approachstealthy
stealthy 时间:2021-01-12 阅读:(
)
ISSN(Print):2319-5940ISSN(Online):2278-1021InternationalJournalofAdvancedResearchinComputerandCommunicationEngineeringVol.
3,Issue1,January2014CopyrighttoIJARCCEwww.
ijarcce.
com4988DEFENDINGSTEALTHYMODEATTACKBYLIVEDETECTIONANDADOPTABLELEARNINGTECHNIQUEMr.
N.
Aravindhu,G.
Vaishnavi,D.
MaheswariSenoirAssistantProfessor,CSE,ChristcollegeofEngineering&Technology,Puducherry,IndiaStudent,CSE,ChristcollegeofEngineering&Technology,Puducherry,IndiaStudent,CSE,ChristcollegeofEngineering&Technology,Puducherry,IndiaABSTRACT:Thisworkemployeescompletestoppingofthebotnetattackmadebybotmaster.
TheattackismadebypassingthecodewordcommentsbyDNSbasedstealthymodecommandandcontrolchannelfromonesystemtoanothersystemtohijacktheserver.
Usuallywecanabletoidentifytheattackonlyaftertheattackhasbeenmadebythebotmaster.
ButbyusingBotnetTrackingTool(BTT)wecankeeptrackofthecodewordbeingused.
TheattackispreventedbymakinguseoftheBotnetTrackingTool(BTT).
Wecontinuouslymonitortheattackmadebythebotmasterandthebots.
Theattackisconcurrentlycheckedinthedatabaseforthepre-definedcodewordandiftheattackhasbeenfounditwouldbestoppedfromfurtherattack.
Ifsupposethenewcodewordisfoundduringtheattackthatcodewordwouldbestoredinthedatabasefutureuseandthenisolatesthem.
Itdoesnotallowuntilaproperauthorizationismadeandclarifiesthemnotasbotmaster.
Keywords:Networksecurity,codewords,DNSsecurity,botnetdetection,botnettrackingtool(BTT),commandandcontrol.
1.
INTRODUCTIONNetworksecuritystartswithauthentication,usuallywithausernameandapassword.
Thisrequiresonedetailauthenticationtheusernameandthepassword—thisisalsocalledasone-factorauthentication.
Withthetwo-factorauthentication-theuserhasused(e.
g.
asecuritytokenordongle,anATMcardoramobilephone);andwith3-factorauthenticationtheuseralsousedfingerprintorretinalscan.
Whenitisauthenticating,afirewallenforcesaccesspoliciessuchastheserviceswhichareallowsthenetworkuserstoaccessthenetwork.
Theeffectivenessofpreventingtheunauthorizedaccess,thiscomponentmayfailtocheckpotentiallyharmfulcontentsuchascomputerwormsorTrojansbeingtransmittedoverthenetwork.
Anti-virussoftwareoranintrusionpreventionsystem(IPS)helpdetectandinhibittheactionofsuchmalware.
Ananomaly-basedintrusiondetectionsystemmayalsomonitorthenetworkandtrafficfornetworkmaybeloggedforauditpurposesandforlaterhigh-levelanalysis.
Communicationbetweentwohostsusinganetworkmaybeencryptedtomaintainprivacy[1].
Ageneralconceptincludingasspecialcasesuchattributesasreliability,availability,safety,integrity,maintainability,etcSecuritybringsinconcernsforconfidentiality,inadditiontoavailabilityandintegrityBasicdefinitionsaregivenfirstTheyarethencommentedupon,andsupplementedbyadditionaldefinitions,whichaddressthethreatstodependabilityandsecurity(faults,errors,failures),theirattributes,andthemeansfortheirachievement(faultprevention,faulttolerance,faultremoval,faultforecasting)Theaimistoexplicateasetofgeneralconcepts,ofrelevanceacrossawiderangeofsituationsand,therefore,helpingcommunicationandcooperationamonganumberofscientificandtechnicalcommunities,includingonesthatareconcentratingonparticulartypesofsystem,ofsystemfailures,orofcausesofsystemfailures[3].
