;BRDuffyANAUTOMATEDTANH-FUNCTIONMETHODFORFINDINGSOLITARYWAVESOLUTIONSTONON-LINEAREVOLUTIONEQUATIONS[外文期刊]1996(98)21.
EJParkes;BRDuffy查看详情199722.
SYLou;XYTang;JLinExactSolutionsoftheCoupledKdVSystemviaaFormallyVariableSeparationApproach[期刊论文]-Commun.
Theor.
Phys.
(BeijingChina)2001(36)23.
XYTang;SYLou;YZhang查看详情200224.
SYLou查看详情2000(65)25.
HYRuan查看详情2002(71)本文读者也读过(10条)1.
TIANYing-Hui.
CHENHan-Lin.
LIUXi-QiangReductionandNewExplicitSolutionsof(2+1)-DimensionalBreakingSolitonEquation[期刊论文]-理论物理通讯(英文版)2006,45(1)2.
郑斌.
ZHENGBin2+1维破裂孤子方程的新孤子解[期刊论文]-量子电子学报2006,23(4)3.
杨立娟.
YANGLi-juan(2+1)维破裂孤子方程的周期波解[期刊论文]-绵阳师范学院学报2009,28(11)4.
石玉仁.
段文山.
吕克璞.
杨红娟(3+1)维破裂孤子方程的精确解[期刊论文]-辽宁师范大学学报(自然科学版)2004,27(2)5.
BAICheng-Lin.
GUOZong-Lin.
ZHAOHongNewGeneralizedTransformationMethodandItsApplicationinHigher-DimensionalSolitonEquation[期刊论文]-理论物理通讯(英文版)2006,45(3)6.
ZHAOHong.
BAICheng-LinAbundantMultisolitonStructureof(3+1)-DimensionalBreakingSolitonEquation[期刊论文]-理论物理通讯(英文版)2004,42(10)7.
XUGui-Qiong.
LIZhi-BinTravellingWaveSolutionstoaSpecialTypeofNonlinearEvolutionEquation[期刊论文]-理论物理通讯(英文版)2003,39(1)8.
欢迎订阅《地球物理学报》(中、英文版)[期刊论文]-地球物理学报2003,46(6)9.
LIBiao.
CHENYongAGeneralizedMethodandExactSolutionsinBose-EinsteinCondensatesinanExpulsiveParabolicPotential[期刊论文]-理论物理通讯(英文版)2007,48(9)10.
ZHENGChun-Long.
ZHANGJie-FangExactExcitationandAbundantLocalizedCoherentSolitonStructuresof(2+1)-DimensionalPerturbedAKNSSystem[期刊论文]-理论物理通讯(英文版)2003,39(1)引证文献(17条)1.
郭鹏云.
陈向华(2+1)维Boussinesq方程的精确解[期刊论文]-阴山学刊(自然科学版)2010(1)2.
套格图桑.
斯仁道尔吉(2+1)维破裂孤子方程新的精确孤立波解[期刊论文]-内蒙古大学学报(自然科学版)2008(2)3.
CAOLi-Na.
WANGDeng-Shan.
CHENLan-XinSymbolicComputationandq-DeformedFunctionSolutionsof(2+1)-DimensionalBreakingSolitonEquation[期刊论文]-理论物理通讯(英文版)2007(2)4.
CHENYong.
LIBiao.
ZHENGYuExactAnalyticalSolutionsinBose-EinsteinCondensateswithTime-DependentAtomicScatteringLength[期刊论文]-理论物理通讯(英文版)2007(1)5.
徐传友(2+1)维破裂孤子方程组的精确解[期刊论文]-阜阳师范学院学报(自然科学版)2007(4)6.
扎其劳.
斯仁道尔吉(2+1)维破裂孤子方程组的准确周期解[期刊论文]-内蒙古师范大学学报(自然科学汉文版)2006(2)7.
ZHANGYuan-Yuan.
WANGQi.
ZHANGHong-QingFurtherExtendedJacobiEllipticFunctionRationalExpansionMethodandNewFamiliesofJacobiEllipticFunctionSolutionsto(2+1)-DimensionalDispersiveLongWaveEquation[期刊论文]-理论物理通讯(英文版)2006(2)8.
ZHANGSheng.
XIATie-ChengSymbolicComputationandNewFamiliesofExactNon-travellingWaveSolutionsof(2+1)-dimensionalBroer-KaupEquations[期刊论文]-理论物理通讯(英文版)2006(6)9.
GEJian-Ya.
WANGRui-Min.
DAIChao-Qing.
ZHANGJie-FangVariable-CoefficientMappingMethodBasedonEllipticalEquationandExactSolutionstoNonlinearSchr(o)dingerEquationswithVariableCoefficient[期刊论文]-理论物理通讯(英文版)2006(10)10.
ZHANGYuan-Yuan.
ZHENGYing.
ZHANGHong-QingNewComplexitonSolutionsof(2+1)-DimensionalNizhnik-Novikov-VeselovEquations[期刊论文]-理论物理通讯(英文版)2006(9)11.
ZHUJia-Min.
MAZheng-YiNewExactSolutionsto(2+1)-DimensionalVariableCoefficientsBroer-KaupEquations[期刊论文]-理论物理通讯(英文版)2006(9)12.
JIAOXiao-Yu.
WANGJin-Huan.
ZHANGHong-QingAnExtendedMethodforConstructingTravellingWaveSolutionstoNonlinearPartialDifferentialEquations[期刊论文]-理论物理通讯(英文版)2005(9)13.
郭鹏云.
斯仁道尔吉破裂孤子方程和浅水波方程的新类孤子解[期刊论文]-内蒙古师范大学学报(自然科学汉文版)2005(2)14.
套格图桑.
斯仁道尔吉KdV方程和KP方程的新的精确孤立波解[期刊论文]-内蒙古师范大学学报(自然科学汉文版)2005(2)15.
ZHIHong-Yan.
UZhuo-Sheng.
ZHANGHong-QingNewExactSolutionsto(2+1)-DimensionalDispersiveLongWaveEquations[期刊论文]-理论物理通讯(英文版)2004(12)16.
CHENYong.
WANGQi.
LIBiaoASeriesofSoliton-likeandDouble-likePeriodicSolutionsofa(2+1)-DimensionalAsymmetricNizhnik-Novikov-VesselovEquation[期刊论文]-理论物理通讯(英文版)2004(11)17.
李德生若干非线性演化方程精确求解法的研究[学位论文]博士2004本文链接:http://d.
g.
wanfangdata.
com.
cn/Periodical_llwltx-e200308003.
aspx

