costwindtour
windtour 时间:2021-05-25 阅读:(
)
PartIAFrameworkforVisualizationandOptimization17Thefivechaptersofthispartprovideawhirlwindtourofsomebasictheories,frameworks,andideasfromavarietyoffieldsincludingcogni-tivepsychology,human-computerinteraction,computergraphics,com-puterscience,artanddesign.
Clearlythosefieldsarefartoobroadtobecoveredinthreechapters,letaloneasinglebook.
Thefocusisonsomeofthemoreimportantideasandresults.
Inthesecondpartofthebook,webuildonthebasicspresentedhere,emphasizingtheirapplicationtovisualizationandoptimization.
Inordertoorganizeourdiscussionofvisualizationandoptimization,wepresentasimpleframework(Figure1.
4).
Theframeworkis:Thesuccessofvisualizationforaproblem-solvingprojectdependsonthetaskstobeaccomplished,thepeopleinvolved,andtherepresentationsformatsusedforthetaskandthepeo-ple.
TaskPeopleFonnatFigure1.
4:Aframeworkforvisualizationandoptimization.
Inotherwords,differentpeoplemaybenefitfromdifferentrepresen-tationformatsfordifferenttasks.
Althoughthisframeworkmayseemobvious,ithasnotalwaysbeenapparenttomany.
Forexample,researchcomparingtheeffectivenessoftraditionaltwo-dimensionalplotstotabularrepresentations(knownasthe18"graphs-vs-tables"question)iswidelyacknowledgedtobe"amess"[1].
Theresearchresultstodatehavebeenalmostcompletelyequivocal.
Somestudiesfoundnodifferenceinperformance,othershavefoundthattablesproducedbetterperformance,andothersfoundthatgraphsproducedbet-terperformance.
Theexplanation,intheabstractatleast,isquitesimple.
Mostofthestudiesuseddifferenttasks,representations,andsubjects.
Withineachstudy,onlyvariationsinrepresentationformatweremade.
Eachindivid-ualexperimentthereforewasvalidonlyfortheparticulartaskandsub-jectpopulationstudied.
Therealquestionisnotgraphsversustables,butrather,whatcharacteristicsoftasksandsubjectsfavorgraphsovertables(andviCeversa)Anotherexampleontheimportanceofrepresentationtoproblemsolv-ingcomesfromLarkinandSimon[2].
Considerthefollowinggame:Eachofthedigits1through9iswrittenonaseparatepieceofpaper.
Twoplayersdrawdigitsalternately.
Assoonaseitherplayergetsanythreedigitsthatsumto15,thatplayerwins.
Ifallninedigitsaredrawnwithoutawin,thenthegameisadraw.
Onemightbesurprisedtolearnthatthisgameisequivalenttotic-tac-toe(sometimescalled"noughtsandcrosses").
Ifoneplacesthedigits1through9inthefollowingtable,however,thecorrespondenceisclear.
618753294Anywinintic-tac-toecorrespondstoaselectionofdigits,threeofwhichsumto15.
Inthiscase,avisualrepresentationseemsparamount.
However,anotherexample,fromAdams(viaGlassandHolyoak[3])showstheimportanceoftextualrepresentationsovervisualrepresenta-tions:Considerasheetofpaper1I100thofaninchthick.
Foldthepaperinhalf,andtheninhalfagain.
Repeatthisprocess50timesintotal.
Ofcourse,itisnotphysicallypossibletoper-formthistask,butimagineifyoucan.
Howthickisthere-sultingfoldedpaperInthiscase,thevisualrepresentationgivesfewclues,butusingstandardmathematicalnotation-text-theanswercaneasilybefound,1/100x250inches.
19Theimportanceofmatchingthecharacteristicsofthetask,theviewerandtheformathasbeencalledcognitivefitbyVessey[4],[5].
Vessey[4]definescognitivefitasacost-benefitcharacteristicthatsuggeststhat,formosteffectiveandefficientproblemsolvingtooccur,theprob-lemrepresentationandanytoolsoraidsemployedshouldallsupportthestrategies(methodsorprocesses)requiredtoper-formthattask.
