detailedwindtour

windtour  时间:2021-05-25  阅读:()
MarkovchainMonteCarloMachineLearningSummerSchool2009http://mlg.
eng.
cam.
ac.
uk/mlss09/IainMurrayhttp://www.
cs.
toronto.
edu/~murray/AstatisticalproblemWhatistheaverageheightoftheMLSSlecturersMethod:measuretheirheights,addthemupanddividebyN=20.
WhatistheaverageheightfofpeoplepinCambridgeCEp∈C[f(p)]≡1|C|p∈Cf(p),"intractable"≈1SSs=1fp(s),forrandomsurveyofSpeople{p(s)}∈CSurveyingworksforlargeandnotionallyinnitepopulations.
SimpleMonteCarloStatisticalsamplingcanbeappliedtoanyexpectation:Ingeneral:f(x)P(x)dx≈1SSs=1f(x(s)),x(s)P(x)Example:makingpredictionsp(x|D)=P(x|θ,D)P(θ|D)dθ≈1SSs=1P(x|θ(s),D),θ(s)P(θ|D)Moreexamples:E-stepstatisticsinEM,BoltzmannmachinelearningPropertiesofMonteCarloEstimator:f(x)P(x)dx≈f≡1SSs=1f(x(s)),x(s)P(x)Estimatorisunbiased:EP({x(s)})f=1SSs=1EP(x)[f(x)]=EP(x)[f(x)]Varianceshrinks∝1/S:varP({x(s)})f=1S2Ss=1varP(x)[f(x)]=varP(x)[f(x)]/S"Errorbars"shrinklike√SAdumbapproximationofπP(x,y)=10S=12;a=rand(S,2);4*mean(sum(a.
*a,2)S=1e7;a=rand(S,2);4*mean(sum(a.
*a,2)4*quadl(@(x)sqrt(1-x.
^2),0,1,tolerance)Givesπto6dp'sin108evaluations,machineprecisionin2598.
(NBMatlab'squadlfailsatzerotolerance)Otherlecturersarecoveringalternativesforhigherdimensions.
Noapprox.
integrationmethodalwaysworks.
SometimesMonteCarloisthebest.
Eye-ballingsamplesSometimessamplesarepleasingtolookat:(ifyou'reintogeometricalcombinatorics)FigurebyProppandWilson.
Source:MacKaytextbook.
Sanitycheckprobabilisticmodellingassumptions:DatasamplesMoBsamplesRBMsamplesMonteCarloandInsomniaEnricoFermi(1901–1954)tookgreatdelightinastonishinghiscolleagueswithhisremakablyaccuratepredictionsofexperimentalresults.
.
.
herevealedthathis"guesses"werereallyderivedfromthestatisticalsamplingtechniquesthatheusedtocalculatewithwheneverinsomniastruckintheweemorninghours!
—ThebeginningoftheMonteCarlomethod,N.
MetropolisSamplingfromaBayesnetAncestralpassfordirectedgraphicalmodels:—sampleeachtoplevelvariablefromitsmarginal—sampleeachothernodefromitsconditionalonceitsparentshavebeensampledSample:AP(A)BP(B)CP(C|A,B)DP(D|B,C)EP(D|C,D)P(A,B,C,D,E)=P(A)P(B)P(C|A,B)P(D|B,C)P(E|C,D)SamplingtheconditionalsUselibraryroutinesforunivariatedistributions(andsomeotherspecialcases)Thisbook(freeonline)explainshowsomeofthemworkhttp://cg.
scs.
carleton.
ca/~luc/rnbookindex.
htmlSamplingfromdistributionsDrawpointsuniformlyunderthecurve:ProbabilitymasstoleftofpointUniform[0,1]SamplingfromdistributionsHowtoconvertsamplesfromaUniform[0,1]generator:FigurefromPRML,Bishop(2006)h(y)=y∞p(y)dyDrawmasstoleftofpoint:uUniform[0,1]Sample,y(u)=h1(u)Althoughwecan'talwayscomputeandinverth(y)RejectionsamplingSamplingunderneathaP(x)∝P(x)curveisalsovalidDrawunderneathasimplecurvekQ(x)≥P(x):–DrawxQ(x)–heightuUniform[0,kQ(x)]DiscardthepointifaboveP,i.
e.
ifu>P(x)ImportancesamplingComputingP(x)andQ(x),thenthrowingxawayseemswastefulInsteadrewritetheintegralasanexpectationunderQ:f(x)P(x)dx=f(x)P(x)Q(x)Q(x)dx,(Q(x)>0ifP(x)>0)≈1SSs=1f(x(s))P(x(s))Q(x(s)),x(s)Q(x)ThisisjustsimpleMonteCarloagain,soitisunbiased.
