costwindtour

windtour  时间:2021-05-25  阅读:()
PartIAFrameworkforVisualizationandOptimization17Thefivechaptersofthispartprovideawhirlwindtourofsomebasictheories,frameworks,andideasfromavarietyoffieldsincludingcogni-tivepsychology,human-computerinteraction,computergraphics,com-puterscience,artanddesign.
Clearlythosefieldsarefartoobroadtobecoveredinthreechapters,letaloneasinglebook.
Thefocusisonsomeofthemoreimportantideasandresults.
Inthesecondpartofthebook,webuildonthebasicspresentedhere,emphasizingtheirapplicationtovisualizationandoptimization.
Inordertoorganizeourdiscussionofvisualizationandoptimization,wepresentasimpleframework(Figure1.
4).
Theframeworkis:Thesuccessofvisualizationforaproblem-solvingprojectdependsonthetaskstobeaccomplished,thepeopleinvolved,andtherepresentationsformatsusedforthetaskandthepeo-ple.
TaskPeopleFonnatFigure1.
4:Aframeworkforvisualizationandoptimization.
Inotherwords,differentpeoplemaybenefitfromdifferentrepresen-tationformatsfordifferenttasks.
Althoughthisframeworkmayseemobvious,ithasnotalwaysbeenapparenttomany.
Forexample,researchcomparingtheeffectivenessoftraditionaltwo-dimensionalplotstotabularrepresentations(knownasthe18"graphs-vs-tables"question)iswidelyacknowledgedtobe"amess"[1].
Theresearchresultstodatehavebeenalmostcompletelyequivocal.
Somestudiesfoundnodifferenceinperformance,othershavefoundthattablesproducedbetterperformance,andothersfoundthatgraphsproducedbet-terperformance.
Theexplanation,intheabstractatleast,isquitesimple.
Mostofthestudiesuseddifferenttasks,representations,andsubjects.
Withineachstudy,onlyvariationsinrepresentationformatweremade.
Eachindivid-ualexperimentthereforewasvalidonlyfortheparticulartaskandsub-jectpopulationstudied.
Therealquestionisnotgraphsversustables,butrather,whatcharacteristicsoftasksandsubjectsfavorgraphsovertables(andviCeversa)Anotherexampleontheimportanceofrepresentationtoproblemsolv-ingcomesfromLarkinandSimon[2].
Considerthefollowinggame:Eachofthedigits1through9iswrittenonaseparatepieceofpaper.
Twoplayersdrawdigitsalternately.
Assoonaseitherplayergetsanythreedigitsthatsumto15,thatplayerwins.
Ifallninedigitsaredrawnwithoutawin,thenthegameisadraw.
Onemightbesurprisedtolearnthatthisgameisequivalenttotic-tac-toe(sometimescalled"noughtsandcrosses").
Ifoneplacesthedigits1through9inthefollowingtable,however,thecorrespondenceisclear.
618753294Anywinintic-tac-toecorrespondstoaselectionofdigits,threeofwhichsumto15.
Inthiscase,avisualrepresentationseemsparamount.
However,anotherexample,fromAdams(viaGlassandHolyoak[3])showstheimportanceoftextualrepresentationsovervisualrepresenta-tions:Considerasheetofpaper1I100thofaninchthick.
Foldthepaperinhalf,andtheninhalfagain.
Repeatthisprocess50timesintotal.
Ofcourse,itisnotphysicallypossibletoper-formthistask,butimagineifyoucan.
Howthickisthere-sultingfoldedpaperInthiscase,thevisualrepresentationgivesfewclues,butusingstandardmathematicalnotation-text-theanswercaneasilybefound,1/100x250inches.
19Theimportanceofmatchingthecharacteristicsofthetask,theviewerandtheformathasbeencalledcognitivefitbyVessey[4],[5].
Vessey[4]definescognitivefitasacost-benefitcharacteristicthatsuggeststhat,formosteffectiveandefficientproblemsolvingtooccur,theprob-lemrepresentationandanytoolsoraidsemployedshouldallsupportthestrategies(methodsorprocesses)requiredtoper-formthattask.
Inareviewofthegraphsversustablesliterature[5],basedonthecog-nitivefithypothesis,Vesseywasabletoofferacogentexplanationastowhysomestudiesfoundgraphssuperiortotablesandothersfoundtablessuperiortographs.
Eachstudyconsidereddifferenttasksanddifferentrepresentationformats.
Whateverformatwasbestmatchedtothetaskyieldedsuperiorperformance.
Thecognitivefithypothesisimpliesthatrepresentationformatmat-ters;itaffectshumanperformanceinsolvingproblems.
Bycarefullymatch-ingtherepresentationformattothetaskathand,performancecanbeen-hanced.