Thetermbotisshortforrobot.
Criminalsdistributemalicioussoftware(alsoknownasmalware)thatcanturnyourcomputerintoabot(alsoknownasazombie).
Whenthisoccurs,yourcomputercanperformautomatedtasksovertheInternet,withoutyouknowingit.
Criminalstypicallyusebotstoinfectlargenumbersofcomputers.
Thesecomputersformanetwork,orabotnet.
Criminalsusebotnetstosendoutspamemailmessages,spreadISSN(Print):2319-5940ISSN(Online):2278-1021InternationalJournalofAdvancedResearchinComputerandCommunicationEngineeringVol.
3,Issue1,January2014CopyrighttoIJARCCEwww.
ijarcce.
com4989viruses,attackcomputersandservers,andcommitotherkindsofcrimeandfraud.
Ifyourcomputerbecomespartofabotnet,yourcomputermightslowdownandyoumightinadvertentlybehelpingcriminals.
2.
RELATEDWORK2.
1FINDINGMALICIOUSDOMAINSUSINGPASSIVEDNSANALYSISInthispaper,weintroduceEXPOSURE,asystemthatemployslarge-scale,passiveDNSanalysistechniquestodetectdomainsthatareinvolvedinmaliciousactivity.
Weuse15featuresthatweextractfromtheDNStrafficthatallowustocharacterizedifferentpropertiesofDNSnamesandthewaysthattheyarequeried.
Ourexperimentswithalarge,real-worlddatasetconsistingof100billionDNSrequests,andareal-lifedeploymentfortwoweeksinanISPshowthatourapproachisscalableandthatweareabletoautomaticallyidentifyunknownmaliciousdomainsthataremisusedinavarietyofmaliciousactivity(suchasforbotnetcommandandcontrol,spamming,andphishing)[4].
2.
2DETECTIONOFDNSANOMALIESUSINGFLOWDATAANALYSISThispaperdescribesalgorithmsusedtomonitoranddetectcertaintypesofattackstotheDNSinfrastructureusingflowdata.
Ourmethodologyisbasedonalgorithmsthatdonotrelyonknownsignatureattackvectors.
Theeffectivenessofoursolutionisillustratedwithrealandsimulatedtrafficexamples.
Inoneexample,wewereabletodetectatunnelingattackwellbeforetheappearanceofpublicreportsofit[5].
3.
EXISTINGSYSTEMInitiallyanattackbythebotmasterismadeandtheaftertheattacktheyhaveidentifiedthatanattackhasbeenmade.
Theyhavecheckedexperimentalevaluationmakesuseofatwo-month-long4.
6-GBcampusnetworkdatasetand1milliondomainnamesobtainedfromalexa.
com.
TheyhaveconcludedthattheDNS-basedstealthycommandand-controlchannel(inparticular,thecodewordmode)canbeverypowerfulforattackers,showingtheneedforfurtherresearchbydefendersinthisdirection.
ThestatisticalanalysisofDNSpayloadasacountermeasurehaspracticallimitationsinhibitingitslargescaledeployment.
inthisdirection.
ThestatisticalanalysisofDNSpayloadasacountermeasurehaspracticallimitationsinhibitingitslargescaledeployment.
Theyhavebeenabletoidentifyitonlyaftertheattackhasbeenmade.
.
Botnetcommand-and-control(C&C)channelusedbybotsandbotmastertocommunicatewitheachother,e.
g.
,forbotstoreceiveattackcommandsandmodifyfrombotmaster,astolendata.
AC&Cchannelforabotnetneedstobereliableone.
ManybotmasterusedtheInternetRelayChatprotocol(IRC)orHTTPserverstosendinformation.
Botnetoperatorscontinuouslyexplorenewstealthycommunicationmechanismstoevadedetection.
HTTP-basedcommandandcontrolisdifficulttodistinguishthelegitimatewebtraffic.