Importancesamplingapplieswhentheintegralisnotanexpectation.
Divideandmultiplyanyintegrandbyaconvenientdistribution.
Importancesampling(2)PreviousslideassumedwecouldevaluateP(x)=P(x)/ZPf(x)P(x)dx≈ZQZP1SSs=1f(x(s))P(x(s))Q(x(s))r(s),x(s)Q(x)≈1SSs=1f(x(s))r(s)1Ssr(s)≡Ss=1f(x(s))w(s)ThisestimatorisconsistentbutbiasedExercise:ProvethatZP/ZQ≈1Ssr(s)SummarysofarSumsandintegrals,oftenexpectations,occurfrequentlyinstatisticsMonteCarloapproximatesexpectationswithasampleaverageRejectionsamplingdrawssamplesfromcomplexdistributionsImportancesamplingappliesMonteCarloto'any'sum/integralApplicationtolargeproblemsWeoftencan'tdecomposeP(X)intolow-dimensionalconditionalsUndirectedgraphicalmodels:P(x)=1Zifi(x)PosteriorofadirectedgraphicalmodelP(A,B,C,D|E)=P(A,B,C,D,E)P(E)Weoftendon'tknowZorP(E)ApplicationtolargeproblemsRejection&importancesamplingscalebadlywithdimensionalityExample:P(x)=N(0,I),Q(x)=N(0,σ2I)Rejectionsampling:Requiresσ≥1.
Fractionofproposalsaccepted=σDImportancesampling:Varianceofimportanceweights=σ221/σ2D/21Innite/undenedvarianceifσ≤1/√2Importancesamplingweightsw=0.
00548w=1.
59e-08w=9.
65e-06w=0.
371w=0.
103w=1.
01e-08w=0.
111w=1.
92e-09w=0.
0126w=1.
1e-51MetropolisalgorithmPerturbparameters:Q(θ;θ),e.
g.
N(θ,σ2)Acceptwithprobabilitymin1,P(θ|D)P(θ|D)OtherwisekeepoldparametersThissubgurefromPRML,Bishop(2006)Detail:Metropolis,asstated,requiresQ(θ;θ)=Q(θ;θ)MarkovchainMonteCarloConstructabiasedrandomwalkthatexplorestargetdistP(x)Markovsteps,xtT(xt←xt1)MCMCgivesapproximate,correlatedsamplesfromP(x)TransitionoperatorsDiscreteexampleP=3/51/51/5T=2/31/21/21/601/21/61/20Tij=T(xi←xj)PisaninvariantdistributionofTbecauseTP=P,i.
e.
xT(x←x)P(x)=P(x)AlsoPistheequilibriumdistributionofT:Tomachineprecision:T1000@1001A=0@3/51/51/51A=PErgodicityrequires:TK(x←x)>0forallx:P(x)>0,forsomeKDetailedBalanceDetailedbalancemeans→x→xand→x→xareequallyprobable:T(x←x)P(x)=T(x←x)P(x)Detailedbalanceimpliestheinvariantcondition:xT(x←x)P(x)=P(x)¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨B1xT(x←x)Enforcingdetailedbalanceiseasy:itonlyinvolvesisolatedpairsReverseoperatorsIfTsatisesstationarity,wecandeneareverseoperatorT(x←x)∝T(x←x)P(x)=T(x←x)P(x)xT(x←x)P(x)=T(x←x)P(x)P(x)Generalizedbalancecondition:T(x←x)P(x)=T(x←x)P(x)alsoimpliestheinvariantconditionandisnecessary.
Operatorssatisfyingdetailedbalancearetheirownreverseoperator.
Metropolis–HastingsTransitionoperatorProposeamovefromthecurrentstateQ(x;x),e.
g.
N(x,σ2)Acceptwithprobabilitymin1,P(x)Q(x;x)P(x)Q(x;x)OtherwisenextstateinchainisacopyofcurrentstateNotesCanuseP∝P(x);normalizercancelsinacceptanceratioSatisesdetailedbalance(shownbelow)QmustbechosentofullltheothertechnicalrequirementsP(x)·T(x←x)=P(x)·Q(x;x)min1,P(x)Q(x;x)P(x)Q(x;x)!