提速啦(24元/月)河南BGP云服务器活动 买一年送一年4核 4G 5M

提速啦的来历提速啦是 网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑 由赣州王成璟网络科技有限公司旗下赣州提速啦网络科技有限公司运营 投资1000万人民币 在美国Cera 香港CTG 香港Cera 国内 杭州 宿迁 浙江 赣州 南昌 大连 辽宁 扬州 等地区建立数据中心 正规持有IDC ISP CDN 云牌照 公司。公司购买产品支持3天内退款 超过3天步退款政策。提速啦的市场定位提速啦主...

RAKsmart:美国圣何塞服务器限量秒杀$30/月起;美国/韩国/日本站群服务器每月189美元起

RAKsmart怎么样?RAKsmart是一家由华人运营的国外主机商,提供的产品包括独立服务器租用和VPS等,可选数据中心包括美国加州圣何塞、洛杉矶、中国香港、韩国、日本、荷兰等国家和地区数据中心(部分自营),支持使用PayPal、支付宝等付款方式,网站可选中文网页,提供中文客服支持。本月商家继续提供每日限量秒杀服务器月付30.62美元起,除了常规服务器外,商家美国/韩国/日本站群服务器、1-10...

老薛主机入门建站月付34/月,年付345元,半价香港VPS主机

老薛主机怎么样?老薛主机这个商家有存在有一些年头。如果没有记错的话,早年老薛主机是做虚拟主机业务的,还算不错在异常激烈的市场中生存到现在,应该算是在众多商家中早期积累到一定的用户群的,主打小众个人网站业务所以能持续到现在。这不,站长看到商家有在进行夏季促销,比如我们很多网友可能有需要的香港vps主机季度及以上可以半价优惠,如果有在选择不同主机商的香港机房的可以看看老薛主机商家的香港vps。点击进入...

b2t为你推荐
赵雨润电影《奇迹世界》详细剧情介绍真正免费的网络电话谁知道哪个真正免费的网络电话啊?告诉我把3?太感谢了百度手写百度为什么没有了在线手写输入法人人逛街为什么女人都喜欢逛街?谢谢了,大神帮忙啊安装迅雷看看播放器迅雷看看不能播放,说我尚未安装迅雷看看播放器免费免费建站电脑上有真正免费的网站吗??ejb开发什么是ejb?ios系统ios系统和安卓系统对比起来有什么优点和缺点?微信怎么看聊天记录什么方法可以知道微信的聊天记录freebsd安装FreeBSD怎么安装
北京vps主机 域名备案中心 泛域名解析 备案域名出售 virpus 老鹰主机 tier 鲜果阅读 回程路由 中国特价网 嘟牛 创梦 me空间社区 流量计费 免费申请个人网站 福建铁通 paypal注册教程 外贸空间 主机管理系统 空间服务器 更多