viewsnanosim剪卡

nanosim剪卡  时间:2021-01-17  阅读:()
Spontaneousformationofgrapheneondiamond(111)drivenbyB-dopinginducedsurfacereconstructionChaoLua,b,HongxinYangc,JingXud,LifangXua,MairbekChshievc,ShengbaiZhange,ChangzhiGua,f,g,*aInstituteofPhysics,ChineseAcademyofSciences,Beijing100190,ChinabChinaAcademyofEngineeringPhysics,Mianyang621700,ChinacSPINTEC,UMRCEA/CNRS/UJF-Grenoble1/Grenoble-INP,INAC,GrenobleF-38054,FrancedDepartmentofPhysics,RenminUniversityofChina,Beijing100872,ChinaeDepartmentofPhysics,AppliedPhysicsandAstronomy,RensselaerPolytechnicInstitute,Troy,NY12180,USAfCollaborativeInnovationCenterofQuantumMatter,Beijing,ChinagSchoolofPhysicalSciences,CASKeyLaboratoryofVacuumPhysics,UniversityofChineseAcademyofSciences,Beijing100190,ChinaarticleinfoArticlehistory:Received20November2016Receivedinrevisedform4January2017Accepted10January2017Availableonline11January2017abstractSpontaneousconstructionofgrapheneonboron-dopeddiamond(111)surfacehasbeenfoundinrst-principlescalculations.
Boron-doping-inducedsurfacereconstructionisthemechanismresponsibleforthediamond-to-graphenephasetransition.
Furthermore,theeffectonthesurfaceisunexpectedlyobservedatanydopingdepthdowntothe7thlayer,andalowconcentrationofsubstituentboroneonlyeiseffectiveforgrapheneformation.
Amazingly,whenboronatomsareincorporatedintothefthlayer,thedirectoptimizationofthe11surfaceautomaticallygivesrisetoagraphenestructurefromtherstbilayerwithnoenergybarrier,indicatingthattheformationofgrapheneisspontaneous.
Thesendingsprovideanalternativestrategyforgraphenesynthesisonwide-gapinsulatorswithhighthermalconductivity.
2017ElsevierLtd.
Allrightsreserved.
1.
IntroductionSincesuccessfully"re-discovery"in2004[1,2],graphenehasbeenamaterialofgreatinterestowingtoitsverygoodthermalconductivity,mechanicalstiffnessandextraordinaryelectronictransportproperties[3e5],includinghighcarriermobilityandballistictransport,whicharegenerallypreserveduptoroomtemperature[6e8].
Thesepropertiesgivegraphenegreatpotentialasamaterialfortechnologicalapplicationsasasuccessorofsiliconinthepost-Moore'slawera[9e11],inspintronics[12e15]andinquantumcomputing[16].
Oneofthemainrequirementsforsuchapplicationsisabilitytogrowuniformgrapheneonaninsulatingsubstrate[17].
Unlikesuspendedgraphene,whichisasemi-metal[1,18],epitaxiallygrowngrapheneonaninsulatormayopenabandgapattheDiracpointduetothebreakingofsublatticesym-metryinducedbythegraphene-substrateinteraction[19,20].
Twoinsulatingmaterialsthathavebeenusedverysuccessfullyasasubstrateforgraphenegrowth/synthesisareSiCandhexagonalboronnitride(hBN)[21e23].
Recently,graphene-on-diamondstructuresanddevicesshowedgreatlyimprovedperformance,duetotheexcellentpropertiesofdiamondsubstrate[24e28].
However,fewinvestigationisreportedsofarregardingthepossi-bilityofsynthesizinggraphenedirectlyondiamond[29].
Moreover,averysmalllatticemismatchbetweengrapheneandthediamond(111)surfacemakesthelatteranidealcandidateasasubstrateforgraphene.
Investigatingthepossibilityofgraphenegrowthonadiamondsubstrateisthegoalofthepresentwork,whichmayprovideaviablealternativeforgraphenesynthesisonC-terminatedSiC(0001)andhBN[30,31],andofearlierreportsoflocalgraphi-tizationondiamond(111)surface[32,33].
Thismethodofgraphenesynthesisondiamondisanalternativeforovercomingtheover-heatingproblemingraphene-baseddevices,inviewofthehighthermalconductivityofdiamondcombinedwiththehugeelec-tricalconductivityofgraphene.
Inthisletter,wereportsystematicallyinvestigatingthepossi-bilityofgrapheneconstructiononborondopeddiamond(111)surfaceforvariousdopingconcentrationsanddepths,usingrst-*Correspondingauthor.
