periodicallydvdes-644
dvdes-644 时间:2021-01-20 阅读:(
)
PlantPhysiol.
(1970)46,641-644ResponseofLemnaperpusillatoPeriodicTransfertoDistilledWater'ReceivedforpublicationMarch31,1970RUTHHALABANANDWILLIAMS.
HILLMANBiologyDepartment,BrookhavenNationalLaboratory,Upton,NewYork11973ABSTRACTThefloweringofLemmaperpusillagrownonhalf-strengthHutner'smediumwithsucroseunderinductivephoto-periodsisinhibitedinaperiodicmannerbydailytransferstowaterforshortperiodsoftime.
Thephaseofmaximalinhibitionoffloweringcausedbywatertreatmentisabout1to2hoursafterthetimeofmaximalsensitivitytolightpulses.
Therhythmofsensitivitytowatertreatmentsdoesnotpersistundercontinuousbluelight.
SupplementingthewaterwitheitherCa(NO3)2orK2HP04partiallyreversestheinhibitionofflowering,withthefirstsaltbeingmoreeffec-tive.
SupplementationwithNHANO3orMgSO4increasestheinhibition.
Thewatereffectonfloweringisnotobservedinplantsgrownonhalf-strengthHutner'smediumwithoutsucrose.
Thewatertreatmentsmayactbyremovingordestroyingacrucialprecursorforphotoperiodicinduction,withtheotherconditionsmodifyingpermeability.
Thesystemprovidesanewtechniqueforinvestigatingthemechanismofphotoperiodicinduction.
Ithasbeenwelldocumentedinthelastfewyearsthatcircadianrhythmsareinvolvedintheprocessofphotoperiodictimemeas-urement(1-5,7,15,16).
Thesupportingevidenceconsistsmainlyofgoodcorrelationsbetweenovertcircadianrhythmsandthephotoperiodicresponsivenessoftheorganism.
However,afur-therstepnecessarytounderstandingthetimemeasurementprocessistodeterminespecificallywhichmetabolicoscillationsinteractwithlight-darkcycles.
Lemnaperpusillaisaconvenientorganisminwhichtostudythisproblemsinceitisashortdayplant(10),anditsphotoperiodictimemeasurementappearstobecontrolledbyacircadianrhythm(7)whichcanbecorrelatedtoanovertcircadianrhythmofCO2output(11).
Inaddition,thecompositionofthedefinedmediumonwhichtheplantisgrownmodifiesorcontrolsitsfloweringresponsetophotoperiod(6,10,13).
Thispaperreportstheeffectsofperiodictransfertodis-tilledwateronphotoperiodicallycontrolledfloweringinL.
perpusilla.
MATERIALSANDMETHODSVegetativestocksofL.
perpusillastrain6746wereculturedonhalf-strengthHutner'smediumsupplementedwith30mm(1%)sucrose,undercontinuousilluminationofcoolwhitefluorescentlamps(150ft-c)withtheairtemperature24to26C(10).
Experimentalcultureswerestartedwithsinglethree-frond1ResearchcarriedoutatBrookhavenNationalLaboratoryundertheauspicesoftheUnitedStatesAtomicEnergyCommission.
coloniesfromstockcultures10to12daysoldandweregrownon30mlofmediumin25-X150-mmtubescappedwithfoamplugs.
Theywereplacedingrowthchambersfor7daysunder8-hrphotoperiodsofabout500ft-cofcoolwhitefluorescentandincandescentlightatanairtemperatureof25-i0.
5C.
Manipu-lationsduringthedarkperiodweredoneunderdimgreenlight(greenfluorescenttubebehindone3-mmthicknesseachofRohmandHaasblue2045andamber2451Plexiglas).
Bluelightwasob-tainedbyfilteringthelightofstandardbluefluorescenttubesthrough3mmofblue2045Plexiglas(8).
Thefrondsweretransferredtosteriletwicedistilledwaterin25-X150-mmtubeswithaspatulafortheexperimentalperiodandwerethentransferredbacktofreshmedium.
Sterilizationofthespatulawasaccomplishedbyflamingwithalcohol.