Inareviewofthegraphsversustablesliterature[5],basedonthecog-nitivefithypothesis,Vesseywasabletoofferacogentexplanationastowhysomestudiesfoundgraphssuperiortotablesandothersfoundtablessuperiortographs.
Eachstudyconsidereddifferenttasksanddifferentrepresentationformats.
Whateverformatwasbestmatchedtothetaskyieldedsuperiorperformance.
Thecognitivefithypothesisimpliesthatrepresentationformatmat-ters;itaffectshumanperformanceinsolvingproblems.
Bycarefullymatch-ingtherepresentationformattothetaskathand,performancecanbeen-hanced.
Oneofthegoalsofthisbookistoexploreappropriaterepresen-tationformatsforthemanytasksinvolvedinoptimizationmodeling.
1.
6TasksNumerousauthorshaveproposedframeworksforclassifyingthetasksin-volvedinanoptimizationproject.
Theseframeworksassumethatopti-mizationprojectsinvolveaseriesofstagesorsteps,thatis,amodelinglife-cycle.
1.
6.
1TheModelingLifeCycleThelife-cycleideaisembodiedinSimonandNewell's[6],[7]modelofdecisionmaking,Intelligence-Design-Choice.
Accordingtohisframe-work,intheIntelligencephaseofproblemsolving,informationisgath-eredinanattempttounderstandthenatureoftheproblem-thebound-ariesoftheproblem,thoseaffectedbytheproblem,thecostsandbenefitsoftheproblem.
IntheDesignphase,alternativesolutionstotheproblemareconstructed.
IntheChoicephase,oneormoreofthealternativesareselected.
Manyproblemsconcentratemoreononeofthesephasesthanonanother.
Foroptimizationmodeling,manydifferentauthorshavedescribedthestagesinthemodelinglife-cycle,withvaryinglevelsofdetail.
Table1.
1201.
6.
TASKSAuthorsSimonandChurchman,Ack-ThisBookNewell[6],[7]offandArnoff[8]IntelligenceFormulatingtheModelproblemDevelopmentDesignConstructingaAlgorithmmathematicalDevelopmentmodeltorepre-sentthesystemunderstudyDerivingaso-lutionfromthemodelTestingthemodelSolutionAnalysisandthesolutionderivedfromitChoiceEstablishingResultscontrolsoverthePresentationsolutionImplementationPuttingtheso-Implementationlutiontowork:implementationTable1.
1:Comparisonofdifferentversionsofthemodelinglife-cycle.
21liststhreeofthedifferentframeworks,attemptingtomatchstepsfromoneframeworkwiththosefromanother.
Forpurposesofthistext,weshallsimplifythemodelinglife-cycleintofivestages:1.
ModelDevelopment.
Thisincludesidentifyingtheunderlyingprob-ilem,collectingandanalyzingdata,formulatingamathematicalmodel.
2.
AlgorithmDevelopment.
Dependingontheproblemidentifiedinthepreviousstage,algorithmdevelopmentmaybetrivial,ifanex-istingpieceofsoftwarecanbeusedtoanalyzethemodel.
How-ever,formanyoptimizationproblems,thealgorithmmustbecare-fullyconstructed.
3.
SolutionAnalysis.
The"solutions"producedbyalgorithmsmustbetested,probedanddebugged.
Thedatacould(will)haveer-rors,themodelcouldhaveproblems,orthealgorithmcouldfailtoconverge.
Furthermore,evenwithadebuggedmodel,dataandal-gorithm,onemustthenattempttounderstandtheirbehavior.
Whenthepriceofasetofinputsrises,howdoesthataffectthesolutionIfonerelaxessomeconstraints,howdoesthesolutionchangeInotherwords,inthisphase,onealsoattemptstorelatetheinforma-tionprovidedbythealgorithmbacktotherealproblembeingat-tacked.
4.
ResultsPresentation.
Theresultsgeneratedbythepreviousphasemustbepresentedtothepeopleincharge,thepeoplepayingforthestudy,thepeopleactuallyresponsibleforsolvingtheproblem.
Theywillprobablybeskeptical;theymustbeconvincedthattherecommendationsbeingmademakesense.