InstituteofPhysics,ChineseAcademyofSciences,Beijing100190,China.
E-mailaddress:czgu@iphy.
ac.
cn(C.
Gu).
ContentslistsavailableatScienceDirectCarbonjournalhomepage:www.
elsevier.
com/locate/carbonhttp://dx.
doi.
org/10.
1016/j.
carbon.
2017.
01.
0300008-6223/2017ElsevierLtd.
Allrightsreserved.
Carbon115(2017)388e393principlescalculations,ndingthatgraphenecanformspontane-ouslywithoutanypotentialbarrierwhenBisincorporatedinsurfacelayerswitharelativelylowconcentration.
Incontrasttowhatmightbeexpected,thedoping'seffectonthesurfaceisstrongerastheBatomsarelocateddeeper,untilthe7thlayer,wherethesituationislikesubstitutioninbulk.
Boron-dopinginducedsurfacereconstructionisconsideredtobethephysicalmechanismofthediamond-to-graphenephasetransition.
2.
MethodsOurrst-principlescalculationswerecarriedoutusingtheViennaabinitiosimulationpackage(VASP)[34].
Theelectron-coreinteractionsweredescribedbytheVanderbiltultrasoftpseudopo-tential[35]andtheexchangecorrelationenergyobtainedwithinthegeneralizedgradientapproximation(GGA)[36].
AplanewavebasissetwasusedtoexpandtheKohn-Shamorbitals,withakineticenergycutoffof350eV.
Thetheoreticallatticeconstantofdiamondwastakentobeequalto3.
574inallcalculations,andtheMonkhorst-Packscheme[37]wasusedfortheBrillouinzoneintegrationwitha221k-pointmesh.
Duringenergymini-mization,theatomsaresettobefullyrelaxedexceptthoseinthebottomtwolayers,whicharexedattheirrespectivepositions.
Toavoidinteractionbetweenthetopandbottomsurfaces,18layersofcarbonatomsinthesupercell,withthebottomlayerterminatedbyhydrogenandmorethan15ofvacuum,wasusedtosimulatediamond(111).
Thesideandtopviewsofdiamond(111)areshowninFig.
1(a)and(b),respectively.
Thedistancesfortherstseveralbilayers(BL)arealsoprovided,showingthattherstlayerofcar-bonatomsshiftsinwardandformsstrongerbondswiththesecondlayerofcarbonafterrelaxationinpurediamond(111)surface.
Atthesametime,therstbilayerisshiftedoutwardandformsweakbondswiththesecondbilayer.
However,suchsmallchangeisnotyetenoughtoseparatetherstbilayerofcarbonatomsintogra-phenefromthediamondphase.
3.
ResultsanddiscussionsInordertostimulatethediamond-to-graphenephasetransi-tion,weintroducedboronintodiamond(111)takingintoaccountthatitrepresentsthemostcommonimpurityinbothnaturalandchemicalvapordeposited(CVD)diamond.
Thestabledopingpo-sitionofboronindiamondissubstitutionalratherthaninterstitial[38].
Fig.
2(a)and(b)showtheoptimizedstructureswithboronatomsincorporatedintotherstandthethirdlayersofdiamond(111),respectively.
Onecanseethatwithboronatomsintherstlayer(Fig.
2(a)),theverticaldistancebetweenasurfaceBatomandaneighboringCatomisslightlysmaller(0.
23)thantheverticaldistancebetweenasurfaceCatomandaneighboringCatominpurediamond(0.
27)(Fig.
1(a)).
Whenboronatomsareincorpo-ratedintothethirdlayer(Fig.
2(b)),theverticaldistancebetweenthecarbonatomintherstlayerandthesecond-layerneighborthatsitsontopoftheboronatomisreducedfrom0.
27to0.
05,whilethedistancebetweentherstbilayerandthesecondbilayerisincreasedto2.
0.
Whenboronisdopedintothethirdlayer,itformscovalentbondswiththethreenearestcarbonatomsinthefourthlayersinceithasonlythreeelectronsintheoutershell.
Thus,itleadstoaweakerbondingwithatopcarbonatominthesecondlayer(denotedbyCtop),andthentheinteractionbetweentherstandsecondbilayerbecomesweaker.
Inthiscase,theCtopatomformssp2-likehybridizedbondswiththeneighboringcarbonatomsintherstlayer,whiletheremainingcarbonatomsinthesecondlayerstillformsp3-likebondswiththeircounterpartsintherstlayer.
