hash hashHASH算法的原理是?

hash hash  时间:2022-03-02  阅读:()

hash值是什么意思?

HASH是根据文件的内容的数据通过逻辑运算得到的数值, 不同的文件(即使是相同的文件名)得到的HASH值是不同的, 所以HASH值就成了每一个文件在EMULE里的身份证. 不同HASH值的文件在EMULE里被认为是不同的文件,相同的HASH值的文件的内容肯定是完全相同(即使文件名不同). HASH值还有文件校验的功能,相当于文件的校验码. 所以还可以用来检查文件下载是否正确(所以EMULE下载完毕时,都会在HASH文件一遍, 检查文件是否出错)

HASH算法的原理是?

第一次听说google的simhash算法[1]时,我感到很神奇。传统的hash算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上相当于伪随机数产生算法。传统hash算法产生的两个签名,如果相等,说明原始内容在一定概率下是相等的;如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,所产生的签名也很可能差别极大。从这个意义上来说,要设计一个hash算法,对相似的内容产生的签名也相近,是更为艰难的任务,因为它的签名值除了提供原始内容是否相等的信息外,还能额外提供不相等的原始内容的差异程度的信息。 因此当我知道google的simhash算法产生的签名,可以用来比较原始内容的相似度时,便很想了解这种神奇的算法的原理。出人意料,这个算法并不深奥,其思想是非常清澈美妙的。 simhash算法的输入是一个向量,输出是一个f位的签名值。为了陈述方便,假设输入的是一个文档的特征集合,每个特征有一定的权重。比如特征可以是文档中的词,其权重可以是这个词出现的次数。simhash算法如下: 1,将一个f维的向量V初始化为0;f位的二进制数S初始化为0; 2,对每一个特征:用传统的hash算法对该特征产生一个f位的签名b。对i=1到f: 如果b的第i位为1,则V的第i个元素加上该特征的权重; 否则,V的第i个元素减去该特征的权重。 3,如果V的第i个元素大于0,则S的第i位为1,否则为0; 4,输出S作为签名。 这个算法的几何意义非常明了。它首先将每一个特征映射为f维空间的一个向量,这个映射规则具体是怎样并不重要,只要对很多不同的特征来说,它们对所对应的向量是均匀随机分布的,并且对相同的特征来说对应的向量是唯一的就行。比如一个特征的4位hash签名的二进制表示为1010,那么这个特征对应的4维向量就是(1, -1, 1, -1)T,即hash签名的某一位为1,映射到的向量的对应位就为1,否则为-1。然后,将一个文档中所包含的各个特征对应的向量加权求和,加权的系数等于该特征的权重。得到的和向量即表征了这个文档,我们可以用向量之间的夹角来衡量对应文档之间的相似度。最后,为了得到一个f位的签名,需要进一步将其压缩,如果和向量的某一维大于0,则最终签名的对应位为1,否则为0。这样的压缩相当于只留下了和向量所在的象限这个信息,而64位的签名可以表示多达264个象限,因此只保存所在象限的信息也足够表征一个文档了。 明确了算法了几何意义,使这个算法直观上看来是合理的。但是,为何最终得到的签名相近的程度,可以衡量原始文档的相似程度呢?这需要一个清晰的思路和证明。在simhash的发明人Charikar的论文中[2]并没有给出具体的simhash算法和证明,以下列出我自己得出的证明思路。 Simhash是由随机超平面hash算法演变而来的,随机超平面hash算法非常简单,对于一个n维向量v,要得到一个f位的签名(f<<n),算法如下: 1,随机产生f个n维的向量r1,…rf; 2,对每一个向量ri,如果v与ri的点积大于0,则最终签名的第i位为1,否则为0. 这个算法相当于随机产生了f个n维超平面,每个超平面将向量v所在的空间一分为二,v在这个超平面上方则得到一个1,否则得到一个0,然后将得到的f个0或1组合起来成为一个f维的签名。如果两个向量u, v的夹角为θ,则一个随机超平面将它们分开的概率为θ/π,因此u, v的签名的对应位不同的概率等于θ/π。所以,我们可以用两个向量的签名的不同的对应位的数量,即汉明距离,来衡量这两个向量的差异程度。 Simhash算法与随机超平面hash是怎么联系起来的呢?在simhash算法中,并没有直接产生用于分割空间的随机向量,而是间接产生的:第k个特征的hash签名的第i位拿出来,如果为0,则改为-1,如果为1则不变,作为第i个随机向量的第k维。由于hash签名是f位的,因此这样能产生f个随机向量,对应f个随机超平面。下面举个例子: 假设用5个特征w1,…,w5来表示所有文档,现要得到任意文档的一个3维签名。假设这5个特征对应的3维向量分别为: h(w1) = (1, -1, 1)T h(w2) = (-1, 1, 1)T h(w3) = (1, -1, -1)T h(w4) = (-1, -1, 1)T h(w5) = (1, 1, -1)T 按simhash算法,要得到一个文档向量d=(w1=1, w2=2, w3=0, w4=3, w5=0) T的签名, 先要计算向量m = 1*h(w1) + 2*h(w2) + 0*h(w3) + 3*h(w4) + 0*h(w5) = (-4, -2, 6) T, 然后根据simhash算法的步骤3,得到最终的签名s=001。 上面的计算步骤其实相当于,先得到3个5维的向量,第1个向量由h(w1),…,h(w5)的第1维组成: r1=(1,-1,1,-1,1) T; 第2个5维向量由h(w1),…,h(w5)的第2维组成: r2=(-1,1,-1,-1,1) T; 同理,第3个5维向量为: r3=(1,1,-1,1,-1) T. 按随机超平面算法的步骤2,分别求向量d与r1,r2,r3的点积: d T r1=-4 < 0,所以s1=0; d T r2=-2 < 0,所以s2=0; d T r3=6 > 0,所以s3=1.