=min"P(x)Q(x;x),P(x)Q(x;x)"=P(x)·Q(x;x)min1,P(x)Q(x;x)P(x)Q(x;x)!
=P(x)·T(x←x)Matlab/Octavecodefordemofunctionsamples=dumb_metropolis(init,log_ptilde,iters,sigma)D=numel(init);samples=zeros(D,iters);state=init;Lp_state=log_ptilde(state);forss=1:iters%Proposeprop=state+sigma*randn(size(state));Lp_prop=log_ptilde(prop);iflog(rand)<(Lp_prop-Lp_state)%Acceptstate=prop;Lp_state=Lp_prop;endsamples(:,ss)=state(:);endStep-sizedemoExploreN(0,1)withdierentstepsizesσsigma=@(s)plot(dumb_metropolis(0,@(x)-0.
5*x*x,1e3,s));sigma(0.
1)99.
8%acceptssigma(1)68.
4%acceptssigma(100)0.
5%acceptsMetropolislimitationsGenericproposalsuseQ(x;x)=N(x,σ2)σlarge→manyrejectionsσsmall→slowdiusion:(L/σ)2iterationsrequiredCombiningoperatorsAsequenceofoperators,eachwithPinvariant:x0P(x)x1Ta(x1←x0)x2Tb(x2←x1)x3Tc(x3←x2)···P(x1)=x0Ta(x1←x0)P(x0)=P(x1)P(x2)=x1Tb(x2←x1)P(x1)=P(x2)P(x3)=x1Tc(x3←x2)P(x2)=P(x3)···—CombinationTcTbTaleavesPinvariant—Iftheycanreachanyx,TcTbTaisavalidMCMCoperator—IndividuallyTc,TbandTaneednotbeergodicGibbssamplingAmethodwithnorejections:–Initializextosomevalue–PickeachvariableinturnorrandomlyandresampleP(xi|xj=i)FigurefromPRML,Bishop(2006)Proofofvalidity:a)checkdetailedbalanceforcomponentupdate.
b)Metropolis–Hastings'proposals'P(xi|xj=i)acceptwithprob.
1Applyaseriesoftheseoperators.
Don'tneedtocheckacceptance.
GibbssamplingAlternativeexplanation:ChainiscurrentlyatxAtequilibriumcanassumexP(x)Consistentwithxj=iP(xj=i),xiP(xi|xj=i)Pretendxiwasneversampledanddoitagain.
Thisviewmaybeusefullaterfornon-parametricapplications"Routine"GibbssamplingGibbssamplingbenetsfromfewfreechoicesandconvenientfeaturesofconditionaldistributions:Conditionalswithafewdiscretesettingscanbeexplicitlynormalized:P(xi|xj=i)∝P(xi,xj=i)=P(xi,xj=i)xiP(xi,xj=i)←thissumissmallandeasyContinuousconditionalsonlyunivariateamenabletostandardsamplingmethods.
WinBUGSandOpenBUGSsamplegraphicalmodelsusingthesetricksSummarysofarWeneedapproximatemethodstosolvesums/integralsMonteCarlodoesnotexplicitlydependondimension,althoughsimplemethodsworkonlyinlowdimensionsMarkovchainMonteCarlo(MCMC)canmakelocalmoves.
Byassumingless,it'smoreapplicabletohigherdimensionssimplecomputations"easy"toimplement(hardertodiagnose).
HowdoweusetheseMCMCsamplesEndofLecture1QuickreviewConstructabiasedrandomwalkthatexploresatargetdist.
Markovsteps,x(s)Tx(s)←x(s1)MCMCgivesapproximate,correlatedsamplesEP[f]≈1SSs=1f(x(s))Exampletransitions:Metropolis–Hastings:T(x←x)=Q(x;x)min1,P(x)Q(x;x)P(x)Q(x;x)Gibbssampling:Ti(x←x)=P(xi|xj=i)δ(xj=ixj=i)HowshouldwerunMCMCThesamplesaren'tindependent.
Shouldwethin,onlykeepeveryKthsampleArbitraryinitializationmeansstartingiterationsarebad.
Shouldwediscarda"burn-in"periodMaybeweshouldperformmultiplerunsHowdoweknowifwehaverunforlongenoughFormingestimatesApproximatelyindependentsamplescanbeobtainedbythinning.
