costwindtour
windtour 时间:2021-05-25 阅读:(
)
PartIAFrameworkforVisualizationandOptimization17Thefivechaptersofthispartprovideawhirlwindtourofsomebasictheories,frameworks,andideasfromavarietyoffieldsincludingcogni-tivepsychology,human-computerinteraction,computergraphics,com-puterscience,artanddesign.
Clearlythosefieldsarefartoobroadtobecoveredinthreechapters,letaloneasinglebook.
Thefocusisonsomeofthemoreimportantideasandresults.
Inthesecondpartofthebook,webuildonthebasicspresentedhere,emphasizingtheirapplicationtovisualizationandoptimization.
Inordertoorganizeourdiscussionofvisualizationandoptimization,wepresentasimpleframework(Figure1.
4).
Theframeworkis:Thesuccessofvisualizationforaproblem-solvingprojectdependsonthetaskstobeaccomplished,thepeopleinvolved,andtherepresentationsformatsusedforthetaskandthepeo-ple.
TaskPeopleFonnatFigure1.
4:Aframeworkforvisualizationandoptimization.
Inotherwords,differentpeoplemaybenefitfromdifferentrepresen-tationformatsfordifferenttasks.
Althoughthisframeworkmayseemobvious,ithasnotalwaysbeenapparenttomany.
Forexample,researchcomparingtheeffectivenessoftraditionaltwo-dimensionalplotstotabularrepresentations(knownasthe18"graphs-vs-tables"question)iswidelyacknowledgedtobe"amess"[1].
Theresearchresultstodatehavebeenalmostcompletelyequivocal.
Somestudiesfoundnodifferenceinperformance,othershavefoundthattablesproducedbetterperformance,andothersfoundthatgraphsproducedbet-terperformance.
Theexplanation,intheabstractatleast,isquitesimple.
Mostofthestudiesuseddifferenttasks,representations,andsubjects.
Withineachstudy,onlyvariationsinrepresentationformatweremade.
Eachindivid-ualexperimentthereforewasvalidonlyfortheparticulartaskandsub-jectpopulationstudied.
Therealquestionisnotgraphsversustables,butrather,whatcharacteristicsoftasksandsubjectsfavorgraphsovertables(andviCeversa)Anotherexampleontheimportanceofrepresentationtoproblemsolv-ingcomesfromLarkinandSimon[2].
Considerthefollowinggame:Eachofthedigits1through9iswrittenonaseparatepieceofpaper.
Twoplayersdrawdigitsalternately.
Assoonaseitherplayergetsanythreedigitsthatsumto15,thatplayerwins.
Ifallninedigitsaredrawnwithoutawin,thenthegameisadraw.
Onemightbesurprisedtolearnthatthisgameisequivalenttotic-tac-toe(sometimescalled"noughtsandcrosses").
Ifoneplacesthedigits1through9inthefollowingtable,however,thecorrespondenceisclear.
618753294Anywinintic-tac-toecorrespondstoaselectionofdigits,threeofwhichsumto15.
Inthiscase,avisualrepresentationseemsparamount.
However,anotherexample,fromAdams(viaGlassandHolyoak[3])showstheimportanceoftextualrepresentationsovervisualrepresenta-tions:Considerasheetofpaper1I100thofaninchthick.
Foldthepaperinhalf,andtheninhalfagain.
Repeatthisprocess50timesintotal.
Ofcourse,itisnotphysicallypossibletoper-formthistask,butimagineifyoucan.
Howthickisthere-sultingfoldedpaperInthiscase,thevisualrepresentationgivesfewclues,butusingstandardmathematicalnotation-text-theanswercaneasilybefound,1/100x250inches.
19Theimportanceofmatchingthecharacteristicsofthetask,theviewerandtheformathasbeencalledcognitivefitbyVessey[4],[5].
Vessey[4]definescognitivefitasacost-benefitcharacteristicthatsuggeststhat,formosteffectiveandefficientproblemsolvingtooccur,theprob-lemrepresentationandanytoolsoraidsemployedshouldallsupportthestrategies(methodsorprocesses)requiredtoper-formthattask.