Additionally,onecanseethat1/4boronconcentrationinthethirdlayerresultsin3/4ofthecarbonatomsintherstlayerformingsp2bondswithCtopatomsinthesecondlayer,eliminating3/4ofthedanglingbondsofthe(111)surface.
Amazingly,whenboronatomsareincorporatedintothefthlayer,thedirectoptimizationof11surfaceautomaticallygivesrisetoagraphenestructurefromtherstbilayerwithnoenergybarrier,indicatingthattheformationofgrapheneisspontaneous(Fig.
2(candd)).
Beingadjustedtothediamondlattice,thedistancebetweenneighborcarbonatomswithinthegraphenelayerisabout1.
45,whichisveryclosetothenearest-neighbordistanceof1.
42ingraphene.
Thedistancebetweengraphenelayeranddiamondsubstratestabilizesatabout3.
30,whichiscomparabletothedistanceof3.
35betweenthelayersingraphite.
Thus,astructuralphasetransitionfromdiamondtographeneondiamond(111)substratetrulyoccurredinthissimulation.
NotethatthestructurebelowthegraphenelayerinFig.
2(d)isverysimilartothethird-layer-dopingstructureinFig.
2(b).
Thesamephasetransitionhappensforthestructurewithboronatomsincorporatedintotheseventhlayer.
Inthiscasethersttwobilayersofdiamond(111)surfacearereconstructedintotwographenelayers.
Whenboronatomsaredopeddeeperbeyondtheseventhlayer,thesituationisinsteadbulkincorporationandhaslittleeffectonthesurface.
Therelativeenergiesoftheboron-dopedstructuresoptimizedabovearesummarizedinFig.
3,representedbybluestars.
Theenergiesdecreasewithdopingdepthinazigzagwaytilltothe7thlayer,andthenabruptlyjumpfromthe8thlayer.
Generally,themorethesp3-to-sp2transitionhappens,thelowertheenergyis.
Fig.
1.
(a)Sideviewofdiamond(111).
(b)Topviewof1bilayerofdiamond(111);biggreyballsrepresentcarbonatomsintherstlayer,whilesmallblueballsindicatecarbonatomsinthesecondlayer.
(Acolourversionofthisgurecanbeviewedonline.
)C.
Luetal.
/Carbon115(2017)388e393389Theenergyofthethird-layer-dopingislowerthantherst-layer-doping,becausethethird-layer-dopingcausesmoresp3-to-sp2transitionsandeliminatesmoresurfacedanglingbonds.
Thefth-layer-doping(seventh-layer-doping)hasevenlowerenergy,becauseithasonelayer(twolayers)ofgrapheneinsteadofonebilayer(twobi-layers)ofdiamondcomparedwiththethird-layer-doping.
Thesecond-,fourth-andsixth-layer-dopinghavehigherenergiesbecausethesestructuresreducethesurfacedanglingbondslessefciently.
OnecanseethatuponBdoping,allrelaxed11diamond(111)surfaceenergiesdecrease,duetotheeliminationofdanglingbonds.
However,those11surfacescanbereconstructedfurthertoPandey-chainstructures[39].
TherelativeenergiesforPandey-chainreconstructionsurfacesarecalculatedandrepresentedbyblackballsinFig.
3,showingthattheenergiessteadilyincreasewithdopingdepthstartingfromthelowestenergyintherstlayer,andnallyapproachingthevalueofthePandey-chainstructureofbulkdoping.
ThisindicatesthatthedopingeffectonthesurfaceisweakerasthedopingboronatomisdeeperinPandey-chainstructures,asexpected.
Nowwecomparetheenergiesbetweenoptimized11surfaceandPandey-chainsurface.
Inmostcases,Pandey-chainsurfacehaslowerenergywhichmeansthat11surfacecanbefurtherreconstructedtoPandey-chainstructure.
However,whenboronisinthefth(seventh)layer,adramaticchangeoccurs:thecrossoverbetweenthebluecurveandblackcurvetakesplace,whereuponthePandey-chainstructurehashigherenergy.
Thisclearlyshowsthatthespontaneouslyformedgrapheneondiamond(111),iftriggeredbyboronincorporationinthefth-layer,isthegroundstateratherthanthereconstructedPandey-chain.
Asthesp2hybridizedbondislowerinenergythanthesp3bonds,suchareconstructionprocessfavorssurfacestabilitymorestrongly[40].
Afterward,ifthesubstratebelowthegraphenelayerinFig.
2(d)isfurtherreconstructedintothePandey-chainstructure,thetotalenergywouldbemuchdecreased,asdenotedFig.