Toprotecttheplantsfromtheflamelight,theywereplacedinalight-tightwoodenboxlocatedinsidethegrowthchamber.
Determinationoffloweringintensitywasdoneonday7oftheexperimentbymethodsdescribedearlier(6-10).
Statisticalanalysis-analysisofvarianceandDuncan'snewmultiplerangetest-wasappliedaccordingtothemethodsofSteelandTorrie(21).
RESULTSEffectofPeriodicWaterTreatmentsunder8-hrPhotoperiods.
Thepurposeofthepreliminaryexperimentdescribedbelowwastodeterminewhetherthenutrientmediumisrequiredatalltimesduringthe24-hrdayforshortdaystoelicitflowering.
Figure1graphicallydescribestheprocedureoftheexperimentandsum-marizestheresults.
Theexperimentalplantsgrownonfullnu-trientmedium(half-strengthHutner's+sucrose)and8-hrphotoperiodsweretransferredtowaterfor8hrduringeachoftheconsecutive4shortdaysstartingwiththe1stdayunder8-hrphotoperiods.
Thistransfertowaterwasdoneatdifferenttimesofthedayfordifferentcultures.
Thecultureswerethengrownforanother3daysunderthesamelightconditionsafterwhichtheyweredissectedfordeterminationoffrondandflowernumber.
Transfertowaterslightlyreducedthegrowthoftheplantsasex-pressedinfrondnumber.
However,completeinhibitionoffloweringoccurredonlywhenthewaterwasexperiencedduringthelast8hrofthedarkperiod.
Watertreatmentduringthelightorthefirsthalfofthedarkperiodslightlyreducedthefloweringpercentage,probablythroughthereductioninfrondnumber.
Thenextobjectivewastodeterminethetimeoffloralinhibi-tionbywatertransfermoreaccuratelyandtocorrelatethattimewiththelight-sensitivephase(thetimeatwhichshortlightpulsesmaximallyinhibitflowering).
Thesameprocedurewasfollowedasinthepreliminaryexperimentsexceptthattheplantswerekeptonwaterforeither4,3,2,or1hratdifferenttimesfortheinitialfourconsecutivecycles.
Anothergroupofplantsexperiencedlightpulsesof10minatdifferenttimesforeithertwoorfourcycles.
Figure2summarizesthefloweringintensityafter7shortdays.
Therewasnosignificantdifferenceinfrondnumberbetweencontrol(inwhichtheplantsweretransferredtohalf-strength641https://plantphysiol.
orgDownloadedonDecember14,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
HALABANANDHILLMAN62024MEAN#MEAN,1OFFRONDS%FI81.
275.
069.
268.
370.
055.
842.
942.
90.
90.
0%FlFIG.
1.
EffectoftransferstowaterongrowthandfloweringofL.
perpusilla.
Theplantsweretransferredtotwicedistilledwaterfor8hrduringeachoftheinitialfourconsecutivecyclesundershortphoto-periods.
Thetimesofwatertreatmentsareindicatedbythehorizontallines.
Emptyandfullbarsindicatethelightanddarkperiods,respec-tively.
Thestockandexperimentalculturesweregrownonhalf-strengthHutner'smediumsupplementedwith30mmsucrose.
Plantsweredissectedafteratotalof7daysunderlight-darkcyclesof8hrlightand16hrdark,andeachnumberisameanoffivecultures.
Time0isthetimewhenthelightswereturnedon.
706050140%Fl3020I0004812IETIME(HOURS)62024FIG.
2.
FloweringresponseofL.
perpuisillaperiodicallytransferredtowaterfor1,2,or4hrduringdifferentphasesofthe16-hrdarkperiod.
Eachtreatmentwasrepeatedfortheinitialfourconsecutivecycles.
Thelengthofeachbarindicatesthedurationofthewatertreat-ment,anditsheightindicatestheleveloffloweringbytheendof7daysofgrowth.
ThebarsatupperleftindicatethepercentageoffloweringincontrolculturesfortheI-,2-,and4-hrtreatments.