Inareviewofthegraphsversustablesliterature[5],basedonthecog-nitivefithypothesis,Vesseywasabletoofferacogentexplanationastowhysomestudiesfoundgraphssuperiortotablesandothersfoundtablessuperiortographs.
Eachstudyconsidereddifferenttasksanddifferentrepresentationformats.
Whateverformatwasbestmatchedtothetaskyieldedsuperiorperformance.
Thecognitivefithypothesisimpliesthatrepresentationformatmat-ters;itaffectshumanperformanceinsolvingproblems.
Bycarefullymatch-ingtherepresentationformattothetaskathand,performancecanbeen-hanced.
Oneofthegoalsofthisbookistoexploreappropriaterepresen-tationformatsforthemanytasksinvolvedinoptimizationmodeling.
1.
6TasksNumerousauthorshaveproposedframeworksforclassifyingthetasksin-volvedinanoptimizationproject.
Theseframeworksassumethatopti-mizationprojectsinvolveaseriesofstagesorsteps,thatis,amodelinglife-cycle.
1.
6.
1TheModelingLifeCycleThelife-cycleideaisembodiedinSimonandNewell's[6],[7]modelofdecisionmaking,Intelligence-Design-Choice.
Accordingtohisframe-work,intheIntelligencephaseofproblemsolving,informationisgath-eredinanattempttounderstandthenatureoftheproblem-thebound-ariesoftheproblem,thoseaffectedbytheproblem,thecostsandbenefitsoftheproblem.
IntheDesignphase,alternativesolutionstotheproblemareconstructed.
IntheChoicephase,oneormoreofthealternativesareselected.
Manyproblemsconcentratemoreononeofthesephasesthanonanother.
Foroptimizationmodeling,manydifferentauthorshavedescribedthestagesinthemodelinglife-cycle,withvaryinglevelsofdetail.
Table1.
1201.
6.
TASKSAuthorsSimonandChurchman,Ack-ThisBookNewell[6],[7]offandArnoff[8]IntelligenceFormulatingtheModelproblemDevelopmentDesignConstructingaAlgorithmmathematicalDevelopmentmodeltorepre-sentthesystemunderstudyDerivingaso-lutionfromthemodelTestingthemodelSolutionAnalysisandthesolutionderivedfromitChoiceEstablishingResultscontrolsoverthePresentationsolutionImplementationPuttingtheso-Implementationlutiontowork:implementationTable1.
1:Comparisonofdifferentversionsofthemodelinglife-cycle.
21liststhreeofthedifferentframeworks,attemptingtomatchstepsfromoneframeworkwiththosefromanother.
Forpurposesofthistext,weshallsimplifythemodelinglife-cycleintofivestages:1.
ModelDevelopment.
Thisincludesidentifyingtheunderlyingprob-ilem,collectingandanalyzingdata,formulatingamathematicalmodel.
2.
AlgorithmDevelopment.
Dependingontheproblemidentifiedinthepreviousstage,algorithmdevelopmentmaybetrivial,ifanex-istingpieceofsoftwarecanbeusedtoanalyzethemodel.
How-ever,formanyoptimizationproblems,thealgorithmmustbecare-fullyconstructed.
3.
SolutionAnalysis.
The"solutions"producedbyalgorithmsmustbetested,probedanddebugged.
Thedatacould(will)haveer-rors,themodelcouldhaveproblems,orthealgorithmcouldfailtoconverge.
Furthermore,evenwithadebuggedmodel,dataandal-gorithm,onemustthenattempttounderstandtheirbehavior.
Whenthepriceofasetofinputsrises,howdoesthataffectthesolutionIfonerelaxessomeconstraints,howdoesthesolutionchangeInotherwords,inthisphase,onealsoattemptstorelatetheinforma-tionprovidedbythealgorithmbacktotherealproblembeingat-tacked.
4.
ResultsPresentation.
Theresultsgeneratedbythepreviousphasemustbepresentedtothepeopleincharge,thepeoplepayingforthestudy,thepeopleactuallyresponsibleforsolvingtheproblem.