2.
(a)and(b)Optimizeddiamond(111)with1/4ofthecarbonatomsintherstandthirdlayerreplacedbyboronatoms,respectively.
(c)and(d)Initialandoptimizedstructures,respectively,bothwith1/4ofthecarbonatomsinthefthlayerreplacedbyboronatoms.
(e)and(f)Initialandoptimizedstructures,respectively,bothwith1/16borondopingconcentrationinthefthlayer.
Pinkballsrepresentincorporatedboronatoms,andgreyballsindicatecarbonatoms.
In(e)and(f),theblueballsrepresentcarbonatomsbeforeandafterforminghexagonalgraphitestructureintherstbilayer,whilethepurpleballsrepresentcarbonatomsbeforeandafterformingsp2bondswithCtopatom.
(Acolourversionofthisgurecanbeviewedonline.
)C.
Luetal.
/Carbon115(2017)388e393390bytheredsquareinFig.
3.
Whydoesthisstructurephasetransitionfromdiamondsp3tographenesp2happenondiamond(111)surfacewhenboronisdopedatthefthlayer,andwhyis1/4dopingdensityenoughtomakethetransitionTounderstanditsorigin,weinvestigatedatypicalmodelwithasingleBatomina33surfacecellincor-poratedintothefthlayerofdiamond(111)(1/16borondopingconcentration),asshowninFig.
2(e).
Afteroptimization,ahexag-onalgraphene-likestructurewithabondlengthof1.
44bulgesdramaticallyintherstbilayer,showninblueinFig.
2(f).
ThedistancebetweenthethreeCatomsinpurpleatthe3rdlayerandthethreeCatomsatthe2ndlayer,inblue,iselongatedto2.
42,indicatingmuchweakerbonding,ornomorebondingatall,be-tweenthem[41].
Now,wepresentindetailaphysicaldescriptionofhowaBatominducesformationofthegraphene-likering.
Onceaboronatomisincorporatedintothe5thlayer,theBatomformscovalentbondswithitsthreenearestCatomsatthe6thlayer,whileitcreatesadanglingbondonaCtopatomatthe4thlayerrightontopoftheBatom.
Infact,theroleofthedopedBatomatthe5thlayerissimplytointroduceadanglingbondunderneaththeCtopatom.
BoththeCtopatomandallCatomsatthesurfacewithdanglingbondshaveastrongtendencyofchangingfromthesp3statetothesp2stateinordertoreducethenumberofdanglingbonds.
Then,theCtopatomwillnegotiatewiththethreeneigh-boringcarbonatomsatthe3rdlayer,showninpurpleinFig.
2(e),tochangetogethertothesp2state,andsurfaceatomspersuadeCatomsatthe2ndlayertodothesame.
Then,thoseCatomsatthe2ndlayerand3rdlayerwillcommunicatetoaccepttheproposaltobeinthesp2state.
Finally,onecanseethattheCtopislifteduptoanelongateddistanceof1.
89andformssp2hybridizedbondswiththethreeneighboringcarbonatoms,showninpurpleinFig.
2(f),andthesixCatomsontopoftheBintherstbilayerformasp2hexagonalgraphene-likestructure.
Thereupon,thethreebondsbetweenpurplecarbonatomsinthe2ndbilayerandtheblueatomsinthe1stbilayervanish,sinceallofthemhaveonlysp2hybridizedbonds.
Itisworthemphasizingagainthatthethreesp3bondsarenotbroken,butratherdisappearduetothetransitionfromsp3tosp2state.
So,wehaveshownthatasingledopedboronatomatthefthlayerinducesformationofonegraphene-likeringonthesurface.
Byincreasingthedopingconcentrationto1/4,therstbilayeriscompletelygraphitizedasshowninFig.
2(d).
ThisdensityrequiresthateachdopedBatommustinducethetransformationoffourcarbonsp3bondsbetweenthe1stbilayerandthe2ndbilayerintothesp2state.
TwodifferentprocessesareresponsibleforthisphaseFig.
3.
Relativeenergyof1/4borondopeddiamond(111)with11reconstructedandPandey-chainreconstructedsurfacesasfunctionsofthedepthofboronincorporation.
Linesserveonlytoguidetheeye.
(Acolourversionofthisgurecanbeviewedonline.
)Fig.
4.
Chargedistribution(e/2)acrosstheplanedeterminedbyboron(white),thenearestcarbon(black)ontopofboronandoneofthenearestcarbonbelowboronforthe1/4boronincorporatedinfthlayerdiamondofFig.