However,allthesamplescanbeused.
UsethesimpleMonteCarloestimatoronMCMCsamples.
Itis:—consistent—unbiasedifthechainhas"burnedin"Thecorrectmotivationtothin:ifcomputingf(x(s))isexpensiveEmpiricaldiagnosticsRasmussen(2000)RecommendationsFordiagnostics:StandardsoftwarepackageslikeR-CODAForopiniononthinning,multipleruns,burnin,etc.
PracticalMarkovchainMonteCarloCharlesJ.
Geyer,StatisticalScience.
7(4):473–483,1992.
http://www.
jstor.
org/stable/2246094ConsistencychecksDoIgettherightanswerontinyversionsofmyproblemCanImakegoodinferencesaboutsyntheticdatadrawnfrommymodelGettingitright:jointdistributiontestsofposteriorsimulators,JohnGeweke,JASA,99(467):799–804,2004.
[next:usingthesamples]MakinggooduseofsamplesIsthestandardestimatortoonoisye.
g.
needmanysamplesfromadistributiontoestimateitstailWecanoftendosomeanalyticcalculationsFindingP(xi=1)Method1:fractionoftimexi=1P(xi=1)=xiI(xi=1)P(xi)≈1SSs=1I(x(s)i),x(s)iP(xi)Method2:averageofP(xi=1|x\i)P(xi=1)=x\iP(xi=1|x\i)P(x\i)≈1SSs=1P(xi=1|x(s)\i),x(s)\iP(x\i)Exampleof"Rao-Blackwellization".
Seealso"wasterecycling".
ProcessingsamplesThisiseasyI=xf(xi)P(x)≈1SSs=1f(x(s)i),x(s)P(x)ButthismightbebetterI=xf(xi)P(xi|x\i)P(x\i)=x\ixif(xi)P(xi|x\i)P(x\i)≈1SSs=1xif(xi)P(xi|x(s)\i),x(s)\iP(x\i)Amoregeneralformof"Rao-Blackwellization".
SummarysofarMCMCalgorithmsaregeneralandofteneasytoimplementRunningthemisabitmessy.
.
.
.
.
.
buttherearesomeestablishedprocedures.
GiventhesamplestheremightbeachoiceofestimatorsNextquestion:IsMCMCresearchallaboutndingagoodQ(x)AuxiliaryvariablesThepointofMCMCistomarginalizeoutvariables,butonecanintroducemorevariables:f(x)P(x)dx=f(x)P(x,v)dxdv≈1SSs=1f(x(s)),x,vP(x,v)WemightwanttodothisifP(x|v)andP(v|x)aresimpleP(x,v)isotherwiseeasiertonavigateSwendsen–Wang(1987)SeminalalgorithmusingauxiliaryvariablesEdwardsandSokal(1988)identiedandgeneralizedthe"Fortuin-Kasteleyn-Swendsen-Wang"auxiliaryvariablejointdistributionthatunderliesthealgorithm.
SlicesamplingideaSamplepointuniformlyundercurveP(x)∝P(x)p(u|x)=Uniform[0,P(x)]p(x|u)∝1P(x)≥u0otherwise="Uniformontheslice"SlicesamplingUnimodalconditionalsbracketslicesampleuniformlywithinbracketshrinkbracketifP(x)Neal(2003)containsmanyideas.
HamiltoniandynamicsConstructalandscapewithgravitationalpotentialenergy,E(x):P(x)∝eE(x),E(x)=logP(x)IntroducevelocityvcarryingkineticenergyK(v)=vv/2Somephysics:TotalenergyorHamiltonian,H=E(x)+K(v)Frictionlessballrolling(x,v)→(x,v)satisesH(x,v)=H(x,v)IdealHamiltoniandynamicsaretimereversible:–reversevandtheballwillreturntoitsstartpointHamiltonianMonteCarloDeneajointdistribution:P(x,v)∝eE(x)eK(v)=eE(x)K(v)=eH(x,v)VelocityisindependentofpositionandGaussiandistributedMarkovchainoperatorsGibbssamplevelocitySimulateHamiltoniandynamicsthenipsignofvelocity–Hamiltonian'proposal'isdeterministicandreversibleq(x,v;x,v)=q(x,v;x,v)=1–ConservationofenergymeansP(x,v)=P(x,v)–Metropolisacceptanceprobabilityis1Exceptwecan'tsimulateHamiltoniandynamicsexactlyLeap-frogdynamicsadiscreteapproximationtoHamiltoniandynamics:vi(t+2)=vi(t)2E(x(t))xixi(t+)=xi(t)+vi(t+2)pi(t+)=vi(t+2)2E(x(t+))xiHisnotconserveddynamicsarestilldeterministicandreversibleAcceptanceprobabilitybecomesmin[1,exp(H(v,x)H(v,x))]HamiltonianMonteCarloThealgorithm:GibbssamplevelocityN(0,I)SimulateLeapfrogdynamicsforLstepsAcceptnewpositionwithprobabilitymin[1,exp(H(v,x)H(v,x))]TheoriginalnameisHybridMonteCarlo,withreferencetothe"hybrid"dynamicalsimulationmethodonwhichitwasbased.