Solidlinesrepresentthefloweringresponseofculturesexposedto10minofwhitelight(500ft-c)atdifferenttimesduringtheinitialfourconsecu-tivedarkperiods;thebrokenlinerepresentstheeffectofsuchtreat-mentforonlytwoconsecutivecycles.
Standarddeviations,calculatedforeachexperimentbytheanalysisofvariance,rangedbetween2.
6and7.
1.
023DAYS4FIG.
3.
Thekineticsoffloweringintensitywithincreasingnumbersofcyclesofwatertreatments.
Plantsweretransferredtotwicedistilledwaterfor4hr(15-19hrafterthelightwasturnedon)foreitherone,two,three,orfourconsecutivecyclesunder8-hrphotoperiods.
Stand-arddeviation45.
4.
0z0LL0'eII0816TIME(HOURS)24FIG.
4.
Effectofperiodicwatertransfersandlightpulsesonflower-ingintensityofplantsgrownonhalf-strengthHutner'smediumwith-outsucrose.
Plantsweretransferredtothewater(darkbars)for4hrduringtheinitialfourconsecutivecyclesin8-hrphotoperiods.
Solidpointsrepresentthefloweringresponseofculturesexposedto10minofwhitelight(500ft-c).
Floweringevaluationwasdoneafteratotalof8daysinthesamephotoperiod.
Standarddeviationsrangedbetween4.
5and4.
9.
Hutner's)andexperimentalplants.
Thefiguregivesthevaluefor4-,2-,and1-hrwatertreatmentssincethe3-hrtreatmentgavesimilarresults.
Maximalinhibitionoffloraldevelopmentoc-curredwhentheplantsweretransferredtowater15to19hrafterthelightswereturnedonwiththe16thto18thhrbeingthemostsensitivetime.
Anexperimentinwhichthe4-hrwatertreat-mentwasprovidedbyadifferentmethod-theplantsremainedinonecontainerandonlythemediumwaschanged-gavesimilarresults,confirmingtheideathatthewatereffectisgenuineandnotaresultofcomplexsystematicerrors.
TheresultsofakineticexperimentaresummarizedinFigure3.
Aminimumof2consecutivedaysofrepeatedtransferringtowaterwasrequiredforasignificantreductioninfloweringin-tensity.
Additionaldaysoftreatmentresultedinfurtherdeclinesoffloweringpercentage.
EffectofPeriodicWaterTransferunderContinuousBlueLight.
Todeterminewhetheralternationsbetweenstatesofmaximalandminimalsensitivitytowaterpersistunderconstantcondi-tions,theplantsweregrownundercontinuousbluelight(8,9)for7daysandweretransferredtowaterforaperiodofeither3or4hratdifferenttimesduringtheinitial4days.
TheywerepreviouslygrownundereithercontinuousfluorescentandTIME(HOURS)04812,1~-Cr\-20z\-0--I_I642PlantPhysiol.
Vol.
46,1970https://plantphysiol.
orgDownloadedonDecember14,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
FLOWERINGRESPONSETOWATERTREATMENTSincandescentlight(500ft-c)orunderlight-darkcyclesof16hrlightand8hrdarkfor4days.
Thetransfertobluelightwaseitherattheendofthelightperiodorattheendofthedarkperiod.
Inalloftheseexperimentsthefloweringlevelofthewater-treatedplantswassignificantlylowerthantheroughly40%7,levelofthecontrols,butthedifferencesinfloweringpercentagebe-tweenplantstreatedwithwateratdifferenttimeswerenotsig-nificant.
ComponentsoftheMediumSucroseandNH4+.
Theinhibitionoffloweringbytransfertowaterwasafunctionofthepresenceofsucrose.
Plantsgrownonhalf-strengthHutner'swithoutsucroseforabout2weekswerenotaffectedatallatanytimebythewatertransfer,inspiteofthefactthatlightpulseswerestillhighlyeffective(Fig.
4).
Nordidanyinhibitionoffloweringoccurwhenplantsgrownwithoutsu-crosewereperiodicallytransferredto30mmsucrosesolution.