WedonotallowbotstosubmitDNSqueriestoeradicatedetection.
WeonlyallowbotstoeitherpiggybacktheirquerieswithlegitimateDNSqueriesfromtthehost,orfollowaquerydistribution.
OurimplementationusesthePythonModularDNSServer(pymds)andadesignedplug-intorespondtoDNSrequests.
PyMDSimplementsthefullDNSprotocolwhileallowingtheusertoimplementaprogrammaticanddynamicbackendtocreatetheDNSrecordsreturned.
Insteadofreturningrecordsfromastaticfile,PyMDSallowedforthedecodingofcodewordsandthegenerationofappropriateresponses.
Toevaluatethepiggybackquerystrategy,ourdatasetisatwo-month-longnetworktraceobtainedfromauniversityandcollectedwiththeIPAudittool.
Astaticapproachistohaveabotmastercreateanorderedlistofdomainnamesandpackthelistinmalwarecodeforbottolookup,whichissametotheuseofaone-timepasswordpadforauthentication.
Botnetshavebeentousesubdirectoriesfordirectcommunication,However,foraDNS-tunneling-basedchannel,subdirectoryapproachdoesnotapply,asthebotmasterdoesnotrunawebserverandtheISSN(Print):2319-5940ISSN(Online):2278-1021InternationalJournalofAdvancedResearchinComputerandCommunicationEngineeringVol.
3,Issue1,January2014CopyrighttoIJARCCEwww.
ijarcce.
com4990communicationisbasedsolelyondomainnamesystems.
Consideringthatbotnetsoftenusethird-leveldomainsinsteadofsubdirectories,Dagonproposedtousetheratiobetweensecond-leveldomains(SLDs)andthird-leveldomains(3LDs)toidentifybotnettraffic.
DNS-basedstealthymessagingsystemsthatrequiresdeeppacketinspectionandstatisticalanalysis.
Deeppacketinspectionexaminespacketpayloadbeyondthepacketheader.
Specifically,wequantitativelyanalyzetheprobabilitydistributionsof(bot's)DNS-packetcontent.
.
.
3.
1DRAWBACKSINEXISTINGSYSTEMAbletoidentifyabotmasteronlyafteranattackhasbeenmade.
Itcannotpreventorpredictanattacksotheycan'tprotectit.
DidnotcheckitinLive.
BotMastercannotbecaughtredhanded.
4.
PROPOSEDSYSTEMItusesstochasticimplementationofmarkovschainlinkanalysisalgorithmtocorrelatewithhistoryindatabase.
Thismethodisusedtostorethenewattackwhichisdetectedlivelyduringprocessintothedatabase.
AdiscreteMarkovchainmodelcanbedefinedbythetuple.
Scorrespondstothestatespace,Aisamatrixrepresentingtransitionprobabilitiesfromonestatetoanother.
λistheinitialprobabilitydistributionofthestatesinS.
ThefundamentalpropertyofMarkovmodelisthedependencyonthepreviousstate.
Ifthevectors[t]denotestheprobabilityvectorforallthestatesattime't',then:Ifthereare'n'statesinourMarkovchain,thenthematrixoftransitionprobabilitiesAisofsizenxn.
Markovchainscanbeappliedtoweblinksequencemodeling.
Inthisformulation,aMarkovstatecancorrespondtoanyofthefollowing:URI/URLHTTPrequestAction(suchasadatabaseupdate,orsendingemail)ThematrixAcanbeestimatedusingmanymethods.
Withoutlossofgenerality,themaximumlikelihoodprincipleisappliedinthispapertoestimateAandλ.
EachofthematrixA[s,s']canbeestimatedasfollows:C(s,s')isthecountofthenumberoftimess'followssinthetrainingdata.
AlthoughMarkovchainshavebeentraditionallyusedtocharacterizeasymptoticpropertiesofrandomvariables,weutilizethetransitionmatrixtoestimateshort-termlinkpredictions.
