笛卡尔乘积笛卡尔乘积的运算性质
笛卡尔乘积 时间:2021-08-02 阅读:(
)
请问笛卡尔乘积是什么?
笛卡儿乘积 就是一张表的行数乘以另一张表的行数.
在离散数学和数据库之中大量用到!
设关系R和S的元组字节数分别是IR和IS,元组数目分别是TR和TS,则笛卡儿乘积R×S的元组字节数是IR+IS,元组数目是TRTS,空间字节数是TRTS(IR+IS).幂集运算 集合的笛卡尔乘积
A={a,b},B={b,c}
则P(A)×B={空集,{a},{b},{a,b}}× B
={{空集,b},{{a},b},{{b},b},{{a,b},b},{空集,c},{{a},c},{{b},c},{{a,b},c}}证明有限集A和可数集B的笛卡尔乘积是可数的
设A有k个元素,给它们排序。
B是可数集,即存在它和集合{1,k+1,2k+1,……}的双射
A和B的笛卡尔积可如此与正整数集建立双射:
A的第i个元素与B的元素k(j-1)+1的乘积对应k(j-1)+i
容易验证,这是双射
所AXB可数
一般的,有限个有限集或可数集的笛卡尔积是有限或可数的笛卡尔积还是笛卡儿积?
笛卡尔乘积积假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)}。
可以扩展到多个集合的情况。
类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。
笛卡尔积的运算性质 由于有序对<x,y>中x,y的位置是确定的,因此A×B的记法也是确定的,不能写成B×A.
笛卡尔积也可以多个集合合成,A1×A2×…×An.
笛卡尔积的运算性质. 一般不能交换.
笛卡尔积,把集合A,B合成集合A×B,规定
A×B={<x,y>?x?A?y?B}
在任意集合A上都可以定义笛卡尔积因为对任意两个集合A和B,用A中元素为第一元素,B中元素为第二元素构成有序对,所有这样的有序对组成的集合就是集合A和B的笛卡尔积.当集合A = B 时,笛卡尔积就记作A A.笛卡尔积是什么,详细解答一下,最好再举例
假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)}。
可以扩展到多个集合的情况。
类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。
[编辑本段]笛卡尔积的运算性质 由于有序对<x,y>中x,y的位置是确定的,因此A×B的记法也是确定的,不能写成B×A.
笛卡尔积也可以多个集合合成,A1×A2×…×An.
笛卡尔积的运算性质. 一般不能交换.
笛卡尔积,把集合A,B合成集合A×B,规定
A×B={<x,y>½xÎAÙyÎB}
在任意集合A上都可以定义笛卡尔积因为对任意两个集合A和B,用A中元素为第一元素,B中元素为第二元素构成有序对,所有这样的有序对组成的集合就是集合A和B的笛卡尔积.当集合A = B 时,笛卡尔积就记作A A. [编辑本段]推导过程 给定一组域D1,D2,…,Dn,这些域中可以有相同的。
D1,D2,…,Dn的笛卡尔积为:
D1×D2×…×Dn={(d1,d2,…,dn)|di∈Di,i=1,2,…,n}
所有域的所有取值的一个组合不能重复
例 给出三个域:
D1=SUPERVISOR ={ 张清玫,刘逸 }
D2=SPECIALITY={计算机专业,信息专业}
D3=POSTGRADUATE={李勇,刘晨,王敏}
则D1,D2,D3的笛卡尔积为D:
D=D1×D2×D3 =
{(张清玫,计算机专业,李勇),(张清玫,计算机专业,刘晨),
(张清玫,计算机专业,王敏),(张清玫,信息专业,李勇),
(张清玫,信息专业,刘晨),(张清玫,信息专业,王敏),
(刘逸,计算机专业,李勇),(刘逸,计算机专业,刘晨),
(刘逸,计算机专业,王敏),(刘逸,信息专业,李勇),
(刘逸,信息专业,刘晨),(刘逸,信息专业,王敏) }
这样就把D1,D2,D3这三个集合中的每个元素加以对应组合,形成庞大的集合群。