Infurtherexperiments,plantsweregrownonamodifiedhalf-strengthHutner'smediuminwhichtheNH4NO3wasreplacedeitherbyKNO3orNH4Clonamolarbasisorby0.
01%v0(w/v)tryptoneplus0.
06%o(w/v)yeastextract("NO3"+S,"NH4"+Sand"Tryp+Y"+Srespectively,TableI).
Withammoniumionsaloneasthenitrogensourceinthegrowthmedium,therewasasignificantreductionoffloweringafter4-hrwatertreatment,ascomparedwithmediumsupplementedwithnitrateortryptoneandyeastextract.
Nevertheless,thepresenceofammoniumionswasnotaprerequisitefortheappearanceofthewatereffect.
Paralleltestsforthelightsensitivityofplantsgrownonmediawithdifferentnitrogensourcesfurthershowedthattherewassubstantiallylessfloweringon"NH4"+Smediumcomparedto"NO3"+SmediumandH+Saftertreatmentwithlightpulsesforthreecyclesatthemostsensitivephase.
Macronutrients.
Culturesweregrownasusualinhalf-strengthHutner's+sucrose.
Theplantswerethentransferredasdescribedaboveeithertotwicedistilledwater(watercontrol)ortohalf-strengthHutner's+sucrose(mediumcontrol)ortowatersup-plementedwithoneofthefollowingsalts,normallypresentinTableI.
EffectofNitrogeniSouirceanid4-hrWaterTreatmenltsoniFlowerinigofL.
perpuisilla1H+S:Half-strengthHutner'smediumsupplementedwith1%Gsucrose.
"NO3"+S:Amodifiedhalf-strengthHutner'smediuminwhichNH4NO3wasreplacedbyKNO3onamolarbasisandsupplementedwith1%c,sucrose.
"NH4"+S:AsaboveexceptthatNH4NO3wasreplacedbyNH4Clonamolarbasis.
"Tryp+Y"+S:NH4NO3wasreplacedby0.
01'(w1/v)tryptoneand0.
06%(w/v)yeastextract.
Stocks:Growthmediumofstockplantsduringthelastweekbeforetheexperimentstarted.
Time:Hoursafterthelightswereturnedonalight-darkcycleof8hrlightand16hrdark.
Valuesmarkedwithtwoasterisksaresig-nificantly(1%level)lowerthanvaluesforwatertreatmentonothermedia.
Eachwatervalueissignificantlylowerthanitscorrespondingcontrol.
Valuesaremeansoffivereplicates.
GrowthAlediumPercentageFlowering(Fl%)TimeStocksExperimentalW:aterControlH+SH+S44.
577.
4'16-20"NO3"+S"NO3"+S50.
178.
316-201H+S"NH4"+S27.
0**74.
216-20/gH+Tryp+"Tryp+Y"+S62.
186.
015-19H+Tryp+"NO3"+S64.
784.
815-19Y+s~H+Tryp+"NH4"+S408*74.
315-19Y+STableIt.
EffectofRepeated4-hrTreatmenitswithSolutionlsofMacronutitrienitSaltsonFloweringofL.
perpusillaWatercontrol:Thepercentageoffloweringinplantstransferredtotwicedistilledwateratthesametimeforthesameduration.
Mediumcontrol:Theplantsweretransferredinsteadtohalf-strengthHutner's+sucrose.
Time:Hoursafterthelightsofthe8-hrphotoperiodwereturnedon.
Valuesmaikedwithtwoaster-isksaresignificantlydifferentfromthewatercontrolatthe1%level.
Valuesaremeansoffivereplicates.
MacronutrientConcnpHPercentageFlowering(Fl%)Experi-mentalControlW'aterM%Iedimma.
MacronlutrienitsaltsinHutnier'smediumCa(NO3)2-4H20K2HPO4NH4NO3MgSO40.
750.
751.
151.
151.
151.
251.
251.
251.
001.
006.
49.
86.
47.
37.
36.
46.
46.
46.
46.
425.
9**52.
8**7.
428.
7**40.
5**0.
01.
3**3.
9**0.
0**11.
2**4.
715.
24.
74.
715.
