笛卡尔乘积笛卡尔乘积的运算性质

笛卡尔乘积  时间:2021-08-02  阅读:()

请问笛卡尔乘积是什么?

笛卡儿乘积 就是一张表的行数乘以另一张表的行数. 在离散数学和数据库之中大量用到! 设关系R和S的元组字节数分别是IR和IS,元组数目分别是TR和TS,则笛卡儿乘积R×S的元组字节数是IR+IS,元组数目是TRTS,空间字节数是TRTS(IR+IS).

幂集运算 集合的笛卡尔乘积

A={a,b},B={b,c} 则P(A)×B={空集,{a},{b},{a,b}}× B ={{空集,b},{{a},b},{{b},b},{{a,b},b},{空集,c},{{a},c},{{b},c},{{a,b},c}}

证明有限集A和可数集B的笛卡尔乘积是可数的

设A有k个元素,给它们排序。

B是可数集,即存在它和集合{1,k+1,2k+1,……}的双射 A和B的笛卡尔积可如此与正整数集建立双射: A的第i个元素与B的元素k(j-1)+1的乘积对应k(j-1)+i 容易验证,这是双射 所AXB可数 一般的,有限个有限集或可数集的笛卡尔积是有限或可数的

笛卡尔积还是笛卡儿积?

笛卡尔乘积积假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)}。

可以扩展到多个集合的情况。

类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。

笛卡尔积的运算性质  由于有序对<x,y>中x,y的位置是确定的,因此A×B的记法也是确定的,不能写成B×A.   笛卡尔积也可以多个集合合成,A1×A2×…×An.   笛卡尔积的运算性质. 一般不能交换.   笛卡尔积,把集合A,B合成集合A×B,规定   A×B={<x,y>?x?A?y?B}   在任意集合A上都可以定义笛卡尔积因为对任意两个集合A和B,用A中元素为第一元素,B中元素为第二元素构成有序对,所有这样的有序对组成的集合就是集合A和B的笛卡尔积.当集合A = B 时,笛卡尔积就记作A A.

笛卡尔积是什么,详细解答一下,最好再举例

假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)}。

可以扩展到多个集合的情况。

类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。

[编辑本段]笛卡尔积的运算性质  由于有序对<x,y>中x,y的位置是确定的,因此A×B的记法也是确定的,不能写成B×A.   笛卡尔积也可以多个集合合成,A1×A2×…×An.   笛卡尔积的运算性质. 一般不能交换.   笛卡尔积,把集合A,B合成集合A×B,规定   A×B={<x,y>&frac12;x&Icirc;A&Ugrave;y&Icirc;B}   在任意集合A上都可以定义笛卡尔积因为对任意两个集合A和B,用A中元素为第一元素,B中元素为第二元素构成有序对,所有这样的有序对组成的集合就是集合A和B的笛卡尔积.当集合A = B 时,笛卡尔积就记作A A. [编辑本段]推导过程  给定一组域D1,D2,…,Dn,这些域中可以有相同的。

D1,D2,…,Dn的笛卡尔积为:   D1×D2×…×Dn={(d1,d2,…,dn)|di∈Di,i=1,2,…,n}   所有域的所有取值的一个组合不能重复   例 给出三个域:   D1=SUPERVISOR ={ 张清玫,刘逸 }   D2=SPECIALITY={计算机专业,信息专业}   D3=POSTGRADUATE={李勇,刘晨,王敏}   则D1,D2,D3的笛卡尔积为D:   D=D1×D2×D3 =   {(张清玫,计算机专业,李勇),(张清玫,计算机专业,刘晨),   (张清玫,计算机专业,王敏),(张清玫,信息专业,李勇),   (张清玫,信息专业,刘晨),(张清玫,信息专业,王敏),   (刘逸,计算机专业,李勇),(刘逸,计算机专业,刘晨),   (刘逸,计算机专业,王敏),(刘逸,信息专业,李勇),   (刘逸,信息专业,刘晨),(刘逸,信息专业,王敏) }   这样就把D1,D2,D3这三个集合中的每个元素加以对应组合,形成庞大的集合群。