2(d).
Akeytotheothercolorsisshownontherightsideethegradientfrombluetoredshowschargedensityfromlowertohigher.
(Acolourversionofthisgurecanbeviewedonline.
)C.
Luetal.
/Carbon115(2017)388e393391transition,indirectandindirectmanners,respectively.
Thedirectprocesswasalreadydescribedabove:asingleBatomatthe5thlayercreatesasix-foldgraphite-likering,wherethreesp3bondshavechangedtosp2,inducedbytheBatom.
Now,onemorebondislefttobeunderstood.
Weneedtolookagainatthesix-foldgraphite-likeringstructurecreatedbyasingleBatom.
Onceitisformed,allsixCatomsareinsp2states,inwhichthreeCatomsatthe2ndlayerchangetothesp2state,andthreeCatomsatthe1stlayertransformtothesp2state.
NotethatthethreeCatomsatthe1stlayerwillaffectneighboringCatomsatthe2ndlayer,outsideofthering.
Whenthosegraphite-likeringsformaperiodicstructureinour22surfacecellwith1/4Bdopingdensity,thelastsp3-bondedCatomatthe2ndlayerissurroundedbythreegraphite-likeringsanditconnectstothreerst-layerCatomsintheserings.
Together,thesethreesurroundingsp2-stateCatomsenablethelastsp3-to-sp2transitionofaCatomatthe2ndlayer.
Inordertocheckthispicture,werepeatedthecalculation,eliminatingseveralintermediatestepsduringtheoptimization,showingclearlythatthegrapheneringsappearveryquicklyafterjustafewoptimizationstepsinwhichthreesp3bondsatopeachBatomdisappear,andlater,theBatom'sonlyremainingsp3bondbecomesweakerandweaker,andnallydisappeartoo.
Thisisanindirectprocessandcouldberegardedasa2nd-ordereffectofdopedBatoms,sinceitresultsfromthecollectiveeffortsofthreesurroundedCatomsinthreeringsthatformedearlierintheprocess.
Eventually,boththedirectandindirectprocessestrans-formallCatomsatthe1stbilayerintothesp2statewhereuponthegraphenehasbeenautomaticallyconstructed.
Finally,weplottedthechargedistribution,showninFig.
4,for1/4concentrationofboronincorporatedintothefthlayerindia-mond(111)(asshowninFig.
2(d)).
Inordertoseethedifferencesbetweentheboron-to-CtopbondingandthebondingoftheboronatomtotheCatomsbelowit,wechosetoinvestigatemorecloselytheplaneformedbyaboronatom,itsCtopatomandoneCatombelowtheboron.
Onecanclearlyseethatboron'sbondingtotheCtopatomismuchweakerthanitsbondingtotheCatombelow,indicatingthattheCtopatomhasadanglingbond.
Asaresult,thecarbonatomsinthefourthlayershiftupwardabitandusetheirdanglingbondstoformstrongersp2bondswithcarboninthethirdlayer.
4.
ConclusionsInsummary,weinvestigatedtheformationofgrapheneonboron-dopeddiamond(111)surfacebyusingrst-principlescal-culations,demonstratingthatgraphenecanbespontaneouslyconstructedwith1/4substitutionaldopingofboronatomsinthefthlayerofdiamond(111).
SurfacereconstructioninducedbytheB-dopingisthephysicaloriginoftheobserveddiamond-to-graphenephasetransition.
The1stbi-layerofdiamond(111)be-comesgrapheneduetosurfacereconstruction,drivenbyastrongtendencyofsurfacecarbonatomstotransformtothesp2state,combinedwiththeinuenceofsub-surfacedopingwithBatoms.
Thisresultpavesthewaytoadirectapproachforgraphenesyn-thesisonwidebandgapmaterials,whichwillattractsignicantinterestinviewofthewidespreadquestforgraphene-basedelec-tronicswithhighthermalconductivity.
AcknowledgmentsThisworkissupportedbytheNationalNaturalScienceFoun-dationofChinaunderGrantNos.
51272278,61390503,91323304,and11574369;MOSTunderGrantNo.
2016YFA0200402,XDB07020200,NanosciencesFoundationinGrenobleandFrenchANRPNANOProject"Nanosim-Graphene",andtheU.
S.
DepartmentofEnergyunderGrantNo.
DE-SC0002623.
References[1]K.
S.
Novoselov,A.
K.
Geim,S.
V.
Morozov,D.
Jiang,Y.
Zhang,S.
V.
Dubonos,I.
V.
Grigorieva,A.
