costwindtour

windtour  时间:2021-05-25  阅读:()
PartIAFrameworkforVisualizationandOptimization17Thefivechaptersofthispartprovideawhirlwindtourofsomebasictheories,frameworks,andideasfromavarietyoffieldsincludingcogni-tivepsychology,human-computerinteraction,computergraphics,com-puterscience,artanddesign.
Clearlythosefieldsarefartoobroadtobecoveredinthreechapters,letaloneasinglebook.
Thefocusisonsomeofthemoreimportantideasandresults.
Inthesecondpartofthebook,webuildonthebasicspresentedhere,emphasizingtheirapplicationtovisualizationandoptimization.
Inordertoorganizeourdiscussionofvisualizationandoptimization,wepresentasimpleframework(Figure1.
4).
Theframeworkis:Thesuccessofvisualizationforaproblem-solvingprojectdependsonthetaskstobeaccomplished,thepeopleinvolved,andtherepresentationsformatsusedforthetaskandthepeo-ple.
TaskPeopleFonnatFigure1.
4:Aframeworkforvisualizationandoptimization.
Inotherwords,differentpeoplemaybenefitfromdifferentrepresen-tationformatsfordifferenttasks.
Althoughthisframeworkmayseemobvious,ithasnotalwaysbeenapparenttomany.
Forexample,researchcomparingtheeffectivenessoftraditionaltwo-dimensionalplotstotabularrepresentations(knownasthe18"graphs-vs-tables"question)iswidelyacknowledgedtobe"amess"[1].
Theresearchresultstodatehavebeenalmostcompletelyequivocal.
Somestudiesfoundnodifferenceinperformance,othershavefoundthattablesproducedbetterperformance,andothersfoundthatgraphsproducedbet-terperformance.
Theexplanation,intheabstractatleast,isquitesimple.
Mostofthestudiesuseddifferenttasks,representations,andsubjects.
Withineachstudy,onlyvariationsinrepresentationformatweremade.
Eachindivid-ualexperimentthereforewasvalidonlyfortheparticulartaskandsub-jectpopulationstudied.
Therealquestionisnotgraphsversustables,butrather,whatcharacteristicsoftasksandsubjectsfavorgraphsovertables(andviCeversa)Anotherexampleontheimportanceofrepresentationtoproblemsolv-ingcomesfromLarkinandSimon[2].
Considerthefollowinggame:Eachofthedigits1through9iswrittenonaseparatepieceofpaper.
Twoplayersdrawdigitsalternately.
Assoonaseitherplayergetsanythreedigitsthatsumto15,thatplayerwins.
Ifallninedigitsaredrawnwithoutawin,thenthegameisadraw.
Onemightbesurprisedtolearnthatthisgameisequivalenttotic-tac-toe(sometimescalled"noughtsandcrosses").
Ifoneplacesthedigits1through9inthefollowingtable,however,thecorrespondenceisclear.
618753294Anywinintic-tac-toecorrespondstoaselectionofdigits,threeofwhichsumto15.
Inthiscase,avisualrepresentationseemsparamount.
However,anotherexample,fromAdams(viaGlassandHolyoak[3])showstheimportanceoftextualrepresentationsovervisualrepresenta-tions:Considerasheetofpaper1I100thofaninchthick.
Foldthepaperinhalf,andtheninhalfagain.
Repeatthisprocess50timesintotal.
Ofcourse,itisnotphysicallypossibletoper-formthistask,butimagineifyoucan.
Howthickisthere-sultingfoldedpaperInthiscase,thevisualrepresentationgivesfewclues,butusingstandardmathematicalnotation-text-theanswercaneasilybefound,1/100x250inches.
19Theimportanceofmatchingthecharacteristicsofthetask,theviewerandtheformathasbeencalledcognitivefitbyVessey[4],[5].
Vessey[4]definescognitivefitasacost-benefitcharacteristicthatsuggeststhat,formosteffectiveandefficientproblemsolvingtooccur,theprob-lemrepresentationandanytoolsoraidsemployedshouldallsupportthestrategies(methodsorprocesses)requiredtoper-formthattask.
Inareviewofthegraphsversustablesliterature[5],basedonthecog-nitivefithypothesis,Vesseywasabletoofferacogentexplanationastowhysomestudiesfoundgraphssuperiortotablesandothersfoundtablessuperiortographs.
Eachstudyconsidereddifferenttasksanddifferentrepresentationformats.
Whateverformatwasbestmatchedtothetaskyieldedsuperiorperformance.