AnelementofthematrixA,sayA[s,s']canbeinterpretedastheprobabilityoftransitioningfromstatestos'inonestep.
SimilarlyanelementofA*Awilldenotetheprobabilityoftransitioningfromonestatetoanotherintwosteps,andsoon.
Giventhe"linkhistory"oftheuserL(t-k),L(t-k+1).
.
.
.
L(t-1),wecanrepresenteachlinkasavectorwithaprobability1atthatstateforthattime(denotedbyi(t-k),i(t-k+1).
.
.
i(t-1)).
TheMarkovChainmodelsestimationoftheprobabilityofbeinginastateattime't'isshowninequation4.
TheMarkovianassumptioncanbevariedinavarietyofways.
Inourproblemoflinkprediction,wehavetheuser'shistoryavailable;however,aprobabilityISSN(Print):2319-5940ISSN(Online):2278-1021InternationalJournalofAdvancedResearchinComputerandCommunicationEngineeringVol.
3,Issue1,January2014CopyrighttoIJARCCEwww.
ijarcce.
com4991distributioncanbecreatedaboutwhichofthepreviouslinksare"goodpredictors"ofthenextlink.
ThereforeweproposevaianctsoftheMarkovprocesstoaccommodateweightingofmorethanonehistorystate.
Inthefollowingequations,wecanseetheateachofthepreviouslinksareusedtopredictthefuturelinksandcombinedinavarietyofways.
ItisworthnotingthatratherthancomputeA*Aandhigherpowersofthetransitionmatrix,theseaybedirectlyestimatedusingthetrainingdata.
Inpractice,thestateprobablilityvectors(t)canbenormalizedandthresholdedinordertoselectalistof"probablelinks/stated"thatheuserwillchoose.
4.
1BOTNETTRACKINGTOOLBotnettrackingtoolisimpliedtodetectthebotnetattacklivelyinthenetwork.
Thistoolisusedtoreviewtheprocesswhichisgoingon.
Inthisthedetectionofanyattackwillbedetected.
Itusesmachineadoptablelearningtechniqueforpreventionofforthcomingattacks.
Thismethodisusedtosaycompletelyabouttheattackwhichischeckedwiththedatabasethatitisanattackornot.
Ifitisanattackthenitwillbestoppedfromfurtherprocess.
Ifitisfoundthatitisnotanattackthenitallowsittodotheprocess.
Someofthemostsuccessfuldeeplearningmethodsinvolveartificialneuralnetworks.
DeepLearningNeuralNetworksdatebackatleasttothe1980NeocognitronbyKunihikoFukushima.
Itisinspiredbythe1959biologicalmodelproposedbyNobellaureateDavidH.
Hubel&TorstenWiesel,whofoundtwotypesofcellsinthevisualprimarycortex:simplecellsandcomplexcells.
Manyartificialneuralnetworkscanbeviewedascascadingmodelsofcelltypesinspiredbythesebiologicalobservations.
Withtheadventoftheback-propagationalgorithm,manyresearcherstriedtotrainsuperviseddeepartificialneuralnetworksfromscratch,initiallywithlittlesuccess.
SeppHochreiter'sdiplomathesisof1991formallyidentifiedthereasonforthisfailureinthe"vanishinggradientproblem,"whichnotonlyaffectmany-layeredfeedforwardnetworks,butalsorecurrentneuralnetworks.
Thelatteraretrainedbyunfoldingtheintoverydeepfeedforwardnetworks,whereanewlayeriscreatedforeachtimestepofaninputsequenceprocessedbythenetwork.
Aserrorspropagatefromlayertolayer,theyshrinkexponentiallywiththenumberoflayers.
Toovercomethisproblem,severalmethodswereproposed.
OneisJurgenSchmidhuber'smulti-levelhierarchyofnetworks(1992)pre-trainedonelevelatatimethroughunsupervisedlearning,fine-tunedthroughbackpropagation.
