log公式关于log的公式

log公式  时间:2021-06-16  阅读:()

对数log怎么计算?

一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数.一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数 它实际上就是指数函数的反函数,可表示为x=a^y.因此指数函数里对于a的规定,同样适用于对数函数. 举个例子: log函数就是次方函数的逆运算的。

y=2^x,这就是一个次方函数。

y=2^x的逆函数就是x=log2y。

拓展资料 对数的定义 如果 ,即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作 。

其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。

1.特别地,我们称以10为底的对数叫做常用对数mon logarithm),并记为lg。

2.称以无理数e(e=2.71828...)为底的对数称为自然对数(natural logarithm),并记为ln。

3.零没有对数。

4.在实数范围内,负数无对数。

[3]?在复数范围内,负数是有对数的。

事实上,当 , ,则有e(2k+1)πi+1=0,所以ln(-1)的具有周期性的多个值,ln(-1)=(2k+1)πi。

这样,任意一个负数的自然对数都具有周期性的多个值。

例如:ln(-5)=(2k+1)πi+ln 5。

log 的计算方法

1、a^(log(a)(b))=b 2、log(a)(MN)=log(a)(M)+log(a)(N); 3、log(a)(M÷N)=log(a)(M)-log(a)(N); 4、log(a)(M^n)=nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。

2、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3、与(2)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 4、与(2)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x)e称作自然对数的底] log(a^n)(b^m)=ln(a^n)÷ln(b^n) 由基本性质4可得 log(a^n)(b^m) = [n×ln(a)]÷[m×ln(b)] = (m÷n)×{[ln(a)]÷[ln(b)]} 再由换底公式 log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完)

高中时关于log的一些公式

对数函数的常用简略表达方式:   (1)log(a)(b)=log(a)(b) (a为底数)   (2)lg(b)=log(10)(b) (10为底数)   (3)ln(b)=log(e)(b) (e为底数)   对数函数的运算性质:   如果a〉0,且a不等于1,M>0,N>0,那么:   (1)log(a)(MN)=log(a)(M)+log(a)(N);   (2)log(a)(M/N)=log(a)(M)-log(a)(N);   (3)log(a)(M^n)=nlog(a)(M) (n属于R)   (4)log(a^k)(M^n)=(n/k)log(a)(M) (n属于R)   (5) a^log(a)(N)=N

log和ln的公式

1.log(c)(a*b)=log(c)a+log(c)b --相当于同底数幂相乘,底数不变“指数相加” log(c)(a/b)=log(c)a/log(c)b --相当于同底数幂相除,底数不变“指数相减” 2.log(c)(a^n)=n*log(c)a --相当于幂的乘方,底数不变“指数相乘” log(c^m)(a^n)=(n/m)log(c)a --上式的更一般情况(可由上式和换底公式推出) 3.log(c)a=log(b)a/log(b)c --换底公式 上述是logarithm的几个常用公式。

关于log的公式

当a>0且a≠1时,M>0,N>0,那么:    (e799bee5baa6e79fa5e98193e59b9ee7ad94313333323934621)log(a)(MN)=log(a)(M)+log(a)(N);    (2)log(a)(M/N)=log(a)(M)-log(a)(N);    (3)log(a)(M^n)=nlog(a)(M) (n∈R)    (4)log(a^n)(M)=1/nlog(a)(M)(n∈R)    (5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)   (6)a^(log(b)n)=n^(log(b)a) 证明:   设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)    (7)对数恒等式:a^log(a)N=N;   log(a)a^b=b   (8)由幂的对数的运算性质可得(推导公式)    1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M    2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M    3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M    4.log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M ,   log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M    5.log(a)b×log(b)c×log(c)a=1

古德云香港cn2/美国cn235元/月起, gia云服务器,2核2G,40G系统盘+50G数据盘

古德云(goodkvm)怎么样?古德云是一家成立于2020年的商家,原名(锤子云),古德云主要出售VPS服务器、独立服务器。古德云主打产品是香港cn2弹性云及美西cn2云服务器,采用的是kvm虚拟化构架,硬盘Raid10。目前,古德云香港沙田cn2机房及美国五星级机房云服务器,2核2G,40G系统盘+50G数据盘,仅35元/月起,性价比较高,可以入手!点击进入:古德云goodkvm官方网站地址古德...

Boomer.Host(年付3.5美)休斯敦便宜VPS

Boomer.Host是一家比较新的国外主机商,虽然LEB自述 we’re now more than 2 year old,商家提供虚拟主机和VPS,其中VPS主机基于OpenVZ架构,数据中心为美国得克萨斯州休斯敦。目前,商家在LET发了两款特别促销套餐,年付最低3.5美元起,特别提醒:低价低配,且必须年付,请务必自行斟酌确定需求再入手。下面列出几款促销套餐的配置信息。CPU:1core内存:...

Friendhosting(月1.35欧元),不限流量,9机房可选

今天9月10日是教师节,我们今天有没有让孩子带礼物和花送给老师?我们这边不允许带礼物进学校,直接有校长在门口遇到有带礼物的直接拦截下来。今天有看到Friendhosting最近推出了教师节优惠,VPS全场45折,全球多机房可选,有需要的可以看看。Friendhosting是一家成立于2009年的保加利亚主机商,主要提供销售VPS和独立服务器出租业务,数据中心分布在:荷兰、保加利亚、立陶宛、捷克、乌...

log公式为你推荐
存储区域网络网络存储怎么用?是接在路由器上面吗?4k超高清视频下载为新手推荐几个获取4K片源的途径网络视频下载器那些视频下载器比较全而且好用?手机软件开发工具怎样开发手机软件comexception5种常见的Exception!erp系统教程ERP系统怎样操作,有教学视频吗?泛微协同办公系统泛微软件怎么样?做协同办公的,我要来这做销售前景怎么样?请大家对这个行业或公司了解的给些建议。driversbackup为什么电脑开机时一直进backup system元宝汇热血传奇怎么冲元宝的邮政网关如何注销中国邮政支付网关网上账号
美国域名 黑龙江域名注册 最新代理服务器地址 拜登买域名批特朗普 过期域名抢注 openv hostmaster paypal认证 softbank官网 windows2003iso 国内加速器 mysql主机 e蜗牛 admit的用法 可外链网盘 最好的qq空间 支付宝扫码领红包 idc查询 宏讯 ebay注册 更多