Thecognitivefithypothesisimpliesthatrepresentationformatmat-ters;itaffectshumanperformanceinsolvingproblems.
Bycarefullymatch-ingtherepresentationformattothetaskathand,performancecanbeen-hanced.
Oneofthegoalsofthisbookistoexploreappropriaterepresen-tationformatsforthemanytasksinvolvedinoptimizationmodeling.
1.
6TasksNumerousauthorshaveproposedframeworksforclassifyingthetasksin-volvedinanoptimizationproject.
Theseframeworksassumethatopti-mizationprojectsinvolveaseriesofstagesorsteps,thatis,amodelinglife-cycle.
1.
6.
1TheModelingLifeCycleThelife-cycleideaisembodiedinSimonandNewell's[6],[7]modelofdecisionmaking,Intelligence-Design-Choice.
Accordingtohisframe-work,intheIntelligencephaseofproblemsolving,informationisgath-eredinanattempttounderstandthenatureoftheproblem-thebound-ariesoftheproblem,thoseaffectedbytheproblem,thecostsandbenefitsoftheproblem.
IntheDesignphase,alternativesolutionstotheproblemareconstructed.
IntheChoicephase,oneormoreofthealternativesareselected.
Manyproblemsconcentratemoreononeofthesephasesthanonanother.
Foroptimizationmodeling,manydifferentauthorshavedescribedthestagesinthemodelinglife-cycle,withvaryinglevelsofdetail.
Table1.
1201.
6.
TASKSAuthorsSimonandChurchman,Ack-ThisBookNewell[6],[7]offandArnoff[8]IntelligenceFormulatingtheModelproblemDevelopmentDesignConstructingaAlgorithmmathematicalDevelopmentmodeltorepre-sentthesystemunderstudyDerivingaso-lutionfromthemodelTestingthemodelSolutionAnalysisandthesolutionderivedfromitChoiceEstablishingResultscontrolsoverthePresentationsolutionImplementationPuttingtheso-Implementationlutiontowork:implementationTable1.
1:Comparisonofdifferentversionsofthemodelinglife-cycle.
21liststhreeofthedifferentframeworks,attemptingtomatchstepsfromoneframeworkwiththosefromanother.
Forpurposesofthistext,weshallsimplifythemodelinglife-cycleintofivestages:1.
ModelDevelopment.
Thisincludesidentifyingtheunderlyingprob-ilem,collectingandanalyzingdata,formulatingamathematicalmodel.
2.
AlgorithmDevelopment.
Dependingontheproblemidentifiedinthepreviousstage,algorithmdevelopmentmaybetrivial,ifanex-istingpieceofsoftwarecanbeusedtoanalyzethemodel.
How-ever,formanyoptimizationproblems,thealgorithmmustbecare-fullyconstructed.
3.
SolutionAnalysis.
The"solutions"producedbyalgorithmsmustbetested,probedanddebugged.
Thedatacould(will)haveer-rors,themodelcouldhaveproblems,orthealgorithmcouldfailtoconverge.
Furthermore,evenwithadebuggedmodel,dataandal-gorithm,onemustthenattempttounderstandtheirbehavior.
Whenthepriceofasetofinputsrises,howdoesthataffectthesolutionIfonerelaxessomeconstraints,howdoesthesolutionchangeInotherwords,inthisphase,onealsoattemptstorelatetheinforma-tionprovidedbythealgorithmbacktotherealproblembeingat-tacked.
4.
ResultsPresentation.
Theresultsgeneratedbythepreviousphasemustbepresentedtothepeopleincharge,thepeoplepayingforthestudy,thepeopleactuallyresponsibleforsolvingtheproblem.
Theywillprobablybeskeptical;theymustbeconvincedthattherecommendationsbeingmademakesense.
Usuallytheywillnotreallyunderstandthesophisticatedmathematicalandcomputertech-niquesusedtosolvetheproblem.
But,theyneedtobeconvincedthattherecommendationsaresound.
5.
ImplementationGiventheresultsoftheanalysis,thechoicemustbeimplemented.
Itmustbecommunicatedtothoseresponsibleforeffectingthechange,andtheprocessofchangemustbecontinuallymonitored.
Althoughthisframeworkcontainsfewerstepsthanmanyofthepro-posedmodelinglife-cycles,itarguablycapturestheessenceofhowmod-elsevolveovertime,startingwithidentifyingtheproblemandendingwithfinalresults.
Onecaneasilybelulledbythecleanpicturepresentedbyanysuchlife-cyclemodel.
Inactualmodelingprojects,progressdoesnotfollow221.
6.
TASKScleanlyandsurelyfromonestagetoanother.