Theywillprobablybeskeptical;theymustbeconvincedthattherecommendationsbeingmademakesense.
Usuallytheywillnotreallyunderstandthesophisticatedmathematicalandcomputertech-niquesusedtosolvetheproblem.
But,theyneedtobeconvincedthattherecommendationsaresound.
5.
ImplementationGiventheresultsoftheanalysis,thechoicemustbeimplemented.
Itmustbecommunicatedtothoseresponsibleforeffectingthechange,andtheprocessofchangemustbecontinuallymonitored.
Althoughthisframeworkcontainsfewerstepsthanmanyofthepro-posedmodelinglife-cycles,itarguablycapturestheessenceofhowmod-elsevolveovertime,startingwithidentifyingtheproblemandendingwithfinalresults.
Onecaneasilybelulledbythecleanpicturepresentedbyanysuchlife-cyclemodel.
Inactualmodelingprojects,progressdoesnotfollow221.
6.
TASKScleanlyandsurelyfromonestagetoanother.
Oftenproblemsthatareun-detectedinpreviousstagesareonlyuncoveredinlaterstages,forcingaretreatbacktoanearlierstagetofixtheundetectedproblem.
Inarecentstudy[9],[10]expertmodelerswerefoundtomovequiteoftenamongthedifferenttasksinthemodelinglife-cycle.
1.
6.
2VisualizationandtheModelingLifeCycleFromtheviewpointofvisualization,themodelinglife-cycletransformsvague,poorlydefinedrepresentationsofaproblemintoanunderstand-able,convincingsolutiontotheproblem.
Duringthemodelinglife-cycle,representationssuchasmathematicalformulations,inputstoalgorithms,programlistings,algorithmoutputs,amongotherscanbeofuse.
Thefieldofoptimizationhasconcentratedmostofitsenergyonmerelyonephaseofthemodelinglife-cycle:algorithmdevelopment.
Themodelinglife-cycle,ontheotherhand,involvesmanyotheractivities.
Represen-tationisacommonthreadunderlyingallthephasesofthemodelinglife-cycle.
Therefore,thestudyofthoserepresentationsshouldhelpimprovethechancesforsuccessinamodelingproject.
Differentrepresentationsarerequiredatdifferentphasesofthemod-elinglife-cycle(Table1.
2).
Inthenextchapter,foreachphaseofthemod-elinglife-cycle,wediscussappropriaterepresentations.
Inthefollowingchapter,wediscusshowthedifferentrepresentationscanbeusedtosup-portvariousaspectsofoptimization.
1.
6.
3SummaryThissectionhaspresentedseveralversionsofthemodelinglife-cycle.
Althoughtheydiffer,theyallbasicallyfollowthesameidea:modelingconsistsofavarietyofdifferenttasks.
Althoughactualmodelingprojectsareusuallyfarmessierthanthecleanpicturepresentedbytheselife-cyclemodels,thetaskslistedinthelife-cyclemodelsdoinfactoccur.
Thechaptersintherestofthispartofthebook(Chapters2-6)discusstheothertwocomponentsofourbasicframework,peopleandformat.
Chapter2discussesmodelsofhumanperceptionandcognition,aswellassomeofthedifferencesamongpeoplethathavebeenidentifiedbycog-nitivepsychologists.
Chapters3-6discussindetailtheories,frameworksandrecommendationsforthevarietyofdifferentrepresentationformatsthatcanbeusedtorepresentcomplexinformation.
PartIIofthebookconsidershowvisualizationcansupporteachphaseofthemodelinglife-cycle.
PartIIIofthebookdiscusseshowdifferentrepresentationformatscanbeusedtosupportoptimization.
23ModelAlgorithmSolutionResultsDevelop-Develop-AnalysisPresenta-mentmenttionTextAlgebraicProgram-StandardNarrativeLanguagesmingOutputLanguagesTablesSpread-MatrixMatrixSummarysheets;ImagesImagesTablesBlockStructuredStaticGraph-VisualPresentationPresentationGraphicsBasedLanguagesGraphicsGraphicsAnimatedorModelingbyAlgorithmAnimatedAlgorithmInteractiveExampleAnimationSensitivityAnimation;GraphicsAnalysisAnimatedSensitivityAnalysisSoundTouchTable1.
