拓扑排序拓扑排序时间复杂度o(n+e)怎么算的?

拓扑排序  时间:2021-08-09  阅读:()

拓扑排序和关键路径是如何实现的

拓扑排序的实现步骤: 由AOV网构造拓扑序列的拓扑排序算法主要是循环执行以下三步,直到不存在入度为0的顶点为止; (1) 选择一个入度为0的顶点并输出之; (2) 从网中删除此顶点及所有出边; (3) 循环结束后,若输出的顶点数小于网中的顶点数,则输出“有回路”信息,否则输出的顶点序列就是一种拓扑序列。

求关键路径的算法: (1) 输入e条弧<j,k>,建立AOE网的存储结构。

(2) 从源点v1出发,令ve(1)=0,求 ve(j) 2<=j<=n。

(3) 从汇点vn出发,令vl(n)=ve(n),求 vl(i) 1<=i<=n-1。

(4) 根据各顶点的ve和vl值,求每条弧s(活动)的最早开始时间e(s)和最晚开始时间l(s),其中e(s)=l(s)的为关键活动。

数据结构问题~什么图可以进行拓扑排序~什么图不能进行拓扑排序?

对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若 ∈E(G),则u在线性序列中出现在v之前。

拓扑排序(Topological Sort) 什么是拓扑序列 通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。

简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。

离散数学中关于偏序和全序的定义: 若集合X上的关系是R是自反的、反对称的和传递的,则称R是集合X上的偏序关系。

设R是集合X上的偏序(Partial Order),如果对每个x,y属于X必有xRy 或 yRx,则称R是集合X上的全序关系。

注意: ①若将图中顶点按拓扑次序排成一行,则图中所有的有向边均是从左指向右的。

②若图中存在有向环,则不可能使顶点满足拓扑次序。

③一个DAG的拓扑序列通常表示某种方案切实可行。

求C语言高手!数据结构的拓扑排序

算法 1.无前趋的顶点优先: (1)算法描述: (a)从网中选择一个入度为零的顶点输出; (b)删除该顶点及其于该点有关的所有边; (c)是否还有入度为零的顶点?若有,执行(a),否则结束。

算法实现 以邻接表为图的存储结构的算法: a)扫描顶点表,将入度为零的顶点入栈; b)当栈非空时: 输出栈顶元素v,出栈; 检查v的出边,将每条出边的终端顶点的入度减1,若该顶点入度为0,入栈; c)当栈空时,若输出的顶点小于顶点数,则说明AOV网有回路,否则拓扑排序完成。

算法实现: void Graph::Toplogicasort()/是入度为0的顶点栈的栈顶指针 { =-1; for(int i=0;i<n;i++) //建立如度为0顶点的链栈 if (count[i]==0) { count[i]; =i; } for(int i=0;i<n;i++) ==-1) { cout<<"Network has a cycle"<<endl; return; } else { int =];//入度为0的顶点出栈 count<<j<<endl; Edge<float> *l=NodeTable[j].adj; while(l) { int k=l,dest; if(--count[k]==0) { count[k];//入度减至0的顶点进栈 =k; } l=l->link;//取j的下一条出边 } } } /*通常的拓扑算法要用两个数组,一个用来记录每个顶点的入度,当入度为0,则进栈 。