Oftenproblemsthatareun-detectedinpreviousstagesareonlyuncoveredinlaterstages,forcingaretreatbacktoanearlierstagetofixtheundetectedproblem.
Inarecentstudy[9],[10]expertmodelerswerefoundtomovequiteoftenamongthedifferenttasksinthemodelinglife-cycle.
1.
6.
2VisualizationandtheModelingLifeCycleFromtheviewpointofvisualization,themodelinglife-cycletransformsvague,poorlydefinedrepresentationsofaproblemintoanunderstand-able,convincingsolutiontotheproblem.
Duringthemodelinglife-cycle,representationssuchasmathematicalformulations,inputstoalgorithms,programlistings,algorithmoutputs,amongotherscanbeofuse.
Thefieldofoptimizationhasconcentratedmostofitsenergyonmerelyonephaseofthemodelinglife-cycle:algorithmdevelopment.
Themodelinglife-cycle,ontheotherhand,involvesmanyotheractivities.
Represen-tationisacommonthreadunderlyingallthephasesofthemodelinglife-cycle.
Therefore,thestudyofthoserepresentationsshouldhelpimprovethechancesforsuccessinamodelingproject.
Differentrepresentationsarerequiredatdifferentphasesofthemod-elinglife-cycle(Table1.
2).
Inthenextchapter,foreachphaseofthemod-elinglife-cycle,wediscussappropriaterepresentations.
Inthefollowingchapter,wediscusshowthedifferentrepresentationscanbeusedtosup-portvariousaspectsofoptimization.
1.
6.
3SummaryThissectionhaspresentedseveralversionsofthemodelinglife-cycle.
Althoughtheydiffer,theyallbasicallyfollowthesameidea:modelingconsistsofavarietyofdifferenttasks.
Althoughactualmodelingprojectsareusuallyfarmessierthanthecleanpicturepresentedbytheselife-cyclemodels,thetaskslistedinthelife-cyclemodelsdoinfactoccur.
Thechaptersintherestofthispartofthebook(Chapters2-6)discusstheothertwocomponentsofourbasicframework,peopleandformat.
Chapter2discussesmodelsofhumanperceptionandcognition,aswellassomeofthedifferencesamongpeoplethathavebeenidentifiedbycog-nitivepsychologists.
Chapters3-6discussindetailtheories,frameworksandrecommendationsforthevarietyofdifferentrepresentationformatsthatcanbeusedtorepresentcomplexinformation.
PartIIofthebookconsidershowvisualizationcansupporteachphaseofthemodelinglife-cycle.
PartIIIofthebookdiscusseshowdifferentrepresentationformatscanbeusedtosupportoptimization.
23ModelAlgorithmSolutionResultsDevelop-Develop-AnalysisPresenta-mentmenttionTextAlgebraicProgram-StandardNarrativeLanguagesmingOutputLanguagesTablesSpread-MatrixMatrixSummarysheets;ImagesImagesTablesBlockStructuredStaticGraph-VisualPresentationPresentationGraphicsBasedLanguagesGraphicsGraphicsAnimatedorModelingbyAlgorithmAnimatedAlgorithmInteractiveExampleAnimationSensitivityAnimation;GraphicsAnalysisAnimatedSensitivityAnalysisSoundTouchTable1.
2:Thedifferenttypesofrepresentationsthatcanbeusefulindif-ferentphasesofanoptimizationproject24BIBLIOGRAPHYBibliography[1]ColIRA,ColIJH,ThakurG.
Graphsandtables:Afour-factorexperiment.
CommunicationsoftheACM,1994;37(4).
[2]LarkinJH,SimonHA.
Whyadiagramis(sometimes)worthtenthousandwords.
CognitiveScience,1987;1l:65-99.
[3]GlassAL,HolyoakKJ.
Cognition.
NewYork:RandomHouse,2ndedition,1986.
[4]VesseyI.
Cognitivefit:Atheory-basedanalysisofthegraphsversustablesliterature.
DecisionSciences,1991;22:219-241.
[5]VesseyI,GallettaD.
Cognitivefit:Anempiricalstudyofinformationac-quisition.
InformationSystemsResearch,1991;2(1):63-86.
[6]NewellA,SimonHA.
HumanProblemSolving.
EnglewoodCliffs(NJ):Prentice-Hall,Inc.
,1972.
[7]SimonHA.
TheNewScienceofManagementDecision.
NewYork:HarperandRow,1960.
[8]ChurchmanCW,AckoffRL,ArnoffEL.
IntroductiontoOperationsRe-search.
NewYork:JohnWileyandSons,1957.
[9]WillemainTR.
Insightsonmodelingfromadozenexperts.
OperationsResearch,1994;42(2):213-222.
[10]WillemainTR.
Modelformulation:Whatexpertsthinkaboutandwhen.
OperationsResearch,1994;pageforthcoming.