  本个例子中的D中就会有2X2X3个元素,如果一个集合有1000个元素,有这样3个集合,他们的笛卡尔积所组成的新集合会达到十亿个元素。

假若某个集合是无限集,那么新的集合就将是有无限个元素。

[编辑本段]序偶与笛卡尔积  在日常生活中,有许多事物是成对出现的,而且这种成对出现的事物,具有一定的顺序。

例如,上,下;左,右;3〈4;张华高于李明;中国地处亚洲;平面上点的坐标等。

一般地说,两个具有固定次序的客体组成一个序偶,它常常表达两个客体之间的关系。

记作〈x,y〉。

上述各例可分别表示为〈上,下〉;〈左,右〉;〈3,4〉;〈张华,李明〉;〈中国,亚洲〉;〈a,b〉等。

  序偶可以看作是具有两个元素的集合。

但它与一般集合不同的是序偶具有确定的次序。

在集合中{a,b}={b,a},但对序偶〈a,b〉≠〈b,a〉。

  设x,y为任意对象,称集合{{x},{x,y}}为二元有序组,或序偶(ordered pairs),简记为<x,y> 。

称x为<x,y>的第一分量,称y为第二分量。

  定义3-4.1 对任意序偶<a,b> , <c, d > ,<a,b> = <c, d > 当且仅当a=c且b = d 。

  递归定义n元序组 <a1,… , an>   <a1,a2> ={{a1},{a1 , a2}}   <a1 , a2 , a3 > = { {a1 , a2},{a1 , a2 , a3}}   = < <a1 , a2 > , a3 >   <a1,…an> = <<a1,…an-1>, an>   两个n元序组相等   < a1,…an >= < b1,…bn >&Ucirc;(a1=b1) ∧ …∧ (an=bn)   定义3-4.2 对任意集合 A1,A2 , …,An,   (1)A1×A2,称为集合A1,A2的笛卡尔积(Cartesian product),定义为   A1 ×A2={x | $u $v(x = <u,v>∧u &Icirc;A1∧v&Icirc;A2)}={<u,v> | u &Icirc;A1∧v&Icirc;A2}   (2)递归地定义 A1 × A2× … × An   A1 × A2×… × An= (A1× A2 × …× An-1)×An   例题1 若A={α,β},B={1,2,3},求A×B,A×A,B×B以及(A×B)&Ccedil;(B×A)。

  解 A×B={〈α,1〉,〈α,2〉,〈α,3〉,〈β,1〉,〈β,2〉,<β,3〉}   B×A={〈1,α〉,〈1,β〉,〈2,α〉,〈2,β〉,〈3,α〉,〈3,β〉}   A×A={〈α,α〉,〈α,β〉,〈β,α〉,〈β,β〉}   B×B={〈1,1〉,〈1,2〉,〈1,3〉,〈2,1〉,〈2,2〉,〈2,3〉,〈3,1〉,〈3,2〉,〈3,3〉}   (A×B)&Ccedil;(B×A)=&AElig;   由例题1可以看到(A×B)&Ccedil;(B×A)=&AElig;   我们约定若A=&AElig;或B=&AElig;,则A×B=&AElig;。

  由笛卡尔定义可知:   (A×B)×C={〈〈a,b〉,c〉|(〈a,b〉∈A×B)∧(c∈C)}   ={〈a,b,c〉|(a∈A)∧(b∈B)∧(c∈C)}   A×(B×C)={〈a,〈b,c〉〉|(a∈A)∧(〈b,c〉∈B×C)}   由于〈a,〈b,c〉〉不是三元组,所以   (A×B)×C ≠A×(B×C)   定理3-4.1 设A, B, C为任意集合,*表示 &Egrave;,&Ccedil;或 – 运算,那么有如下结论:   笛卡尔积对于并、交差运算可左分配。

即:   A×(B*C)=(A×B)*(A×C)   笛卡尔积对于并、交差运算可右分配。

即:   (B*C) ×A=(B×A)*(C×A)   ¤ 当*表示 &Egrave;时,结论(1)的证明思路:(讨论叙述法)   先证明A×(B &Egrave; C)&Iacute;(A×B) &Egrave; (A×C) 从<x,y>∈A×(B&Egrave;C)出发,推出<x,y>∈(A ×B) &Egrave; (A×C)   再证明(A×B) &Egrave; (A×C) &Iacute; A×(B &Egrave; C)   从<x,y>∈(A×B) &Egrave; (A×C)出发,推出<x,y>∈A×(B&Egrave;C)   当*表示 &Egrave;时,结论(2)的证明思路:(谓词演算法) 见P-103页。

¤   定理3-4.2 设A, B, C为任意集合,若C ≠ F,那么有如下结论:   A&Iacute;B&Ucirc;(A×C &Iacute;B×C) &Ucirc; (C×A&Iacute;C×B) ¤   定理前半部分证明思路 :(谓词演算法)   先证明A&Iacute;B &THORN; (A×C&Iacute;B×C)   以A&Iacute;B 为条件,从<x,y>∈A×C出发,推出<x,y>∈B×C   得出(A×C&Iacute;B×C)结论。

