概率名侦探柯南怪盗基德出场集数

名侦探柯南怪盗基德出场集数  时间:2021-01-24  阅读:()
1概率论与数理统计习题及答案习题一1.
写出下列随机试验的样本空间及下列事件包含的样本点.
(1)掷一颗骰子,出现奇数点.
(2)掷二颗骰子,A="出现点数之和为奇数,且恰好其中有一个1点.
"B="出现点数之和为偶数,但没有一颗骰子出现1点.
"(3)将一枚硬币抛两次,A="第一次出现正面.
"B="至少有一次出现正面.
"C="两次出现同一面.
"【解】2.
设A,B,C为三个事件,试用A,B,C(1)A发生,B,C都不发生;(2)A与B发生,C(3)A,B,C都发生;(4)A,B,C(5)A,B,C都不发生;(6)A,B,C(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.
【解】(1)A(2)AB(3)ABC(4)A∪B∪C=C∪B∪A∪BC∪AC∪AB∪ABC=2(5)=(6)(7)BC∪AC∪AB∪C∪A∪B(8)AB∪BC∪CA=AB∪AC∪BC∪ABC3.
指出下列等式命题是否成立,并说明理由:(1)A∪B=(AB)∪B;(2)B=A∪B;(3)∩C=C;(4)(AB)()=;(5)若AB,则A=AB;(6)若AB=,且CA,则BC=;(7)若AB,则;(8)若BA,则A∪B=A.
【解】(1)不成立.
特例:若Α∩B=φ,则ΑB∪B=B.
所以,事件Α发生,事件B必不发生,即Α∪B发生,ΑB∪B不发生.
故不成立.
(2)不成立.
若事件Α发生,则不发生,Α∪B发生,所以B不发生,从而不成立.
(3)不成立.
,画文氏图如下:所以,若Α-B发生,则发生,不发生,故不成立.
(4)成立.
因为ΑB与为互斥事件.
(5)成立.
若事件Α发生,则事件B发生,所以ΑB发生.
若事件ΑB发生,则事件Α发生,事件B发生.
故成立.
(6)成立.
若事件C发生,则事件Α发生,所以事件B不发生,故BC=φ.
(7)不成立.
画文氏图,可知.
3(8)成立.
若事件Α发生,由,则事件Α∪B发生.
若事件Α∪B发生,则事件Α,事件B发生.
若事件Α发生,则成立.
若事件B发生,由,则事件Α发生.
4.
设A,B为随机事件,且P(A)=0.
7,P(AB)=0.
3,求P().
【解】P()=1P(AB)=1[P(A)P(AB)]=1[0.
70.
3]=0.
65.
设A,B是两事件,且P(A)=0.
6,P(B)=0.
7,(1)在什么条件下P(AB(2)在什么条件下P(AB【解】(1)当AB=A时,P(AB)取到最大值为0.
6.
(2)当A∪B=Ω时,P(AB)取到最小值为0.
3.
6.
设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.
【解】P(A∪B∪C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)=++=7.
52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少【解】p=8.
(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率;(3)求五个人的生日不都在星期日的概率.
【解】(1)设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P(A1)==()5(亦可用独立性求解,下同)(2)设A2={五个人生日都不在星期日},有利事件数为65,故P(A2)==()5(3)设A3={五个人的生日不都在星期日}P(A3)=1P(A1)=1()59.
从一批由45件正品,5件次品组成的产品中任取3件,求其中恰有一件次品的概率.
4【解】与次序无关,是组合问题.
从50个产品中取3个,有种取法.
因只有一件次品,所以从45个正品中取2个,共种取法;从5个次品中取1个,共种取法,由乘法原理,恰有一件次品的取法为种,所以所求概率为.
10.
一批产品共N件,其中M件正品.
从中随机地取出n件(n30.
如图阴影部分所示.
22.
0,1)中随机地取两个数,求:(1)两个数之和小于的概率;(2)两个数之积小于的概率.
【解】设两数为x,y,则0乙反)由对称性知P(甲正>乙正)=P(甲反>乙反)因此P(甲正>乙正)=46.
Surething):若P(A|C)≥P(B|C),P(A|)≥P(B|),则P(A)≥P(B).
【证】由P(A|C)≥P(B|C),得即有同理由得故47.
一列火车共有n节车厢,有k(k≥n)个旅客上火车并随意地选择车厢.
求每一节车厢内至少有一个旅客的概率.
【解】设Ai={第i节车厢是空的},(i=1,…,n),则其中i1,i2,…,in1是1,2,…,n中的任n1个.
显然n节车厢全空的概率是零,于是15故所求概率为48.
设随机试验中,某一事件A出现的概率为ε>0.
试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A迟早会出现的概率为1.
【证】在前n次试验中,A至少出现一次的概率为49.
袋中装有m只正品硬币,n只次品硬币(次品硬币的两面均印有国徽).
在袋中任取一只,将它投掷r次,已知每次都得到国徽.
试问这只硬币是正品的概率是多少【解】设A={投掷硬币r次都得到国徽}B={这只硬币为正品}由题知则由贝叶斯公式知50.
巴拿赫(Banach)火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.
试求他首次发现一盒空时另一盒恰有r根的概率是多少第一次用完一盒火柴时(不是发现空)而另一盒恰有r根的概率又【解】以B1、B2记火柴取自不同两盒的事件,则有.
(1)发现一盒已空,另一盒恰剩r根,说明已取了2nr次,设n次取自B1盒(已空),nr次取自B2盒,第2nr+1次拿起B1,发现已空.
把取2nr次火柴视作2nr重贝努里试验,则所求概率为式中2反映B1与B2盒的对称性(即也可以是B2盒先取空).
(2)前2nr1次取火柴,有n1次取自B1盒,nr次取自B2盒,第2nr次取自B1盒,故概率为51.
n重伯努利试验中A出现奇数次的概率.
16【解】设在一次试验中A出现的概率为p.
则由以上两式相减得所求概率为若要求在n重贝努里试验中A出现偶数次的概率,则只要将两式相加,即得.
52.
设A,B是任意两个随机事件,求P{(+B)(A+B)(+)(A+)}的值.
【解】因为(A∪B)∩(∪)=A∪B(∪B)∩(A∪)=AB∪所求故所求值为0.
53.
设两两相互独立的三事件,A,B和CABC=,P(A)=P(B)=P(C)0,P(A|B)=1,试比较P(A∪B)与P(A)的大小.
(2006研考)【解】因为所以.
59.
某人向同一目标独立重复射击,每次射击命中目标的概率为p(0【解】这是伯努利概型.
第4次射击恰好第2次命中,即前三次命中一次,所以所求概率为.
60.
在区间(0,1)中随机地取两个数,求这两个数之差的绝对值小于的概率.
【解】设两个数分别为x、y,则019