A.
Firsov,Electriceldeffectinatomicallythincarbonlms,Science306(2004)666e669.
[2]K.
S.
Novoselov,D.
Jiang,F.
Schedin,T.
J.
Booth,V.
V.
Khotkevich,S.
V.
Morozov,A.
K.
Geim,Two-dimensionalatomiccrystals,Proc.
Natl.
Acad.
Sci.
102(2005)10451e10453.
[3]Y.
Zhang,J.
W.
Tan,H.
L.
Stormer,P.
Kim,ExperimentalobservationofthequantumHalleffectandBerry'sphaseingraphene,Nature438(2005)201e204.
[4]M.
F.
Yu,O.
Lourie,K.
Moloni,T.
F.
Kelly,R.
S.
Ruoff,Strengthandbreakingmechanismofmultiwalledcarbonnanotubesundertensileload,Science287(2000)637e640.
[5]Y.
Zhang,J.
P.
Small,M.
E.
S.
Amori,P.
Kim,Electriceldmodulationofgalva-nomagneticpropertiesofmesoscopicgraphite,Phys.
Rev.
Lett.
94(2005)176803.
[6]V.
V.
Cheianov,V.
Falko,B.
L.
Altshuler,Thefocusingofelectronowandaveselagolensingraphenep-njunctions,Science315(2007)1252e1255.
[7]J.
R.
Williams,L.
Dicarlo,C.
M.
Marcus,Quantumhalleffectinagate-controlledp-nJunctionofgraphene,Science317(2007)638e641.
[8]D.
A.
Abanin,L.
S.
Levitov,QuantizedtransportinGraphenep-njunctionsinamagneticeld,Science317(2007)641e643.
[9]C.
Berger,Z.
Song,T.
Li,X.
Li,A.
Y.
Ogbazghi,R.
Feng,Z.
Dai,A.
N.
Marchenkov,E.
H.
Conrad,P.
N.
First,W.
A.
deHeer,Ultrathinepitaxialgraphite:2Delectrongaspropertiesandaroutetowardgraphene-basednanoelectronics,J.
Phys.
Chem.
B108(2004)19912e19916.
[10]C.
Berger,Z.
Song,X.
Li,X.
Wu,N.
Brown,C.
Naud,D.
Mayou,T.
Li,J.
Hass,A.
N.
Marchenkov,E.
H.
Conrad,P.
N.
First,W.
A.
deHeer,Electronicconnementandcoherenceinpatternedepitaxialgraphene,Science312(2006)1191e1196.
[11]A.
K.
Geim,K.
S.
Novoselov,Theriseofgraphene,Nat.
Mater.
6(2007)183e191.
[12]Y.
-M.
Son,M.
L.
Cohen,S.
G.
Louie,Half-metallicgraphenenanoribbons,Nature444(2006)347e349.
[13]B.
Trauzettel,D.
V.
Bulaev,D.
Loss,G.
Burkard,Spinqubitsingraphenequantumdots,Nat.
Phys.
3(2007)192e196.
[14]T.
Yokoyama,Controllablespintransportinferromagneticgraphenejunc-tions,Phys.
Rev.
B77(2008)073413.
[15]H.
Yang,M.
Chshiev,X.
Waintal,S.
Roche,Proximityeffectsinducedingra-phenebymagneticinsulators:rst-principlescalculationsonspinlteringandexchange-splittinggaps,Phys.
Rev.
Lett.
110(2013)046603.
[16]V.
I.
Falko,Graphene:quantuminformationonchickenwire,Nat.
Phys.
3(2007)151e152.
[17]K.
V.
Emtsev,A.
Bostwick,K.
Horn,J.
Jobst,G.
L.
Kellogg,L.
Ley,J.
L.
McChesney,T.
Ohta,S.
A.
Reshanov,J.
Rohrl,E.
Rotenberg,A.
K.
Schmid,D.
Waldmann,H.
B.
Weber,T.
Seyller,Towardswafer-sizegraphenelayersbyatmosphericpressuregraphitizationofsiliconcarbide,Nat.
Mater.
8(2009)203e207.
[18]S.
Y.
Zhou,G.
-H.
Gweon,A.
V.
Fedorov,P.
N.
First,W.
A.
DeHeer,D.
-H.
Lee,F.
Guinea,A.
H.
CastroNeto,A.
Lanzara,Substrate-inducedbandgapopeninginepitaxialgraphene,Nat.
Mater.
6(2007)770e775.
[19]T.
Ohta,A.
Bostwick,T.
Seyller,K.