Usuallytheywillnotreallyunderstandthesophisticatedmathematicalandcomputertech-niquesusedtosolvetheproblem.
But,theyneedtobeconvincedthattherecommendationsaresound.
5.
ImplementationGiventheresultsoftheanalysis,thechoicemustbeimplemented.
Itmustbecommunicatedtothoseresponsibleforeffectingthechange,andtheprocessofchangemustbecontinuallymonitored.
Althoughthisframeworkcontainsfewerstepsthanmanyofthepro-posedmodelinglife-cycles,itarguablycapturestheessenceofhowmod-elsevolveovertime,startingwithidentifyingtheproblemandendingwithfinalresults.
Onecaneasilybelulledbythecleanpicturepresentedbyanysuchlife-cyclemodel.
Inactualmodelingprojects,progressdoesnotfollow221.
6.
TASKScleanlyandsurelyfromonestagetoanother.
Oftenproblemsthatareun-detectedinpreviousstagesareonlyuncoveredinlaterstages,forcingaretreatbacktoanearlierstagetofixtheundetectedproblem.
Inarecentstudy[9],[10]expertmodelerswerefoundtomovequiteoftenamongthedifferenttasksinthemodelinglife-cycle.
1.
6.
2VisualizationandtheModelingLifeCycleFromtheviewpointofvisualization,themodelinglife-cycletransformsvague,poorlydefinedrepresentationsofaproblemintoanunderstand-able,convincingsolutiontotheproblem.
Duringthemodelinglife-cycle,representationssuchasmathematicalformulations,inputstoalgorithms,programlistings,algorithmoutputs,amongotherscanbeofuse.
Thefieldofoptimizationhasconcentratedmostofitsenergyonmerelyonephaseofthemodelinglife-cycle:algorithmdevelopment.
Themodelinglife-cycle,ontheotherhand,involvesmanyotheractivities.
Represen-tationisacommonthreadunderlyingallthephasesofthemodelinglife-cycle.
Therefore,thestudyofthoserepresentationsshouldhelpimprovethechancesforsuccessinamodelingproject.
Differentrepresentationsarerequiredatdifferentphasesofthemod-elinglife-cycle(Table1.
2).
Inthenextchapter,foreachphaseofthemod-elinglife-cycle,wediscussappropriaterepresentations.
Inthefollowingchapter,wediscusshowthedifferentrepresentationscanbeusedtosup-portvariousaspectsofoptimization.
1.
6.
3SummaryThissectionhaspresentedseveralversionsofthemodelinglife-cycle.
Althoughtheydiffer,theyallbasicallyfollowthesameidea:modelingconsistsofavarietyofdifferenttasks.
Althoughactualmodelingprojectsareusuallyfarmessierthanthecleanpicturepresentedbytheselife-cyclemodels,thetaskslistedinthelife-cyclemodelsdoinfactoccur.
Thechaptersintherestofthispartofthebook(Chapters2-6)discusstheothertwocomponentsofourbasicframework,peopleandformat.
Chapter2discussesmodelsofhumanperceptionandcognition,aswellassomeofthedifferencesamongpeoplethathavebeenidentifiedbycog-nitivepsychologists.
Chapters3-6discussindetailtheories,frameworksandrecommendationsforthevarietyofdifferentrepresentationformatsthatcanbeusedtorepresentcomplexinformation.
PartIIofthebookconsidershowvisualizationcansupporteachphaseofthemodelinglife-cycle.
PartIIIofthebookdiscusseshowdifferentrepresentationformatscanbeusedtosupportoptimization.
23ModelAlgorithmSolutionResultsDevelop-Develop-AnalysisPresenta-mentmenttionTextAlgebraicProgram-StandardNarrativeLanguagesmingOutputLanguagesTablesSpread-MatrixMatrixSummarysheets;ImagesImagesTablesBlockStructuredStaticGraph-VisualPresentationPresentationGraphicsBasedLanguagesGraphicsGraphicsAnimatedorModelingbyAlgorithmAnimatedAlgorithmInteractiveExampleAnimationSensitivityAnimation;GraphicsAnalysisAnimatedSensitivityAnalysisSoundTouchTable1.