RackNerd提供四款高配美国服务器促销活动低至月$189

RackNerd 商家给的感觉就是一直蹭节日热点,然后时不时通过修改配置结构不断的提供低价年付的VPS主机,不过他们家还是在做事的,这么两年多的发展,居然已经有新增至十几个数据中心,而且产品线发展也是比较丰富。比如也有独立服务器业务,不过在他们轮番的低价年付VPS主机活动下,他们的服务器估摸着销路不是太好的。这里,今天有看到RackNerd商家的独立服务器业务有促销。这次提供美国多个机房的高配独立...

免费注册宝塔面板账户赠送价值3188礼包适合购买抵扣折扣

对于一般的用户来说,我们使用宝塔面板免费版本功能还是足够的,如果我们有需要付费插件和专业版的功能,且需要的插件比较多,实际上且长期使用的话,还是购买付费专业版或者企业版本划算一些。昨天也有在文章中分享年中促销活动。如今我们是否会发现,我们在安装宝塔面板后是必须强制我们登录账户的,否则一直有弹出登录界面,我们还是注册一个账户比较好。反正免费注册宝塔账户还有代金券赠送。 新注册宝塔账户送代金券我们注册...

ZJI-全场八折优惠,香港服务器 600元起,还有日本/美国/韩国服务器

月付/年付优惠码:zji  下物理服务器/VDS/虚拟主机空间订单八折终身优惠(长期有效)一、ZJI官网点击直达ZJI官方网站二、特惠香港日本服务器香港大埔:http://hkdb.speedtest.zji.net/香港葵湾:http://hkkw.speedtest.zji.net/日本大阪:http://jpsk.speedtest.zji.net/日本大阪一型 ...

名侦探柯南怪盗基德出场集数为你推荐
金士顿内存怎么样金士顿的内存怎么样朗逸和速腾哪个好大众速腾与朗逸哪个好宝来和朗逸哪个好大众朗逸好还是宝来好苹果手机助手哪个好最新版iphone助手 PP助手好用吗?核芯显卡与独立显卡哪个好核芯显卡和独立显卡有什么区别?最好的是哪个?清理手机垃圾软件哪个好清理手机垃圾的软件哪个好辽宁联通网上营业厅的联通营业厅怎么走东莞电信宽带东莞家用电信宽带有哪些套餐?dns服务器未响应DNS服务器未响应是什么360云盘共享群360云盘共享群以后还有吗
jsp虚拟空间 虚拟主机mysql 双线服务器租用 vps代理 个人域名备案流程 韩国空间 shopex空间 光棍节日志 debian7 本网站服务器在美国 ibox官网 最好的免费空间 ntfs格式分区 免费防火墙 双11秒杀 vip域名 网站在线扫描 工信部网站备案查询 德讯 免费蓝钻 更多