负数的产生负数的起源

负数的产生  时间:2021-08-03  阅读:()

负数是怎么来的?

人们在生活中经常会遇到各种相反意义的量。

比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。

为了方便,人们就考虑了相反意义的数来表示。

于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。

可见正负数是生产实践中产生的。

  据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。

人们计算的时候用一些小竹棍摆出各种数字来进行计算。

比如,356摆成||| ,3056摆成等等。

这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。

  我国三国时期的学者刘徽在建立负数的概念上有重大贡献。

刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。

”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。

  刘徽第一次给出了正负区分正负数的方法。

他说:“正算赤,负算黑;否则以斜正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。

  我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。

”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。

  用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。

零减正数得负数,零减负数得正数。

异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。

零加正数等于正数,零加负数等于负数。

”   这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。

  用不同颜色的数表示正负数的习惯,一直保留到现在。

现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。

  负数是正数的相反数。

在实际生活中,我们经常用正数和负数来表示意义相反的两个量。

夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。

  在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。

这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。

而在古代数学中,负数常常是在代数方程的求解过程中产生的。

对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。

3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。

然而,在中国的传统数学中,已较早形成负数和相关的运算法则。

  除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。

特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。

他在算法启蒙中,负数在国外得到认识和被承认,较之中国要晚得多。

在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。

而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。

直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。

  与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性。

16、17世纪欧洲大多数数学家不承认负数是数。

帕斯卡认为从0减去4是纯粹的胡说。

帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理。

英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年)。

他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为负数是虚构的。

他用以下的例子说明这一点:“父亲56岁,其子29岁。

问何时父亲年龄将是儿子的二倍?”他列方程56+x=2(29+x),并解得x=-2。

他称此解是荒唐的。

当然,欧洲18世纪排斥负数的人已经不多了。

随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立。

来源:百度百科

负数是谁发明的

零是一个界限。

我们看温度计,温度就有“零上”与“零下”两种情况。

如昨天最高气温是8摄氏度(注意:不要把“8摄氏度”说成“摄氏8度”,因为摄氏度”是一个度量单位,三个字不能分开),最低气温是零下4摄氏度。

通常我们称“零上”为“正”,零下为“负”。

“正”的量用正数表示,“负”的量用负数(在正数前面加上一个负号“-”所得的数)表示。

那么,昨天的气温范围就是-4℃~8℃。

为了表示两种相反意义的量,就必须用正数与负数。

值得我们引以自豪的是:负数在世界上最早出现于我国西汉时期(公元前206年到公元25年)编成的一部数学巨著《九章算术》的“方程章”中。

这一章已讨论了一次方程组的解法。

我们知道,解方程组时,在消去一个未知数的过程中往往会出现其他未知数的系数为负数的情形。

因此解方程组必然要引进负数概念。

《九章算术》中指出:“两算得失相反,要令正负以名之”。

当时是用算筹来进行计算的,所以在筹算中,相应地规定以红等为正,黑筹为负;或将算筹直列作正,斜置作负。

这样,遇到具有相反意义的量,就能用正负数明确地加以区别了。

在《九章算术》中,除了引进正负数的概念之处,还完整地叙述了正负数的加减运算法则——“正负术”。

即“同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之”。

这段话的前一半说的是减法法则,后一半说的是加法法则。

它的意思是:同号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加;零减正得负,零减负得正。

异号两数相加,等于其绝对值相减;同号两数相加,等于其绝对值相加;零加正得正,零加负得负。

外国首先提到负数的是印度人巴士卡洛,那已是公元1150年的事了,比《九章算术》成书迟1千多年。

即使到那时,对负数感到迷惑不解的仍大有人在。

例如法国大数学家韦达,他在代数方面作出了巨大贡献,但他却努力避免引进负数,在解方程求得负根时统统舍去。

1544年,德国人斯梯弗尔还把负数称为“荒谬”、“无稽”。

他们的主要障碍就是把零看作“没有,所以不能理解“比‘没有’还要少”的现象。

直到1637年,法国大数学家笛卡儿发明了解析几何学,创立了坐标系和点的坐标概念,负数才获得了几何意义和实际意义。

确立了它在数学中的地位,逐渐为人们所公认。

从上面可以看出,我国数学巨著《九章算术》中的“正负术”与“方程术”不仅是我国数学中的两项伟大成就,在世界数学史上也是一份十分可贵的财富。