另一个数组用作栈数组,记录入度为0的顶点。

其实当入度为0的顶点进栈以后,count[i] =0就不再有用,所以可以用count[i]记录栈内下一个入度为0的顶点指向栈顶顶点号 */

怎样实现c语言的拓扑排序啊,谁能帮我写一下代码啊 谢谢啊

#include #include #define Max_VertexNum 100 //顶点个数的宏定义 /*邻接表结点*/ typedef struct node{ int adjvex; /*邻接点域*/ struct node *next;/*链域*/ }EdgeNode; /*顶点结点*/ typedef struct vnode{ int vertex; //顶点域 int Degree; //存放入度 EdgeNode *firstedge; //边头指针 }VertexNode; typedef VertexNode Adjlist[Max_VertexNum];//定义一个邻接表的数组,用于存放顶点的信息 /*图的定义*/ typedef struct ALGraph{ Adjlist adjlist; int n,e;//图的顶点和边 }Graph; /* 为了避免重复检测入度为0的顶点,设置一个栈暂存所有入度为0的顶点 */ typedef struct stacknode{ int data; struct stacknode *next; }StackNode; typedef struct{ StackNode ; //栈顶指针 }LinkStack; ////////////////////////////////////////////////////////////////////////////////////////// //辅助栈的相关定义 /* 初始化栈 */ void InitStack(LinkStack *S) { =NULL; } /* 判空 */ int IsEmpty(LinkStack *S) { return(==NULL); } /* 进栈 */ void Push(LinkStack *S,int x) { StackNode *p; p=(StackNode*)malloc(sizeof(StackNode)); p->data=x; p->next=; =p; } /* 出栈 */ int Pop(LinkStack *S) { int x; StackNode *p=; //保存头指针 if(IsEmpty(S)) { printf("栈为空!"); exit(1); } x=p->data; =p->next; //将栈顶结点从栈上摘下 free(p); return x; } //////////////////////////////////////////////////////////////////////////////////////////////////// /* 建立一个有向图,其存储结构为邻接表 */ void CreateGraph(Graph *G) { int i,j,k; EdgeNode *s; printf("请输入图的顶点数和边数: "); scanf("%d %d",&G->n,&G->e); //建立顶点列表 for(i=1;i<=G->n;i++) { printf("请输入顶点的信息: "); printf(" "); scanf("%d",&G->adjlist[i].vertex); G->adjlist[i].firstedge=NULL; } for(k=0;ke;k++) { printf("请输入边(vi,vj)的顶点序号: "); printf(" "); scanf("%d%d",&i,&j); s=(EdgeNode*)malloc(sizeof(EdgeNode)); //生成边表结点 s->adjvex=j; s->next=G->adjlist[i].firstedge; G->adjlist[i].firstedge=s; //将新建的结点插入到边表的头部 } } ///////////////////////////////////////////////////////////////////////////////////////////////////////// /* 对各个顶点求入度 */ void FindInDegree(Graph *G) { int i,j; EdgeNode *p; for(i=1;i<=G->n;i++) { G->adjlist[i].Degree=0; } for(j=1;j<=G->n;j++) { for(p=G->adjlist[j].firstedge;p;p=p->next) { G->adjlist[p->adjvex].Degree++; } /* p=G->adjlist[j].firstedge; while(p!=NULL) { G->adjlist[p->adjvex].Degree++; p=p->next; } */ } } /////////////////////////////////////////////////////////////////////////////////////////////////////////////// /* 进行拓扑有序排列 */ int TopoSort(Graph *G) { int i,m,k; int count=0; LinkStack S; FindInDegree(G); InitStack(&S); for(i=1;i<=G->n;i++) { if(!G->adjlist[i].Degree) { Push(&S,i); } } while(!IsEmpty(&S)) { m=Pop(&S); printf("(%d,%d)",m,G->adjlist[m].vertex); //输出i号顶点并计数 count++; for(EdgeNode *p=G->adjlist[m].firstedge;p;p= p->next) { k=p->adjvex; if(!(--G->adjlist[k].Degree)) { Push(&S,k); } } } if(countn) { printf("有回路!"); exit(1); } else { return 0; } } //////////////////////////////////////////////////////////////////////////////////////////////////////////// /* 输出有向图 */ void PrintAdjlist(Graph *G) { int i; EdgeNode *p; for(i=1;i<=G->n;i++) { printf("%d:%d",i,G->adjlist[i].vertex); for(p=G->adjlist[i].firstedge;p;p=p->next) { printf("%d",p->adjvex); } printf(" "); } } ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /* 主函数 */ void main() { Graph G; CreateGraph(&G); PrintAdjlist(&G); TopoSort(&G); }

拓扑排序时间复杂度o(n+e)怎么算的?