Hereeachlevellearnsacompressedrepresentationoftheobservationsthatisfedtothenextlevel.
Anothermethodisthelongshorttermmemory(LSTM)networkof1997byHochreiter&Schmidhuber.
In2009,deepmultidimensionalLSTMnetworksdemonstratedthepowerofdeeplearningwithmanynonlinearlayers,bywinningthreeICDAR2009competitionsinconnectedhandwritingrecognition,withoutanypriorknowledgeaboutthethreedifferentlanguagestobelearned.
Whathasattractedthemostinterestinneuralnetworksisthepossibilityoflearning.
Givenaspecifictasktosolve,andaclassoffunctionsF,learningmeansusingasetofobservationstofindwhichsolvesthetaskinsomeoptimalsense.
TheentailsdefiningacostfunctionC:F->IRsuchthat,fortheoptimalsolution,-i.
e.
,noISSN(Print):2319-5940ISSN(Online):2278-1021InternationalJournalofAdvancedResearchinComputerandCommunicationEngineeringVol.
3,Issue1,January2014CopyrighttoIJARCCEwww.
ijarcce.
com4992solutionhasacostlessthanthecostoftheoptimalsolution(seeMathematicaloptimization).
ThecostfunctionCisanimportantconceptinlearning,asitisameasureofhowfarawayaparticularsolutionisfromanoptimalsolutiontotheproblemtobesolved.
Learningalgorithmsearchthroughthesolutionspacetofindafunctionthathasthecost.
smallestpossible.
4.
2ADVANTAGESOFPROPOSEDSYSTEMAbletoidentifybotmasterbeforeanattackismade.
CanbeinLiveNetwork.
Trackingtoolcanidentifiesthewholechainofnetworkinvolvedinattack.
Toolcreatedwhichwillisolatethebotmasterandwouldnotbeallowedtobeexecutedatanytime.
5.
CONCLUSIONBotnettrackingtoolexperimentedbygivingattackingcodewordedmessagesthroughthebotsnetworksothatserverwilllivelydetectthestatusofthesystemsthatareincommunicationandthosesystemsalsowillbeundersurveillance.
Databasehistorywillbecomparedwiththecodedmessagessoastopreventanyattackingkeywordssenttoanysecureddatabase.
Itdynamicallyupdatesthecurrentattacktakesplacebylearningthenewtechniqueapplied.
5.
ACKNOWLEDGMENTSOurthankstotheexpertswhohavecontributedtowardsdevelopmentofthetemplate.
REFERENCES[1]http://en.
wikipedia.
org/wiki/Network_securityDing,W.
andMarchionini,G.
1997AStudyonVideoBrowsingStrategies.
TechnicalReport.
UniversityofMarylandatCollegePark.
[2]http://dl.
acm.
org/citation.
cfmid=1026492Tavel,P.
2007ModelingandSimulationDesign.
AKPetersLtd.
[3]http://65.
54.
113.
26/Publication/1436760Forman,G.
2003.
Anextensiveempiricalstudyoffeatureselectionmetricsfortextclassification.
J.
Mach.
Learn.
Res.
3(Mar.
2003),1289-1305.
[4]L.
Bilge,E.
Kirda,C.
Kruegel,andM.
Balduzzi,"Exposure:FindingMaliciousDomainsUsingPassiveDNSAnalysis,"Proc.
18thAnn.
NetworkandDistributedSystemSecuritySymp.
(NDSS),Feb.
2011.
[5]A.
Karasaridis,K.
S.
Meier-Hellstern,andD.
A.
Hoeflin,"DetectionofDNSAnomaliesUsingFlowDataAnalysis,"Proc.
IEEEGlobeCom,2006.
[6]C.
J.
Dietrich,C.
Rossow,F.
C.
Freiling,H.
Bos,M.
vanSteen,andN.
Pohlmann,"OnBotnetsthatUseDNSforCommandandControl,"Proc.
EuropeanConf.
ComputerNetworkDefense,Sept.
2011.
[7]E.