不过,《九章算术》并没有完全解决正负数的乘、除运算。

“负负得正”这一法则,是公元11世纪我国宋朝的《议古根源》一书中阐明的。

毫无疑问,这在世界数学史上也是捷足先登的。

我们在小学里只学习正数与零,这样就不能做“小数减去大数”的减法。

有了负数后,在数集合内,任何减法都是可以进行的。

另外,加法、乘法、除法(除数不为零)也都是可以进行的。

负数的起源

据史料记载,早在两千多年前,中国就有了正负数的概念,掌握了正负数的运算法则。

人们计算的时候用一些小竹棍摆出各种数字来进行计算。

比如,356摆成||| ,3056摆成等等。

这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。

中国三国时期的学者刘徽在建立负数的概念上有重大贡献。

刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。

”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。

刘徽第一次给出了正负区分正负数的方法。

他说:“正算赤,负算黑;否则以斜正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。

中国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。

”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。

用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。

零减正数得负数,零减负数得正数。

异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。

零加正数等于正数,零加负数等于负数。

” 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是中国数学家杰出的贡献之一。

用不同颜色的数表示正负数的习惯,一直保留到现在。

现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。

负数是正数的相反数。

在实际生活中,我们经常用正数和负数来表示意义相反的两个量。

夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。

在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。

这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。

而在古代数学中,负数常常是在代数方程的求解过程中产生的。

对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。

3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。

然而,在中国的传统数学中,已较早形成负数和相关的运算法则。

除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。

特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。

他在算法启蒙中,负数在国外得到认识和被承认,较之中国要晚得多。

在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。

而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。

直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。

与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性。

16、17世纪欧洲大多数数学家不承认负数是数。

帕斯卡认为从0减去4是纯粹的胡说。

帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理。

英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年)。

他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为负数是虚构的。

他用以下的例子说明这一点:“父亲56岁,其子29岁。

问何时父亲年龄将是儿子的二倍?”他列方程56+x=2(29+x),并解得x=-2。

他称此解是荒唐的。

当然,欧洲18世纪排斥负数的人已经不多了。

随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立。

Megalayer(159元 )年付CN2优化带宽VPS

Megalayer 商家我们还算是比较熟悉的,商家主要业务方向是CN2优化带宽、国际BGP和全向带宽的独立服务器和站群服务器,且后来也有增加云服务器(VPS主机)业务。这次中秋节促销活动期间,有发布促销活动,这次活动力度认为还是比较大的,有提供香港、美国、菲律宾的年付VPS主机,CN2优化方案线路的低至年付159元。这次活动截止到10月30日,如果我们有需要的话可以选择。第一、特价限量年付VPS主...

PacificRack 端午节再来一款年付$38 VPS主机 2核4GB内存1TB流量

这不端午节和大家一样回家休息几天,也没有照顾网站的更新。今天又出去忙一天没有时间更新,这里简单搜集看看是不是有一些商家促销活动,因为我看到电商平台各种推送活动今天又开始一波,所以说现在的各种促销让人真的很累。比如在前面我们也有看到PacificRack 商家发布过年中活动,这不在端午节(昨天)又发布一款闪购活动,有些朋友姑且较多是端午节活动,刚才有看到活动还在的,如果有需要的朋友可以看看。第一、端...

百纵科技云主机首月9元,站群1-8C同价,美国E52670*1,32G内存 50M 899元一月

百纵科技:美国高防服务器,洛杉矶C3机房 独家接入zenlayer清洗 带金盾硬防,CPU全系列E52670、E52680v3 DDR4内存 三星固态盘阵列!带宽接入了cn2/bgp线路,速度快,无需备案,非常适合国内外用户群体的外贸、搭建网站等用途。官方网站:https://www.baizon.cnC3机房,双程CN2线路,默认200G高防,3+1(高防IP),不限流量,季付送带宽美国洛杉矶C...

负数的产生为你推荐
php开发工具php开发用什么软件笛卡尔乘积笛卡尔积是什么意思?blastp如何查找一个基因在毛果杨中的CDS、蛋白质和基因组序列?豆瓣fm电台虾米猜电台和豆瓣fm哪个好?电视蚂蚁电视蚂蚁是不是不能用了?我在国外该怎样看奥运?微店是什么微店和微商有什么区别呢微店是什么个人微店和企业微店,有什么区别?印度it为什么说在IT印度远远领先中国水平?wifi快速破解器电脑版wifi密码破解破解器怎么快速破解密码眼镜片品牌哪个牌子的眼镜片好一些
com域名注册 韩国虚拟主机 美国域名注册 greengeeks simcentric idc评测网 轻博客 淘宝双十一2018 大容量存储 老左正传 中国电信宽带测速网 网游服务器 支付宝扫码领红包 idc查询 创建邮箱 台湾google 测速电信 黑科云 广州主机托管 广州服务器托管 更多