对有n个顶点和e条弧的有向图而言,建立求各顶点的入度的时间复杂度为O(e);建零入度顶点栈的时间复杂度为O(n);在拓扑排序过程中,若有向图无环,则每个顶点进一次栈、出一次栈,入度减1的操作在while语句中总共执行e次,所以总的时间复杂度为O(n+e)。

对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出现在v之前。

通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。

简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。

时间复杂度是同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。

算法分析的目的在于选择合适算法和改进算法。

计算机科学中,算法的时间复杂度是一个函数,它定性描述了该算法的运行时间。

这是一个关于代表算法输入值的字符串的长度的函数。

时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。

使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况。

扩展资料 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出 T(n) 的同数量级,找出后,f(n) = 该数量级,若 T(n)/f(n) 求极限可得到一常数c,则时间复杂度T(n) = O(f(n))。

按数量级递增排列,常见的时间复杂度有: 常数阶O(1),线性阶O(n), 线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),..., k次方阶O(n^k),指数阶O(2^n)。

随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

参考资料来源:百度百科-拓扑排序 参考资料来源:百度百科-时间复杂度

俄罗斯vps主机推荐,怎么样俄罗斯vps俄罗斯vps速度怎么样?

俄罗斯vps速度怎么样?俄罗斯vps云主机节点是欧洲十大节点之一,地处俄罗斯首都莫斯科,网络带宽辐射周边欧洲大陆,10G专线连通德国法兰克福、法国巴黎、意大利米兰等,向外连接全球。俄罗斯vps云主机速度快吗、延迟多少?由于俄罗斯数据中心出口带宽充足,俄罗斯vps云主机到全球各地的延迟、速度相对来说都不错。今天,云服务器网(yuntue.com)小编介绍一下俄罗斯vps速度及俄罗斯vps主机推荐!俄...

乐凝网络支持24小时无理由退款,香港HKBN/美国CERA云服务器,低至9.88元/月起

乐凝网络怎么样?乐凝网络是一家新兴的云服务器商家,目前主要提供香港CN2 GIA、美国CUVIP、美国CERA、日本东京CN2等云服务器及云挂机宝等服务。乐凝网络提供比同行更多的售后服务,让您在使用过程中更加省心,使用零云服务器,可免费享受超过50项运维服务,1分钟内极速响应,平均20分钟内解决运维问题,助您无忧上云。目前,香港HKBN/美国cera云服务器,低至9.88元/月起,支持24小时无理...

无忧云-河南洛阳BGP,CEPH集群分布式存储,数据安全可靠,活动期间月付大优惠!

 无忧云怎么样?无忧云服务器好不好?无忧云值不值得购买?无忧云是一家成立于2017年的老牌商家旗下的服务器销售品牌,现由深圳市云上无忧网络科技有限公司运营,是正规持证IDC/ISP/IRCS商家,主要销售国内、中国香港、国外服务器产品,线路有腾讯云国外线路、自营香港CN2线路等,都是中国大陆直连线路,非常适合免备案建站业务需求和各种负载较高的项目,同时国内服务器也有多个BGP以及高防节点...

拓扑排序为你推荐
getsockopt提示出现这个怎么办?app退款苹果app能不能退款高质量图片ps 合成图片,怎样才算高质量的?从那些方面判定照片的质量rs485协议RS485和RS232协议的区别qsv视频格式转换器QSV格式的视频用什么格式转换器可以转换?qsv视频格式转换器手机qsv怎么转换成mp4格式转换器碰撞球碰撞分为哪几种,分别解释一下微信收费微信提现收费是怎么计算的 从什么时候开始收费spinmaster那个街球队 叫什么And1的 球队和球员介绍spinmaster技术滑板截图方法
淘宝虚拟主机 网站虚拟主机空间 香港服务器租用 服务器租用托管 免费域名空间申请 二级域名申请 n点虚拟主机管理系统 堪萨斯服务器 主机点评 12306抢票助手 网盘申请 南昌服务器托管 华为4核 e蜗牛 阿里云浏览器 刀片服务器是什么 最好的免费空间 老左正传 中国电信测网速 linux服务器维护 更多