本个例子中的D中就会有2X2X3个元素,如果一个集合有1000个元素,有这样3个集合,他们的笛卡尔积所组成的新集合会达到十亿个元素。
假若某个集合是无限集,那么新的集合就将是有无限个元素。
[编辑本段]序偶与笛卡尔积 在日常生活中,有许多事物是成对出现的,而且这种成对出现的事物,具有一定的顺序。
例如,上,下;左,右;3〈4;张华高于李明;中国地处亚洲;平面上点的坐标等。
一般地说,两个具有固定次序的客体组成一个序偶,它常常表达两个客体之间的关系。
记作〈x,y〉。
上述各例可分别表示为〈上,下〉;〈左,右〉;〈3,4〉;〈张华,李明〉;〈中国,亚洲〉;〈a,b〉等。
序偶可以看作是具有两个元素的集合。
但它与一般集合不同的是序偶具有确定的次序。
在集合中{a,b}={b,a},但对序偶〈a,b〉≠〈b,a〉。
设x,y为任意对象,称集合{{x},{x,y}}为二元有序组,或序偶(ordered pairs),简记为<x,y> 。
称x为<x,y>的第一分量,称y为第二分量。
定义3-4.1 对任意序偶<a,b> , <c, d > ,<a,b> = <c, d > 当且仅当a=c且b = d 。
递归定义n元序组 <a1,… , an>
<a1,a2> ={{a1},{a1 , a2}}
<a1 , a2 , a3 > = { {a1 , a2},{a1 , a2 , a3}}
= < <a1 , a2 > , a3 >
<a1,…an> = <<a1,…an-1>, an>
两个n元序组相等
< a1,…an >= < b1,…bn >Û(a1=b1) ∧ …∧ (an=bn)
定义3-4.2 对任意集合 A1,A2 , …,An,
(1)A1×A2,称为集合A1,A2的笛卡尔积(Cartesian product),定义为
A1 ×A2={x | $u $v(x = <u,v>∧u ÎA1∧vÎA2)}={<u,v> | u ÎA1∧vÎA2}
(2)递归地定义 A1 × A2× … × An
A1 × A2×… × An= (A1× A2 × …× An-1)×An
例题1 若A={α,β},B={1,2,3},求A×B,A×A,B×B以及(A×B)Ç(B×A)。
解 A×B={〈α,1〉,〈α,2〉,〈α,3〉,〈β,1〉,〈β,2〉,<β,3〉}
B×A={〈1,α〉,〈1,β〉,〈2,α〉,〈2,β〉,〈3,α〉,〈3,β〉}
A×A={〈α,α〉,〈α,β〉,〈β,α〉,〈β,β〉}
B×B={〈1,1〉,〈1,2〉,〈1,3〉,〈2,1〉,〈2,2〉,〈2,3〉,〈3,1〉,〈3,2〉,〈3,3〉}
(A×B)Ç(B×A)=Æ
由例题1可以看到(A×B)Ç(B×A)=Æ
我们约定若A=Æ或B=Æ,则A×B=Æ。
由笛卡尔定义可知:
(A×B)×C={〈〈a,b〉,c〉|(〈a,b〉∈A×B)∧(c∈C)}
={〈a,b,c〉|(a∈A)∧(b∈B)∧(c∈C)}
A×(B×C)={〈a,〈b,c〉〉|(a∈A)∧(〈b,c〉∈B×C)}
由于〈a,〈b,c〉〉不是三元组,所以
(A×B)×C ≠A×(B×C)
定理3-4.1 设A, B, C为任意集合,*表示 È,Ç或 – 运算,那么有如下结论:
笛卡尔积对于并、交差运算可左分配。
即:
A×(B*C)=(A×B)*(A×C)
笛卡尔积对于并、交差运算可右分配。
即:
(B*C) ×A=(B×A)*(C×A)
¤ 当*表示 È时,结论(1)的证明思路:(讨论叙述法)
先证明A×(B È C)Í(A×B) È (A×C) 从<x,y>∈A×(BÈC)出发,推出<x,y>∈(A ×B) È (A×C)
再证明(A×B) È (A×C) Í A×(B È C)
从<x,y>∈(A×B) È (A×C)出发,推出<x,y>∈A×(BÈC)
当*表示 È时,结论(2)的证明思路:(谓词演算法) 见P-103页。
¤
定理3-4.2 设A, B, C为任意集合,若C ≠ F,那么有如下结论:
AÍBÛ(A×C ÍB×C) Û (C×AÍC×B) ¤
定理前半部分证明思路 :(谓词演算法)
先证明AÍB Þ (A×CÍB×C)