24.
715.
249.
615.
249.
668.
366.
368.
368.
366.
368.
266.
782.
466.
782.
415-1916-2015-1915-1916-2015-1916-2015-1916-2015-19b.
TestfortheactiveioInsina-allatpH6.
4NH4NO3KNO3NH4ClMgSO4MgClK2SO4K3HPO4KCICa(NO3)2CaCl21.
251.
251.
251.
001.
001.
001.
150.
920.
750.
753.
9**60.
236.
1**11.
2**4.
0**6.
6**62.
737.
772.
5**73.
3**49.
657.
949.
649.
649.
649.
657.
937.
249.
649.
682.
484.
082.
a82.
482.
482.
484.
070.
482.
482.
415-1915-1815-1915-1915-1915-1915-1815-1915-1915-19Hutner'smedium:Ca(NO3)2,K3HPO4,NH4NO3,andMgSO4.
ThepHofeachsolutionwaseitheradjustedtopH6.
4(asnor-mallyusedinthegrowthmedium)withHClorKOH,orwasleftatitsoriginallevel(TableIla).
Innocasewasthereasignifi-cantdifferenceinfrondnumber.
AsTableIlademonstrates,Ca(NO3)2wasthemosteffectivesaltinpromotingflowering.
K2HPO4waseffectiveatitsoriginalpH7.
3;however,atpH6.
4therewasnosignificantpromotionoffloweringpercentage.
Bothmacronutrientsresultedinfloweringpercentagesignificantlybe-lowthemediumcontrol.
SupplementingthewaterwitheitherNH4NO3orMgSO4hadasignificantinhibitoryeffectonflower-ingcomparedtothewatercontrol.
Inordertoidentifytheactiveionsresponsibleforeitherthepromotionorinhibitionofflowering,theplantsweretransferredtosolutionsofdifferentsalts(TableIIb),thepHofwhichwasadjustedto6.
4,foraperiodof3to4hratthemostsensitivetime.
TheresultsinTableIlbindicatethatNH4+,Mg+2,andS04-2weretheonlyionsactiveininhibitionofflowering,withthelasttwobeingmoreeffective;Ca2+wastheonlyioneffectiveinpro-motionoffloweringpercentagetothelevelofthemediumcon-trol.
DISCUSSIONTheexperimentsindicatethatthefloweringofL.
perpusillagrownunderinductivephotoperiodsonhalf-strengthHutner'sPlantPhysiol.
Vol.
46,1970643https://plantphysiol.
orgDownloadedonDecember14,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
HALABANANDHILLMANmediumwithsucrosecanbestronglyinhibitedbyperiodictransferstowater.
Theinhibitionoffloweringbywatertransferismainlyviaitseffectonphotoperiodicinductionratherthanondevelopmentasawhole,since2daysofrepeatedtreatmentswereenoughtogivesignificantresults.
Thephaseofmaximalinhibitionoffloweringcausedbywatercoincidedonlypartiallywiththephaseofsensitivitytolightpulses.
Waterwasmosteffective16to18hrafterthelightwasturnedon(under8-hrphotoperiods),whichisabout1to2hrafterthephaseofmaximalsensitivitytolightsignals(Fig.
2,compare1-hrwatertreatmentswith2daysoflightpulses).
Thissuggeststhatwaterdoesnotmimicthepigmentconversionproc-essitself,butratherthesubsequentreactionoftheconvertedpigment(probablyphytochrome),whichinturninhibitsphoto-periodicinduction(14).
Thefactpreviouslyreported(8,9),thattheshortdayplantL.
perpusillaflowersunderconstantbluelightcouldhavebeenex-plained,intermsofcircadianrhythmicity,bytheassumptionthattherhythmpersistsundisturbedbutthattheactivephyto-chromeformiskeptatanintermediatelevelsuchthatinhibitionoftheinductivephasedoesnotoccur.
However,theresultsre-portedhereindicatethattherhythmofsensitivitytowatertreat-ment-soevidentunderlight-darkcycles-doesnotpersistundercontinuousbluelight.