Horn,E.
Rotenberg,Controllingtheelec-tronicstructureofbilayergraphene,Science313(2006)951e954.
[20]X.
Y.
Peng,R.
Ahuja,Symmetrybreakinginducedbandgapinepitaxialgra-phenelayersonSiC,NanoLett.
8(2008)4464e4468.
[21]W.
A.
deHeer,C.
Berger,X.
Wu,P.
N.
First,E.
H.
Conrad,X.
Li,T.
Li,M.
Sprinkle,J.
Hass,M.
L.
Sadowski,M.
Potemski,G.
Martinez,Epitaxialgraphene,SolidStateCommun.
143(2007)92e100.
[22]A.
H.
CastroNeto,F.
Guinea,N.
M.
R.
Peres,K.
S.
Novoselov,A.
K.
Geim,Theelectronicpropertiesofgraphene,Rev.
Mod.
Phys.
81(2009)109e162.
[23]D.
M.
Wang,G.
R.
Chen,C.
K.
Li,M.
Cheng,W.
Yang,S.
Wu,G.
B.
Xie,J.
Zhang,J.
Zhao,X.
B.
Lu,P.
Chen,G.
L.
Wang,J.
L.
Meng,J.
Tang,R.
Yang,C.
L.
He,D.
H.
Liu,D.
X.
Shi,K.
Watanabe,T.
Taniguchi,J.
Feng,Y.
B.
Zhang,G.
Y.
Zhang,Thermallyinducedgraphenerotationonhexagonalboronnitride,Phys.
Rev.
Lett.
116(2016)126101.
[24]J.
Yu,G.
Liu,A.
V.
Sumant,V.
Goyal,A.
A.
Balandin,Graphene-on-diamonddeviceswithincreasedcurrent-carryingcapacity:carbonsp2-on-sp3tech-nology,NanoLett.
12(2012)1603e1608.
[25]Y.
Wu,Y.
Liu,A.
A.
Bol,K.
A.
Jenkins,F.
Xia,D.
B.
Farmer,Y.
Zhu,P.
Avouris,High-frequency,scaledgraphenetransistorsondiamond-likecarbon,Nature472(2011)74e78.
[26]F.
Zhao,A.
Vrajitoarea,Q.
Jiang,X.
Y.
Han,A.
Chaudhary,J.
O.
Welch,R.
B.
Jackman,Graphene-Nanodiamondheterostructuresandtheirapplicationtohighcurrentdevices,Sci.
Rep.
5(2015)13771.
[27]K.
Ueda,S.
Aichi,H.
Asano,Directformationofgraphenelayersondiamondbyhigh-temperatureannealingwithaCucatalyst,Diam.
Relat.
Mater.
63(2016)148e152.
[28]K.
J.
Sankaran,T.
H.
Chang,S.
K.
Bikkarolla,S.
S.
Roy,P.
Papakonstantinou,S.
Drijkoningen,P.
Pobedinskas,M.
K.
VanBael,N.
H.
Tai,I.
N.
Lin,K.
Haenen,Growth,structuralandplasmailluminationpropertiesofnanocrystallinediamond-decoratedgraphenenanoakes,RSCAdv.
6(2016)63178e63184.
[29]C.
Z.
Gu,W.
X.
Li,J.
Xu,S.
C.
Xu,C.
Lu,L.
F.
Xu,J.
J.
Li,S.
B.
Zhang,Graphenegrownoutofdiamond,Appl.
Phys.
Lett.
109(2016)162105.
C.
Luetal.
/Carbon115(2017)388e393392[30]L.
Magaud,F.
Hiebel,F.
Varchon,P.
Mallet,J.
-Y.
Veuillen,GrapheneontheC-terminatedSiC(0001)surface:anabinitiostudy,Phys.
Rev.
B79(2009)161405(R).
[31]K.
S.
Novoselov,A.
Mishchenko,A.
Carvalho,A.
H.
CastroNeto,2DmaterialsandvanderWaalsheterostructures,Science353(2016)aac9439.
[32]V.
L.
Kuznetsov,I.
L.
Zilberberg,Y.
V.
Butenko,A.
L.
Chuvilin,Theoreticalstudyoftheformationofclosedcurvedgraphite-likestructuresduringannealingofdiamondsurface,J.
Appl.
Phys.
86(1999)863e870.
[33]Y.
Yan,S.
B.
Zhang,M.
M.
Al-Jassim,Graphite-likesurfacereconstructionsonC{111}andtheirimplicationforn-typediamond,Phys.
Rev.