美国200G美国高防服务器16G,800元

美国高防服务器提速啦专业提供美国高防服务器,美国高防服务器租用,美国抗攻击服务器,高防御美国服务器租用等。我们的海外高防服务器带给您坚不可摧的DDoS防护,保障您的业务不受攻击影响。HostEase美国高防服务器位于加州和洛杉矶数据中心,均为国内访问速度最快最稳定的美国抗攻击机房,带给您快速的访问体验。我们的高防服务器配有最高层级的DDoS防护系统,每款抗攻击服务器均拥有免费DDoS防护额度,让您...

UCloud云服务器香港临时补货,(Intel)CN2 GIA优化线路,上车绝佳时机

至今为止介绍了很多UCLOUD云服务器的促销活动,UCLOUD业者以前看不到我们的个人用户,即使有促销活动,续费也很少。现在新用户的折扣力很大,包括旧用户在内也有一部分折扣。结果,我们的用户是他们的生存动力。没有共享他们的信息的理由是比较受欢迎的香港云服务器CN2GIA线路产品缺货。这不是刚才看到邮件注意和刘先生的通知,而是补充UCLOUD香港云服务器、INTELCPU配置的服务器。如果我们需要他...

VirtVPS抗投诉瑞士VPS上线10美元/月

专心做抗投诉服务器的VirtVPS上线瑞士机房,看中的就是瑞士对隐私的保护,有需要欧洲抗投诉VPS的朋友不要错过了。VirtVPS这次上新的瑞士服务器采用E-2276G处理器,Windows/Linux操作系统可选。VirtVPS成立于2018年,主营荷兰、芬兰、德国、英国机房的离岸虚拟主机托管、VPS、独立服务器、游戏服务器和外汇服务器业务。VirtVPS 提供世界上最全面的安全、完全受保护和私...

hash hash为你推荐
网络技术与应用网络技术与软件的技术的区别是什么previousancient与previous与early的区别按键精灵教程按键精灵要怎么学?阿里地图魔兽世界wow祖达萨泽布阿里在哪?体系文件企业质量管理体系文件指的是什么?活跃网络移动大V网是什么意思?监控员工我现在在看监控一线员工的。如何做好看监控的工作?售后软件vivo售后的软件可以删吗soap是什么意思rbq是什么意思?淘宝推广网站谁有好的淘宝推广网站介绍下哦!或推广技巧!
国外空间租用 虚拟主机管理软件 免费二级域名注册 网通服务器租用 免费动态域名解析 电信测速器 vps.net 秒解服务器 国外idc vmsnap3 512av 彩虹ip 绍兴高防 gspeed 美国堪萨斯 空间首页登陆 google台湾 服务器维护 lamp怎么读 ledlamp 更多