Thelackofrhythmicalresponseunderbluelightmaybeduetofastdampingofthecircadianoscillatorortoincreasingasynchronyinthepopulation.
Ifthereisacon-stantincreaseofanasynchronous,out-of-phase,rhythmicpopu-lationunderbluelight,thenonecanexplaintheresultsbyas-sumingthatthesameperiodicinteractionofpigmentandsub-strateoccurs,asinlight-darkconditions,butatalltimesoftheday;therefore,theoutcomeofthewatertreatmentisaslightinhibitionoffloweringirrespectiveofthetimeofapplication.
Anotherquestionconcernstheroleofthemediuminpotentiat-ingthewatereffect.
Uponeliminationofsucrosefromthegrowthmedium,thewatereffectofflowerinhibitiondisappeared.
TheactionofsucrosereportedhereisprobablycloselyrelatedtothesucroseeffectreportedbyPosner(19,20),inwhichdilutionofthemacronutrientsinsucrose-supplementedmediumcausedinhibitionoffloweringofL.
perpusilla.
Thisinhibitionwasnotobservedincultureswithoutsucroseandcouldbeovercomebyincreasingtheconcentrationofcalciumandphosphateions,withthelastonebeingmoreeffective.
Inthepresentcase,Cal+andP043-weretheonlyionsupplementsthatsucceededinovercomingthefloweringinhibitionbywater,suggestingasimilarmechanism.
Thesimilaritygoesevenfurtherwhenoneconsidersthedepend-enceofthewatereffectonthepresenceofammoniumions,sinceHillmanandPosner(inpreparation)foundthatthesugarin-hibitionoffloweringdisappearswhentheplantsaregrownonammonium-freemedium.
Withrespecttothesucroseeffect,however,itshouldbenotedthatattheendofthe7-daygrowthperiodplantsonhalf-strengthHutner'smediumwithoutsucrosehaveproducedaboutone-thirdthenumberoffrondsofplantsonmediumsupplementedwithsucrose.
Therefore,thevalidityofcomparingequivalenttimesoftreatmentsinthesetwodifferentgrowthconditionsisdubious,atleastintheabsenceofinformationontheeffectofmultiplica-tionrateontherateofphotoperiodicinduction.
Similarly,themorepronouncedeffectofwatertransfersinHutner'smedium(withsucrose)modifiedtoprovideammoniaastheonlynitrogensourcemaynotbeduetoaspecialinteractionbetweenwaterandammoniabutrathertothegenerallypoorerfloweringobservedinplantsgrownonthismedium.
Thefloweringofplantson"NH4"+Smediumunderinductivephotoperiodswasconsist-entlylowerthanthatofplantsonmediumsupplementedwithnitrateortryptoneplusyeastextract.
Finally,onemayspeculateastothephysiologicalnatureofthedarkperiodprocesseswithwhichwatertreatmentsinteract.
Onehypothesismightproposetheexistenceofchangesinpermea-bilitywhichaffecttheplant'scapacitytoabsorbortoleaksub-stancesfromandtotheoutsidemedium.
However,itismorelikelythattherhythmisinmetabolicreactions.
Onemayassume,asbasicallysuggestedbyPittendrighandMinis(17,18),thatlight-darkcyclesentrainoscillationinmetabolicactivities,andthatthecoincidenceofparticularconcentrationsof,forexample,anenzymeandasubstrateiscrucialforphotoperiodicinduction.
Watertreatmentsmightcausetheremovalordestructionofasubstrateorintermediate,thusimitatingtheactionofthecon-vertedpigmentbroughtaboutbylightsignals.
Insuchascheme,theeffectivenessofthewatertreatmentmaybedependentonthepermeabilityoftheplants,whichinturnmaybeaffectedbyas-pectsofthegrowthconditionssuchasthepresenceofsucrose,ammonium,calciumorphosphateions(12).
Thisideaissup-portedbytheknownfactthatundermistorrainbothorganicandinorganicsubstancesleachoutofplants(22).
ItwasfurtherdemonstratedbyTukeyetal.
(23)thatthecoincidenceofleachingwithinductiveconditionsinPharbitisnilandChrysanthemummorifoliuminhibitedflowering.