Summaryofauxiliaryvariables—Swendsen–Wang—Slicesampling—Hamiltonian(Hybrid)MonteCarloAfairamountofmyresearch(notcoveredinthistutorial)hasbeenndingtherightauxiliaryrepresentationonwhichtorunstandardMCMCupdates.
Examplebenets:PopulationmethodstogivebettermixingandexploitparallelhardwareBeingrobusttobadrandomnumbergeneratorsRemovingstep-sizeparameterswhenslicesampledoesn'treallyapplyFindingnormalizersishardPriorsampling:likendingfractionofneedlesinahay-stackP(D|M)=P(D|θ,M)P(θ|M)dθ=1SSs=1P(D|θ(s),M),θ(s)P(θ|M).
.
.
usuallyhashugevarianceSimilarlyforundirectedgraphs:P(x)=P(x)Z,Z=xP(x)Iwillusethisasaneasy-to-illustratecase-studyBenchmarkexperimentTrainingsetRBMsamplesMoBsamplesRBMsetup:—28*28=784binaryvisiblevariables—500binaryhiddenvariablesGoal:CompareP(x)ontestset,(PRBM(x)=P(x)/Z)SimpleImportanceSamplingZ=xP(x)Q(x)Q(x)≈1SSs=1P(x(s))Q(x),x(s)Q(x)x(1)=,x(2)=,x(3)=,x(4)=,x(5)=,x(6)=,.
.
.
Z=2Dx12DP(x)≈2DSSs=1P(x(s)),x(s)Uniform"Posterior"SamplingSamplefromP(x)=P(x)Z,orP(θ|D)=P(D|θ)P(θ)P(D)x(1)=,x(2)=,x(3)=,x(4)=,x(5)=,x(6)=,.
.
.
Z=xP(x)Z"≈"1SSs=1P(x)P(x)=ZFindingaVolume→x↓P(x)LakeanalogyandgurefromMacKaytextbook(2003)Annealing/Temperinge.
g.
P(x;β)∝P(x)βπ(x)(1β)β=0β=0.
01β=0.
1β=0.
25β=0.
5β=11/β="temperature"UsingotherdistributionsChainbetweenposteriorandprior:e.
g.
P(θ;β)=1Z(β)P(D|θ)βP(θ)β=0β=0.
01β=0.
1β=0.
25β=0.
5β=1Advantages:mixingeasieratlowβ,goodinitializationforhigherβZ(1)Z(0)=Z(β1)Z(0)·Z(β2)Z(β1)·Z(β3)Z(β2)·Z(β4)Z(β3)·Z(1)Z(β4)Relatedtoannealingortempering,1/β="temperature"ParalleltemperingNormalMCMCtransitions+swapproposalsonP(X)=βP(X;β)Problems/trade-os:obviousspacecostneedtoequilibriatelargersysteminformationfromlowβdiusesupbyslowrandomwalkTemperedtransitionsDrivetemperatureup.
.
.
.
.
.
andbackdownProposal:swaporderofpointssonalpointˇx0putativelyP(x)Acceptanceprobability:min1,Pβ1(x0)P(x0)···PβK(xK1)PβK1(x0)PβK1(ˇxK1)PβK(ˇxK1)···P(ˇx0)Pβ1(ˇx0)AnnealedImportanceSamplingP(X)=P(xK)ZKk=1Tk(xk1;xk),Q(X)=π(x0)Kk=1Tk(xk;xk1)ThenstandardimportancesamplingofP(X)=P(X)ZwithQ(X)AnnealedImportanceSamplingZ≈1SSs=1P(X)Q(X)Q↓↑PSummaryonZWhirlwindtourofroughlyhowtondZwithMonteCarloThealgorithmsreallyhavetobegoodatexploringthedistributionThesearealsotheMonteCarloapproachestowatchforgeneraluseonthehardestproblems.