2:Thedifferenttypesofrepresentationsthatcanbeusefulindif-ferentphasesofanoptimizationproject24BIBLIOGRAPHYBibliography[1]ColIRA,ColIJH,ThakurG.
Graphsandtables:Afour-factorexperiment.
CommunicationsoftheACM,1994;37(4).
[2]LarkinJH,SimonHA.
Whyadiagramis(sometimes)worthtenthousandwords.
CognitiveScience,1987;1l:65-99.
[3]GlassAL,HolyoakKJ.
Cognition.
NewYork:RandomHouse,2ndedition,1986.
[4]VesseyI.
Cognitivefit:Atheory-basedanalysisofthegraphsversustablesliterature.
DecisionSciences,1991;22:219-241.
[5]VesseyI,GallettaD.
Cognitivefit:Anempiricalstudyofinformationac-quisition.
InformationSystemsResearch,1991;2(1):63-86.
[6]NewellA,SimonHA.
HumanProblemSolving.
EnglewoodCliffs(NJ):Prentice-Hall,Inc.
,1972.
[7]SimonHA.
TheNewScienceofManagementDecision.
NewYork:HarperandRow,1960.
[8]ChurchmanCW,AckoffRL,ArnoffEL.
IntroductiontoOperationsRe-search.
NewYork:JohnWileyandSons,1957.
[9]WillemainTR.
Insightsonmodelingfromadozenexperts.
OperationsResearch,1994;42(2):213-222.
[10]WillemainTR.
Modelformulation:Whatexpertsthinkaboutandwhen.
OperationsResearch,1994;pageforthcoming.
云基yunbase怎么样?云基成立于2020年,目前主要提供高防海内外独立服务器,欢迎各类追求稳定和高防优质线路的用户。业务可选:洛杉矶CN2-GIA+高防(默认500G高防)、洛杉矶CN2-GIA(默认带50Gbps防御)、香港CN2-GIA高防(双向CN2GIA专线,突发带宽支持,15G-20G DDoS防御,无视CC)。目前,美国洛杉矶CN2-GIA高防独立服务器,8核16G,最高500G ...
atcloud怎么样?atcloud刚刚发布了最新的8折优惠码,该商家主要提供常规cloud(VPS)和storage(大硬盘存储)系列VPS,其数据中心分布在美国(俄勒冈、弗吉尼亚)、加拿大、英国、法国、德国、新加坡,所有VPS默认提供480Gbps的超高DDoS防御。Atcloud高防VPS。atcloud.net,2020年成立,主要提供基于KVM虚拟架构的VPS、只能DNS解析、域名、SS...
VPSDime是2013年成立的国外VPS主机商,以大内存闻名业界,主营基于OpenVZ和KVM虚拟化的Linux套餐,大内存、10Gbps大带宽、大硬盘,有美国西雅图、达拉斯、新泽西、英国、荷兰机房可选。在上个月搞了一款达拉斯Linux系统VPS促销,详情查看:VPSDime夏季促销:美国达拉斯VPS/2G内存/2核/20gSSD/1T流量/$20/年,此次推出一款Windows VPS,依然是...
windtour为你推荐
fugedios11Telewizjamedia主机routej^=iáíá=fq~=OQJOU==aJPPNMO=m~dê~ó=勒索病毒win7补丁由于电脑没连接网络,所以成功躲过了勒索病毒,但最近要联网,要提前装什么补丁吗?我电脑断网好久了ipad上网ipad上网速度很慢怎么回事?重庆电信宽带管家如何才能以正确的流程在重庆电信安装上宽带googleadsense如何通过Google adsense???fastreport2.5AMD Athlon 2.5+GHZ是什么意思?morphvoxpro怎么用morphvox pro和全民k歌怎么用
域名备案只选云聚达 hawkhost优惠码 cdn服务器 linkcloud kddi 名片模板psd 国内加速器 ibrs 绍兴高防 天互数据 怎么测试下载速度 徐正曦 免费全能主机 银盘服务 免费外链相册 深圳域名 黑科云 netvigator zcloud ping值 更多