以AÍB 为条件,从<x,y>∈A×C出发,推出<x,y>∈B×C
得出(A×CÍB×C)结论。
再证明(A×C ÍB×C) Þ AÍB
以C≠F为条件,从x∈A出发,对于y∈C,利用Þ附加式,推出x∈B
得出(AÍB)结论。
见P-103页。
¤
定理3-4.3 设A, B, C, D为任意四个非空集合,那么有如下结论:
A×B Í C×D的充分必要条件是AÍ C,BÍ D
¤证明思路:(谓词演算法)
先证明充分性: A×B Í C×D Þ AÍ C,BÍ D
对于任意的x∈A、y∈B,从<x,y>∈A×B出发,利用条件A×BÍ C×D, <x,y>∈C×D,推出x∈C, y∈D。
再证明必要性: AÍ C,BÍ D ÞA×BÍ C×D
对于任意的x∈A、y∈B,从<x,y>∈A×B出发,推出<x,y>∈C×D。
笛卡尔(Descartes)乘积又叫直积。
设A、B是任意两个集合,在集合A中任意取一个元素x,在集合B中任意取一个元素y,组成一个有序对(x,y),把这样的有序对作为新的元素,他们的全体组成的集合称为集合A和集合B的直积,记为A×B,即A×B={(x,y)|x∈A且y∈B}。
笛卡尔乘积的运算性质
1.对任意集合A,根据定义有
AxΦ =Φ , Φ xA=Φ
2.一般地说,笛卡尔积运算不满足交换律,即
AxB≠BxA(当A≠Φ ∧B≠Φ∧A≠B时)
3.笛卡尔积运算不满足结合律,即
(AxB)xC≠Ax(BxC)(当A≠Φ ∧B≠Φ∧C≠Φ时)
4.笛卡尔积运算对并和交运算满足分配律,即
Ax(B∪C)=(AxB)∪(AxC)
(B∪C)xA=(BxA)∪(CxA)
Ax(B∩C)=(AxB)∩(AxC)
(B∩C)xA=(BxA)∩(CxA)
云如故是一家成立于2018年的国内企业IDC服务商,由山东云如故网络科技有限公司运营,IDC ICP ISP CDN VPN IRCS等证件齐全!合法运营销售,主要从事自营高防独立服务器、物理机、VPS、云服务器,虚拟主机等产品销售,适合高防稳定等需求的用户,可用于建站、游戏、商城、steam、APP、小程序、软件、资料存储等等各种个人及企业级用途。机房可封UDP 海外 支持策略定制 双层硬件(傲...
农历春节将至,腾讯云开启了热门爆款云产品首单特惠秒杀活动,上海/北京/广州1核2G云服务器首年仅38元起,上架了新的首单优惠活动,每天三场秒杀,长期有效,其中轻量应用服务器2G内存5M带宽仅需年费38元起,其他产品比如CDN流量包、短信包、MySQL、直播流量包、标准存储等等产品也参与活动,腾讯云官网已注册且完成实名认证的国内站用户均可参与。活动页面:https://cloud.tencent.c...
前天,还有在"Hostodo商家提供两款大流量美国VPS主机 可选拉斯维加斯和迈阿密"文章中提到有提供两款流量较大的套餐,这里今天看到有发布四款庆祝独立日的七月份的活动,最低年付VPS主机13.99美元,如果有需要年付便宜VPS主机的可以选择商家。目前,Hostodo机房可选拉斯维加斯和迈阿密两个数据中心,且都是基于KVM虚拟+NVMe整列,年付送DirectAdmin授权,需要发工单申请。(如何...
笛卡尔乘积为你推荐
ripperripper是什么病毒初始化磁盘为什么我初始化,磁盘就变成这样了豆瓣fm电台虾米猜电台和豆瓣fm哪个好?diskgenius免费版diskgenius 破解版?vrrp配置这段H3C路由器上的配置什么意思?软件群发免费的加群群发软件?网页错误详细信息我为什么不可以收货那 网页错误详细信息移动硬盘提示格式化我要打开可移动磁盘 为什么显示格式化无线呼叫系统什么是无线呼叫器?scanf字符串scanf输入字符串和gets输入字符串有什么区别
汉邦高科域名注册 便宜vps vps推荐 花生壳免费域名申请 域名抢注工具 plesk bluehost rak机房 炎黄盛世 howfile 域名接入 129邮箱 什么是服务器托管 paypal注册教程 爱奇艺会员免费试用 银盘服务是什么 华为云盘 新加坡空间 独立主机 申请免费空间 更多