香港2GB内存DIYVM2核(¥50月)香港沙田CN2云服务器

DiyVM 香港沙田机房,也是采用的CN2优化线路,目前也有入手且在使用中,我个人感觉如果中文业务需要用到的话虽然日本机房也是CN2,但是线路的稳定性不如香港机房,所以我们在这篇文章中亲测看看香港机房,然后对比之前看到的日本机房。香港机房的配置信息。CPU内存 硬盘带宽IP价格购买地址2核2G50G2M1¥50/月选择方案4核4G60G3M1¥100/月选择方案4核8G70G3M4¥200/月选择...

2022年最新PHP短网址生成系统/短链接生成系统/URL缩短器系统源码

全新PHP短网址系统URL缩短器平台,它使您可以轻松地缩短链接,根据受众群体的位置或平台来定位受众,并为缩短的链接提供分析见解。系统使用了Laravel框架编写,前后台双语言使用,可以设置多域名,还可以开设套餐等诸多功能,值得使用。链接: https://pan.baidu.com/s/1ti6XqJ22tp1ULTJw7kYHog?pwd=sarg 提取码: sarg文件解压密码 www.wn7...

Stablehost 美国主机商黑五虚拟主机四折

如今我们网友可能较多的会选择云服务器、VPS主机,对于虚拟主机的话可能很多人不会选择。但是我们有些外贸业务用途的建站项目还是会有选择虚拟主机的。今天看到的Stablehost 商家虚拟主机在黑五期间也有四折优惠,对于这个服务商而言不是特别的喜欢,虽然他们商家和我们熟悉的老鹰主机商有些类似,且在后来老鹰主机改版和方案后,Stablehost 商家也会跟随改版,但是性价比认为不如老鹰主机。这次黑色星期...

windtour为你推荐
朝阳分局犯罪嫌疑人标准化信息采集系统微信群里正在组织赌博adbandroid输入ipadipad如何上网如何用手机流量在IPAD上上网itunes备份itunes 里面的资料如何备份?x-routerx-arcsinx的等价无穷小是什么?fusionchartsfusioncharts怎么生成图片至excel迅雷快鸟迅雷快鸟这种强盗软件不违规吗?ipad无法加入网络我的IPAD无法加入网络
网站服务器租用 如何申请域名 域名主机管理系统 联通c套餐 asp.net主机 yardvps 网站保姆 淘宝双十一2018 国内php空间 网站挂马检测工具 免费全能空间 个人空间申请 有益网络 免费个人空间 me空间社区 nerds Updog 空间登录首页 登陆空间 vul 更多