2:Thedifferenttypesofrepresentationsthatcanbeusefulindif-ferentphasesofanoptimizationproject24BIBLIOGRAPHYBibliography[1]ColIRA,ColIJH,ThakurG.
Graphsandtables:Afour-factorexperiment.
CommunicationsoftheACM,1994;37(4).
[2]LarkinJH,SimonHA.
Whyadiagramis(sometimes)worthtenthousandwords.
CognitiveScience,1987;1l:65-99.
[3]GlassAL,HolyoakKJ.
Cognition.
NewYork:RandomHouse,2ndedition,1986.
[4]VesseyI.
Cognitivefit:Atheory-basedanalysisofthegraphsversustablesliterature.
DecisionSciences,1991;22:219-241.
[5]VesseyI,GallettaD.
Cognitivefit:Anempiricalstudyofinformationac-quisition.
InformationSystemsResearch,1991;2(1):63-86.
[6]NewellA,SimonHA.
HumanProblemSolving.
EnglewoodCliffs(NJ):Prentice-Hall,Inc.
,1972.
[7]SimonHA.
TheNewScienceofManagementDecision.
NewYork:HarperandRow,1960.
[8]ChurchmanCW,AckoffRL,ArnoffEL.
IntroductiontoOperationsRe-search.
NewYork:JohnWileyandSons,1957.
[9]WillemainTR.
Insightsonmodelingfromadozenexperts.
OperationsResearch,1994;42(2):213-222.
[10]WillemainTR.
Modelformulation:Whatexpertsthinkaboutandwhen.
OperationsResearch,1994;pageforthcoming.
简介华圣云 HuaSaint是阿里云国际版一级分销商(诚招募二级代理),专业为全球企业客户与个人开发者提供阿里云国际版开户注册、认证、充值等服务,通过HuaSaint开通阿里云国际版只需要一个邮箱,不需要PayPal信用卡,不需要买海外电话卡,绝对的零门槛,零风险官方网站:www.huasaint.com企业名:huaSaint Tech Limited阿里云国际版都有什么优势?阿里云国际版的产品...
易探云怎么样?易探云是国内一家云计算服务商家,致力香港服务器、国内外服务器租用及托管等互联网业务,目前主要地区为运作香港BGP、香港CN2、广东、北京、深圳等地区。易探云服务器均选择当下热门线路,比如CN2 GIA、BGP线路、CN2线路等,所有云主机支持月付,并且首月优惠,年付优惠,优惠后香港沙田云服务器/独立ip/香港CN2线路,每月仅18元,188元/年。点击进入:易探云官方网站地址1、香港...
传统农历新年将至,国人主机商DogYun(狗云)发来了虎年春节优惠活动,1月31日-2月6日活动期间使用优惠码新开动态云7折,经典云8折,新开独立服务器可立减100元/月;使用优惠码新开香港独立服务器优惠100元,并次月免费;活动期间单笔充值每满100元赠送10元,还可以参与幸运大转盘每日抽取5折码,流量,余额等奖品;商家限量推出一款年付特价套餐,共100台,每个用户限1台,香港VPS年付199元...
windtour为你推荐
腾讯周鸿祎计算机网络实验系统speakingphp平板ipadexportingjava支持ipadwin7关闭135端口如何关闭135端口,关闭它有什么影响么?csshackcss常见的hack方法有哪些firefoxflash插件火狐安装不了FLASH为什么?下载完后明明安装完成,火狐却仍然提示“缺少插件”重庆电信测速重庆电信对BT开始限制了?
宿迁服务器租用 国外bt 免费ftp空间申请 中国电信测速112 河南移动m值兑换 hdd yundun 视频服务器是什么 iki lamp什么意思 买空间网 广东服务器托管 rewritecond 博客域名 SmartAXMT800 .htaccess 建站技术 wordpress安装 dbank qq部落18-3 更多