Theresponsetoperiodicwatertreatmentprovidesanewtech-niqueforfurtheranalysisoftheseinteractions.
Acknowledgment-TheauthorsareindebtedtoHelenKellyfortechnicalassistance.
LITERATURECITED1.
BUNsow,R.
C.
1960.
ThecircadianrhythmofphotoperiodicresponsivenessinKalanchoe.
ColdSpringHarborSymp.
Quant.
Biol.
25:257-260.
2.
CUMMING,B.
G.
,S.
B.
HENDRICKS,ANDH.
A.
BORTHWICK.
1965.
Rhythmicflower-ingresponseandphytochromeinaselectionofCheniopodiumrubrum.
Can.
J.
Bot.
43:825-853.
3.
HALABAN,R.
1968.
ThefloweringresponseofColeusinrelationtophotoperiodandthecircadianrhythmofleafmovement.
PlantPhysiol.
43:1894-1898.
4.
HAMNER,K.
C.
1960.
Photoperiodismandcircadianrhythms.
ColdSpringHarborSymp.
Quant.
Biol.
25:269-277.
5.
HAMNER,W.
H.
ANDJ.
T.
ENRIGHT.
1967.
Relationshipsbetweenphotoperiodismandcircadianrhythmsofactivityinthehousefinch.
J.
Exp.
Biol.
46:43-61.
6.
HILLMAN,W.
S.
1959.
ExperimentalcontroloffloweringinLemna.
II.
Someeffectsofmediumcomposition,chelatingagentsandhightemperaturesonfloweringinL.
perpusilla6746.
Amer.
J.
Bot.
46:489-495.
7.
HILLMAN,W.
S.
1964.
EndogenouscircadianrhythmsandtheresponseofLenmnaperpusillatoskeletonphotoperiods.
Amer.
Natur.
98:323-328.
8.
HILLMAN,W.
S.
1965.
Redlight,bluelightandcopperioninthephotoperiodiccontroloffloweringinLemnaperpusilla6746.
PlantCellPhysiol.
3:415-417.
9.
HILLMAN,W.
S.
1967.
Bluelight,phytdchromeandthefloweringofLeinnaperpu-silla6746.
PlantCellPhysiol.
8:467-473.
10.
HILLMAN,W.
S.
1969.
LemniaperpusillaTorr.
,Strain6746.
In:L.
T.
Evans,ed.
,TheInductionofFlowering.
SomeCaseHistories.
MacmillanCo.
ofAustralia,SouthMelbourne.
pp.
186-204.
11.
HILLMAN,W.
S.
1970.
CarbondioxideoutputasanindexofcircadiantiminginLemnzaphotoperiodism.
PlantPhysiol.
45:273-279.
12.
JENNINGS,D.
H.
1963.
TheAbsorptionofSolutesbyPlantCells.
IowaStateUni-versityPress,Ames.
13.
KANDELER,R.
1970.
DieWirkungvonLithiumundADPaufdiePhytochrom-steuerungderBlutenbidung.
Planta90:203-207.
14.
LANG,A.
1965.
Progressivenessandcontagiousnessinplantdifferentiationanddevelopment.
In:W.
Ruhland,ed.
,EncyclopediaofPlantPhysiology,Vol.
XV,Part1.
Springer-Verlag,Berlin.
pp.
409-423.
15.
MENAKER,M.
ANDA.
ESKIN.
1967.
Circadianclockinphotoperiodictimemeasure-ment:AtestoftheBunninghypothesis.
Science157:1182-1185.
16.
MINIs,D.
H.
1965.
Parallelpeculiaritiesintheentrainmentofacircadianrhythmandphotoperiodicinductioninthepinkbollworm(Pectiniophoragossypiella).
in:J.
Aschoff,ed.
,CircadianClocks.
North-HollandPublishingCo.
,Amster-dam.
pp.
333-343.
17.
PiTTENDRIGH,C.
S.
1966.
ThecircadianoscillationinDrosophilapseudoobscurapupae:Amodelforthephotoperiodicclock.
Z.