Canbeusefulforoptimizationtoo.
Seethereferencesformore.
ReferencesFurtherreading(1/2)Generalreferences:ProbabilisticinferenceusingMarkovchainMonteCarlomethods,RadfordM.
Neal,Technicalreport:CRG-TR-93-1,DepartmentofComputerScience,UniversityofToronto,1993.
http://www.
cs.
toronto.
edu/~radford/review.
abstract.
htmlVariousguresandmorecamefrom(seealsoreferencestherein):AdvancesinMarkovchainMonteCarlomethods.
IainMurray.
2007.
http://www.
cs.
toronto.
edu/~murray/pub/07thesis/Informationtheory,inference,andlearningalgorithms.
DavidMacKay,2003.
http://www.
inference.
phy.
cam.
ac.
uk/mackay/itila/Patternrecognitionandmachinelearning.
ChristopherM.
Bishop.
2006.
http://research.
microsoft.
com/~cmbishop/PRML/Specicpoints:IfyoudoGibbssamplingwithcontinuousdistributionsthismethod,whichIomittedformaterial-overloadreasons,mayhelp:SuppressingrandomwalksinMarkovchainMonteCarlousingorderedoverrelaxation,RadfordM.
Neal,Learningingraphicalmodels,M.
I.
Jordan(editor),205–228,KluwerAcademicPublishers,1998.
http://www.
cs.
toronto.
edu/~radford/overk.
abstract.
htmlAnexampleofpickingestimatorscarefully:Speed-upofMonteCarlosimulationsbysamplingofrejectedstates,Frenkel,D,ProceedingsoftheNationalAcademyofSciences,101(51):17571–17575,TheNationalAcademyofSciences,2004.
http://www.
pnas.
org/cgi/content/abstract/101/51/17571Akeyreferenceforauxiliaryvariablemethodsis:GeneralizationsoftheFortuin-Kasteleyn-Swendsen-WangrepresentationandMonteCarloalgorithm,RobertG.
EdwardsandA.
D.
Sokal,PhysicalReview,38:2009–2012,1988.
Slicesampling,RadfordM.
Neal,AnnalsofStatistics,31(3):705–767,2003.
http://www.
cs.
toronto.
edu/~radford/slice-aos.
abstract.
htmlBayesiantrainingofbackpropagationnetworksbythehybridMonteCarlomethod,RadfordM.
Neal,Technicalreport:CRG-TR-92-1,ConnectionistResearchGroup,UniversityofToronto,1992.
http://www.
cs.
toronto.
edu/~radford/bbp.
abstract.
htmlAnearlyreferenceforparalleltempering:MarkovchainMonteCarlomaximumlikelihood,Geyer,C.
J,ComputingScienceandStatistics:Proceedingsofthe23rdSymposiumontheInterface,156–163,1991.
Samplingfrommultimodaldistributionsusingtemperedtransitions,RadfordM.
Neal,StatisticsandComputing,6(4):353–366,1996.
Furtherreading(2/2)Software:Gibbssamplingforgraphicalmodels:http://mathstat.
helsinki.
fi/openbugs/Neuralnetworksandotherexiblemodels:http://www.
cs.
utoronto.
ca/~radford/fbm.
software.
htmlCODA:http://www-s.
iarc.
fr/coda/OtherMonteCarlomethods:NestedsamplingisanewMonteCarlomethodwithsomeinterestingproperties:NestedsamplingforgeneralBayesiancomputation,JohnSkilling,BayesianAnalysis,2006.
(toappear,postedonlineJune5).
http://ba.
stat.
cmu.
edu/journal/forthcoming/skilling.
pdfApproachesbasedonthe"multi-canonicleensemble"alsosolvesomeoftheproblemswithtraditionaltempterature-basedmethods:Multicanonicalensemble:anewapproachtosimulaterst-orderphasetransitions,BerndA.
BergandThomasNeuhaus,Phys.
Rev.
Lett,68(1):9–12,1992.
http://prola.
aps.
org/abstract/PRL/v68/i1/p91Agoodreviewpaper:ExtendedEnsembleMonteCarlo.