B66(2002)201401(R).
[34]G.
Kresse,J.
Furthmuller,Efcientiterativeschemesforabinitiototal-energycalculationsusingaplane-wavebasisset,Phys.
Rev.
B54(1996)11169e11186.
[35]D.
Vanderbilt,Softself-consistentpseudopotentialsinageneralizedeigen-valueformalism,Phys.
Rev.
B41(1990)7892e7895.
[36]Y.
Wang,J.
P.
Perdew,Correlationholeofthespin-polarizedelectrongas,withexactsmall-wave-vectorandhigh-densityscaling,Phys.
Rev.
B44(1991)13298e13307.
[37]H.
J.
Monkhorst,J.
D.
Pack,SpecialpointsforBrillouin-zoneintegrations,Phys.
Rev.
B13(1976)5188e5192.
[38]K.
C.
Pandey,Newdimerized-chainmodelforthereconstructionofthedia-mond(111)-(21)surface,Phys.
Rev.
B25(1982)4338e4341.
[39]S.
Samlenski,C.
Haug,R.
Brenn,C.
Wild,R.
Locher,P.
Koidl,CharacterisationandlatticelocationofnitrogenandboroninhomoepitaxialCVDdiamond,Diam.
Relat.
Mater.
5(1996)947e951.
[40]A.
S.
Barnard,M.
Sternberg,Substitutionalboroninnanodiamond,bucky-diamond,andnanocrystallinediamondgrainboundaries,J.
Phys.
Chem.
B110(2006)19307e19314.
[41]S.
N.
Zhao,K.
Larsson,Firstprinciplestudyoftheattachmentofgrapheneontonon-dopedanddopeddiamond(111),Diam.
Relat.
Mater.
66(2016)52e60.
C.
Luetal.
/Carbon115(2017)388e393393

raksmart:年中大促,美国物理机$30/月甩卖;爆款VPS仅月付$1.99;洛杉矶/日本/中国香港多IP站群$177/月

RAKsmart怎么样?RAKsmart发布了2021年中促销,促销时间,7月1日~7月31日!,具体促销优惠整理如下:1)美国西海岸的圣何塞、洛杉矶独立物理服务器低至$30/月(续费不涨价)!2)中国香港大带宽物理机,新品热卖!!!,$269.23 美元/月,3)站群服务器、香港站群、日本站群、美国站群,低至177美元/月,4)美国圣何塞,洛杉矶10G口服务器,不限流量,惊爆价:$999.00,...

pacificrack7月美国便宜支持win VPS,$19.99/年,2G内存/1核/50gSSD/1T流量

pacificrack发布了7月最新vps优惠,新款促销便宜vps采用的是魔方管理,也就是PR-M系列。提一下有意思的是这次支持Windows server 2003、2008R2、2012R2、2016、2019、Windows 7、Windows 10,当然啦,常规Linux系统是必不可少的!1Gbps带宽、KVM虚拟、纯SSD raid10、自家QN机房洛杉矶数据中心...支持PayPal、...

王小玉网-美国洛杉矶2核4G 20元/月,香港日本CN2 2核2G/119元/季,美国300G高防/80元/月!

 活动方案:美国洛杉矶 E5 2696V2 2核4G20M带宽100G流量20元/月美国洛杉矶E5 2696V2 2核4G100M带宽1000G流量99元/季香港CN2 E5 2660V2 2核2G30M CN2500G流量119元/季日本CN2E5 2660 2核2G30M CN2 500G流量119元/季美国300G高防 真实防御E5 2696V2 2核2G30M...

nanosim剪卡为你推荐
台湾主机台湾版本的主机好不好?域名申请申请域名需要什么条件?具体点!急!急!!!香港虚拟空间香港虚拟空间哪家好?免备案虚拟空间备案退两次了。哪里有免备案空间虚拟主机用?北京网站空间一个小型企业网站空间和网站域名一年需要多少钱?韩国虚拟主机韩国虚拟主机好还是香港的好万网虚拟主机万网云虚拟主机怎么用,如何配置大连虚拟主机大连建网站哪里好?云南虚拟主机云南服务器托管淘宝虚拟主机淘宝买万网虚拟主机怎么变别真假
香港主机租用 便宜vps 抗投诉vps主机 域名商 美国独立服务器 罗马假日广场 便宜服务器 kddi patcha 搜狗抢票助手 小米数据库 中国电信测速112 免空 phpmyadmin配置 南通服务器 绍兴电信 域名dns 跟踪路由命令 云服务器比较 测速电信 更多