Pflanzenphysiol.
54:275-307.
18.
PITTENDRIGH,C.
S.
ANDD.
H.
MINIS.
1964.
Theenitrainmentofcircadianoscilla-tionsbylightandtheirroleasphotoperiodclocks.
Amer.
Natur.
98:261-294.
19.
POSNER,H.
B.
1967.
InhibitoryeffectofsucroseonfloweringinLetilnaperpusilla6746andmutantstrain1073.
PlantCellPhysiol.
8:535-539.
20.
POSNER,H.
B.
1969.
InhibitoryeffectofcarbohydrateonfloweringinLenilliaperpusilla.
I.
Interactionofsucrosewithcalciumnandphosphateions.
PlantPhysiol.
44:562-566.
21.
STEEL,R.
G.
D.
ANDJ.
H.
TORRIE.
1960.
Pr-inciplesandProceduresofStatistics.
McGraw-HillBookCo.
,NewYork.
22.
TUKEY,H.
B.
,JR.
1970.
Theleachingofsubstancesfromnplants.
Annu.
Rev.
PlantPhysiol.
21:305-324.
23.
TUKEY,H.
B.
,JR.
,P.
C.
I.
I.
LEE.
1969.
Leachingofgrowthregulatingsubstancesfromplants.
Abst.
IIthInt.
Congr.
,Seattle.
p.
222.
644PlantPhysiol.
Vol.
46,1970https://plantphysiol.
orgDownloadedonDecember14,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
搬瓦工最新优惠码优惠码:BWH3HYATVBJW,节约6.58%,全场通用!搬瓦工关闭香港 PCCW 机房通知下面提炼一下邮件的关键信息,原文在最后面。香港 CN2 GIA 机房自从 2020 年上线以来,网络性能大幅提升,所有新订单都默认部署在香港 CN2 GIA 机房;目前可以免费迁移到香港 CN2 GIA 机房,在 KiwiVM 控制面板选择 HKHK_8 机房进行迁移即可,迁移会改变 IP...
Sharktech又称SK或者鲨鱼机房,是一家主打高防产品的国外商家,成立于2003年,提供的产品包括独立服务器租用、VPS云服务器等,自营机房在美国洛杉矶、丹佛、芝加哥和荷兰阿姆斯特丹等。之前我们经常分享商家提供的独立服务器产品,近期主机商针对云虚拟服务器(CVS)提供优惠码,优惠后XS套餐年付最低仅33.39美元起,支持使用支付宝、PayPal、信用卡等付款方式。下面以XS套餐为例,分享产品配...
需要提前声明的是有网友反馈到,PacificRack 商家是不支持DD安装Windows系统的,他有安装后导致服务器被封的问题。确实有一些服务商是不允许的,我们尽可能的在服务商选择可以直接安装Windows系统套餐,毕竟DD安装的Win系统在使用上实际上也不够体验好。在前面有提到夏季促销的"PacificRack夏季促销PR-M系列和多IP站群VPS主机 年付低至19美元"有提到年付12美元的洛杉...
dvdes-644为你推荐
2017年双11销售额2018年双十一(11.11)淘宝天猫一天的交易额能突破2500亿吗?法兰绒和珊瑚绒哪个好法兰绒和珊瑚绒睡衣哪个好?手机管家哪个好手机管家哪个软件好雅思和托福哪个好考雅思和托福哪个好考?电动牙刷哪个好电动牙刷和普通牙刷哪个好,有何区别?空间登录页面登录QQ空间时,如何使登陆界面不直接进入个人中心?飞信空间登录移动飞信客户端怎么登陆???dns服务器地址dns服务器地址360云盘企业版360企业云盘有免费版吗?最便宜的敞篷车敞篷车大概多少钱一辆便宜点的。
新网域名解析 2019年感恩节 5折 bluevm vps.net java虚拟主机 卡巴斯基官方免费版 服务器监测 域名与空间 丽萨 秒杀品 石家庄服务器托管 万网主机 稳定空间 空间申请 双11促销 闪讯网 godaddy退款 优惠服务器 winserver2008下载 更多