YIba.
IntJModPhysC[ComputationalPhysicsandPhysicalComputation]12(5):623-656.
2001.
Particlelters/SequentialMonteCarloarefamouslysuccessfulintimeseriesmodelling,butaremoregenerallyapplicable.
Thismaybeagoodplacetostart:http://www.
cs.
ubc.
ca/~arnaud/journals.
htmlExactorperfectsamplingusesMarkovchainsimulationbutsuersnoinitializationbias.
Anamazingfeatwhenitcanbeperformed:AnnotatedbibliographyofperfectlyrandomsamplingwithMarkovchains,DavidB.
Wilsonhttp://dbwilson.
com/exact/MCMCdoesnotapplytodoubly-intractabledistributions.
Forwhatthatevenmeansandpossiblesolutionssee:AnecientMarkovchainMonteCarlomethodfordistributionswithintractablenormalisingconstants,J.
Mller,A.
N.
Pettitt,R.
ReevesandK.
K.
Berthelsen,Biometrika,93(2):451–458,2006.
MCMCfordoubly-intractabledistributions,IainMurray,ZoubinGhahramaniandDavidJ.
C.
MacKay,Proceedingsofthe22ndAnnualConferenceonUncertaintyinArticialIntelligence(UAI-06),RinaDechterandThomasS.
Richardson(editors),359–366,AUAIPress,2006.
http://www.
gatsby.
ucl.
ac.
uk/~iam23/pub/06doublyintractable/doublyintractable.
pdf

腾讯云新用户省钱秘笈购买云服务器

目前国内云计算市场竞争异常激烈,尤其是国内的腾讯云、阿里云、景安等商家促销活动一波接一波的进行,对于有需要的用户确实得到不小的实惠。但是这样给予国内的主机商确实是比较大的打击,毕竟这些商家的背景和实例强劲,即便是贴本补贴优惠,也是不怕的。前两年阿里一家各种活动促销,确实在国内市场占据主要的市场地位,腾讯云开始两年没有较大的吸引用户,不过这两年的发展还是比较稳健的。我们很多网友在之前肯定也享受到一些...

星梦云60元夏日促销,四川100G高防4H4G10M,西南高防月付特价

星梦云怎么样?星梦云好不好,资质齐全,IDC/ISP均有,从星梦云这边租的服务器均可以备案,属于一手资源,高防机柜、大带宽、高防IP业务,一手整C IP段,四川电信,星梦云专注四川高防服务器,成都服务器,雅安服务器 。官方网站:点击访问星梦云官网活动方案:1、成都电信年中活动机(封锁UDP,不可解封):机房CPU内存硬盘带宽IP防护流量原价活动价开通方式成都电信优化线路4vCPU4G40G+50...

2021年恒创科技618活动:香港/美国服务器/云服务器/高防全场3折抢购

2021年恒创科技618活动香港美国服务器/云服务器/高防全场3折抢购,老客户续费送时长,每日限量秒杀。云服务器每款限量抢购,香港美国独服/高防每款限量5台/天,香港节点是CN2线路还不错。福利一:爆品秒杀 超低价秒杀,秒完即止;福利二:云服务器 火爆机型 3折疯抢;福利三:物理服务器 爆款直降 800元/月起;福利四:DDOS防护 超强防御仅 1750元/月。点击进入:2021年恒创科技618活...

windtour为你推荐
重庆重庆思科flash阿片类药物:您需要知道什么itunes备份如何用iTunes备份iPhonetcpip上的netbios网络连接详细信息上的netbios over tcpip是什么意思?重庆电信宽带管家如何才能以正确的流程在重庆电信安装上宽带icloudiphone怎么利用iCloud使iPhone内存达到扩容目的迅雷下载速度迅雷下载速度与什么有关?morphvoxpro教程哪位大佬可以帮忙调一下morphvox pro的女声啊,我调了一天还是没调明白bitchina《绝对计划》蓝野明写的 我们的曲子 谁有啊?录音也行呵 谢谢啦!~~
网络域名 openv 私人服务器 linkcloud idc测评网 ixwebhosting info域名 一元域名 域名转接 东莞数据中心 最好的qq空间 能外链的相册 流媒体加速 银盘服务是什么 web服务器搭建 韩国代理ip 电信网络测速器 独立主机 qq金券 中国联通宽带测试 更多