  再证明(A×C &Iacute;B×C) &THORN; A&Iacute;B   以C≠F为条件,从x∈A出发,对于y∈C,利用&THORN;附加式,推出x∈B   得出(A&Iacute;B)结论。

见P-103页。

¤   定理3-4.3 设A, B, C, D为任意四个非空集合,那么有如下结论:   A×B &Iacute; C×D的充分必要条件是A&Iacute; C,B&Iacute; D   ¤证明思路:(谓词演算法)   先证明充分性: A×B &Iacute; C×D &THORN; A&Iacute; C,B&Iacute; D   对于任意的x∈A、y∈B,从<x,y>∈A×B出发,利用条件A×B&Iacute; C×D, <x,y>∈C×D,推出x∈C, y∈D。

  再证明必要性: A&Iacute; C,B&Iacute; D &THORN;A×B&Iacute; C×D   对于任意的x∈A、y∈B,从<x,y>∈A×B出发,推出<x,y>∈C×D。

  笛卡尔(Descartes)乘积又叫直积。

设A、B是任意两个集合,在集合A中任意取一个元素x,在集合B中任意取一个元素y,组成一个有序对(x,y),把这样的有序对作为新的元素,他们的全体组成的集合称为集合A和集合B的直积,记为A×B,即A×B={(x,y)|x∈A且y∈B}。

笛卡尔乘积的运算性质

1.对任意集合A,根据定义有 AxΦ =Φ , Φ xA=Φ 2.一般地说,笛卡尔积运算不满足交换律,即 AxB≠BxA(当A≠Φ ∧B≠Φ∧A≠B时) 3.笛卡尔积运算不满足结合律,即 (AxB)xC≠Ax(BxC)(当A≠Φ ∧B≠Φ∧C≠Φ时) 4.笛卡尔积运算对并和交运算满足分配律,即 Ax(B∪C)=(AxB)∪(AxC) (B∪C)xA=(BxA)∪(CxA) Ax(B∩C)=(AxB)∩(AxC) (B∩C)xA=(BxA)∩(CxA)

SugarHosts糖果主机,(67元/年)云服务器/虚拟主机低至半价

SugarHosts 糖果主机商也算是比较老牌的主机商,从2009年开始推出虚拟主机以来,目前当然还是以虚拟主机为主,也有新增云服务器和独立服务器。早年很多网友也比较争议他们家是不是国人商家,其实这些不是特别重要,我们很多国人商家或者国外商家主要还是看重的是品质和服务。一晃十二年过去,有看到SugarHosts糖果主机商12周年的促销活动。如果我们有需要香港、美国、德国虚拟主机的可以选择,他们家的...

弘速云20.8元/月 ,香港云服务器 2核 1g 10M

弘速云元旦活动本公司所销售的弹性云服务器、虚拟专用服务器(VPS)、虚拟主机等涉及网站接入服务的云产品由具备相关资质的第三方合作服务商提供官方网站:https://www.hosuyun.com公司名:弘速科技有限公司香港沙田直营机房采用CTGNET高速回国线路弹性款8折起优惠码:hosu1-1 测试ip:69.165.77.50​地区CPU内存硬盘带宽价格购买地址香港沙田2-8核1-16G20-...

BuyVM($5/月),1Gbps不限流量流媒体VPS主机

BuyVM针对中国客户推出了China Special - STREAM RYZEN VPS主机,带Streaming Optimized IP,帮你解锁多平台流媒体,适用于对于海外流媒体有需求的客户,主机开设在拉斯维加斯机房,AMD Ryzen+NVMe磁盘,支持Linux或者Windows操作系统,IPv4+IPv6,1Gbps不限流量,最低月付5加元起,比美元更低一些,现在汇率1加元=0.7...

笛卡尔乘积为你推荐
raxRAX户外鞋的质量怎么样?we7we7保存文件是哪个 我要卸载它 但是自己创建的球员想留着订单详情在淘宝上买东西,显示订单已发货,但是没有订单详情。可能有几种原因?巴西时区巴西与中国的时差是多少密码设置电脑怎么设置密码qsv视频格式转换器QSV格式的视频用什么格式转换器可以转换?团购网源码最近看到团购挺火的,我也想做一个,请大家推荐个稳定的团购网站源码?团购网源码谁有功能比较全的团购网的代码?微信红包封面11位兑换码微信红包兑换码怎么用spinmaster手指滑板品牌
网站备案域名查询 赵容 cdn服务器 免备案cdn 线路工具 元旦促销 数字域名 柚子舍官网 129邮箱 cn3 如何用qq邮箱发邮件 免费网页空间 银盘服务是什么 linode支付宝 贵阳电信测速 阿里云手机官网 购买空间 深圳主机托管 sonya 回程 更多