Kartaltepe,J.
Morales,S.
Xu,andR.
Sandhu,"SocialNetwork-BasedBotnetCommand-and-Control:EmergingThreatsandCountermeasures,"Proc.
EighthInt'lConf.
AppliedCryptographyandNetworkSecurity(ACNS).
[8]S.
Yadav,A.
K.
K.
Reddy,A.
N.
Reddy,andS.
Ranjan,"DetectingAlgorithmicallyGeneratedMaliciousDomainNames,"Proc.
10thAnn.
Conf.
InternetMeasurement(IMC'10).
[9]P.
Butler,K.
Xu,andD.
Yao,"QuantitativelyAnalyzingStealthyCommunicationChannels,"Proc.
NinthInt'lConf.
AppliedCryptographyandNetworkSecurity(ACNS'11).
[10]G.
Ollmann,"BotnetCommunicationTopologies:UnderstandingtheIntricaciesofBotnetCommand-andControl,"https://www.
damballa.
com/downloads/r_pubs/WP_BotnetCommunications_Primer.
pdf,2013.
[11]S.
Yadav,A.
K.
K.
Reddy,A.
N.
Reddy,andS.
Ranjan,"DetectingAlgorithmicallyGeneratedMaliciousDomainNames,"Proc.
10thAnn.
Conf.
InternetMeasurement(IMC'10),pp.
48-61,2010.
[12]http://www.
microsoft.
com/security/resources/botnet-whatis.
aspx
快云科技怎么样?快云科技是一家成立于2020年的新起国内主机商,资质齐全 持有IDC ICP ISP等正规商家。云服务器网(yuntue.com)小编之前已经介绍过很多快云科技的香港及美国云服务器了,这次再介绍一下新的优惠方案。目前,香港云沙田CN2云服务器低至29元/月起;美国超防弹性云/洛杉矶CUVIP低至33.6元/月起。快云科技的云主机架构采用KVM虚拟化技术,全盘SSD硬盘,RAID10...
昔日数据怎么样?昔日数据新上了湖北十堰云服务器,湖北十堰市IDC数据中心 母鸡采用e5 2651v2 SSD MLC企业硬盘 rdid5阵列为数据护航 100G高防 超出防御峰值空路由2小时 不限制流量。目前,国内湖北十堰云服务器,首月6折火热销售限量30台价格低至22元/月。(注意:之前有个xrhost.cn也叫昔日数据,已经打不开了,一看网站LOGO和名称为同一家,有一定风险,所以尽量不要选择...
今天看到群里的老秦同学在布局自己的网站项目,这个同学还是比较奇怪的,他就喜欢用这些奇怪的域名。比如前几天看到有用.in域名,个人网站他用的.me域名不奇怪,这个还是常见的。今天看到他在做的一个范文网站的域名,居然用的是 .asia 后缀。问到其理由,是有不错好记的前缀。这里简单的搜索到.ASIA域名的新注册价格是有促销的,大约35元首年左右,续费大约是80元左右,这个成本算的话,比COM域名还贵。...
stealthy为你推荐
注册国际域名注册国际域名时的地址怎么填写?成都虚拟空间成都市规划信息技术中心如何?网站空间免备案想买一个网站空间,大家给推荐个稳定的,速度的,免备案的?山东虚拟主机济宁梦网科技成都虚拟主机一个虚拟主机最多支持几个子目录呢?一个百度推广账户是不是只能推广一个主域名下的网站?买域名购买域名去哪个平台比较有优势域名服务器服务器与域名的区别动态域名解析如何解析动态域名域名抢注域名怎么抢注?com域名.com与.com.cn域名有什么区别
绍兴服务器租用 香港vps 国外免费vps 域名备案批量查询 oneasiahost pccw godaddy支付宝 512au godaddy域名证书 架设服务器 联通网站 海外空间 cxz 什么是web服务器 申请免费空间 发证机构 web服务器有哪些 以下 let 什么是云主机 更多