Oneofthegoalsofthisbookistoexploreappropriaterepresen-tationformatsforthemanytasksinvolvedinoptimizationmodeling.
1.
6TasksNumerousauthorshaveproposedframeworksforclassifyingthetasksin-volvedinanoptimizationproject.
Theseframeworksassumethatopti-mizationprojectsinvolveaseriesofstagesorsteps,thatis,amodelinglife-cycle.
1.
6.
1TheModelingLifeCycleThelife-cycleideaisembodiedinSimonandNewell's[6],[7]modelofdecisionmaking,Intelligence-Design-Choice.
Accordingtohisframe-work,intheIntelligencephaseofproblemsolving,informationisgath-eredinanattempttounderstandthenatureoftheproblem-thebound-ariesoftheproblem,thoseaffectedbytheproblem,thecostsandbenefitsoftheproblem.
IntheDesignphase,alternativesolutionstotheproblemareconstructed.
IntheChoicephase,oneormoreofthealternativesareselected.
Manyproblemsconcentratemoreononeofthesephasesthanonanother.
Foroptimizationmodeling,manydifferentauthorshavedescribedthestagesinthemodelinglife-cycle,withvaryinglevelsofdetail.
Table1.
1201.
6.
TASKSAuthorsSimonandChurchman,Ack-ThisBookNewell[6],[7]offandArnoff[8]IntelligenceFormulatingtheModelproblemDevelopmentDesignConstructingaAlgorithmmathematicalDevelopmentmodeltorepre-sentthesystemunderstudyDerivingaso-lutionfromthemodelTestingthemodelSolutionAnalysisandthesolutionderivedfromitChoiceEstablishingResultscontrolsoverthePresentationsolutionImplementationPuttingtheso-Implementationlutiontowork:implementationTable1.
1:Comparisonofdifferentversionsofthemodelinglife-cycle.
21liststhreeofthedifferentframeworks,attemptingtomatchstepsfromoneframeworkwiththosefromanother.
Forpurposesofthistext,weshallsimplifythemodelinglife-cycleintofivestages:1.
ModelDevelopment.
Thisincludesidentifyingtheunderlyingprob-ilem,collectingandanalyzingdata,formulatingamathematicalmodel.
2.
AlgorithmDevelopment.
Dependingontheproblemidentifiedinthepreviousstage,algorithmdevelopmentmaybetrivial,ifanex-istingpieceofsoftwarecanbeusedtoanalyzethemodel.
How-ever,formanyoptimizationproblems,thealgorithmmustbecare-fullyconstructed.
3.
SolutionAnalysis.
The"solutions"producedbyalgorithmsmustbetested,probedanddebugged.
Thedatacould(will)haveer-rors,themodelcouldhaveproblems,orthealgorithmcouldfailtoconverge.
Furthermore,evenwithadebuggedmodel,dataandal-gorithm,onemustthenattempttounderstandtheirbehavior.
Whenthepriceofasetofinputsrises,howdoesthataffectthesolutionIfonerelaxessomeconstraints,howdoesthesolutionchangeInotherwords,inthisphase,onealsoattemptstorelatetheinforma-tionprovidedbythealgorithmbacktotherealproblembeingat-tacked.
4.
ResultsPresentation.
Theresultsgeneratedbythepreviousphasemustbepresentedtothepeopleincharge,thepeoplepayingforthestudy,thepeopleactuallyresponsibleforsolvingtheproblem.
Theywillprobablybeskeptical;theymustbeconvincedthattherecommendationsbeingmademakesense.
Usuallytheywillnotreallyunderstandthesophisticatedmathematicalandcomputertech-niquesusedtosolvetheproblem.
But,theyneedtobeconvincedthattherecommendationsaresound.
5.
ImplementationGiventheresultsoftheanalysis,thechoicemustbeimplemented.
Itmustbecommunicatedtothoseresponsibleforeffectingthechange,andtheprocessofchangemustbecontinuallymonitored.
Althoughthisframeworkcontainsfewerstepsthanmanyofthepro-posedmodelinglife-cycles,itarguablycapturestheessenceofhowmod-elsevolveovertime,startingwithidentifyingtheproblemandendingwithfinalresults.
Onecaneasilybelulledbythecleanpicturepresentedbyanysuchlife-cyclemodel.
Inactualmodelingprojects,progressdoesnotfollow221.
6.
TASKScleanlyandsurelyfromonestagetoanother.
Oftenproblemsthatareun-detectedinpreviousstagesareonlyuncoveredinlaterstages,forcingaretreatbacktoanearlierstagetofixtheundetectedproblem.
Inarecentstudy[9],[10]expertmodelerswerefoundtomovequiteoftenamongthedifferenttasksinthemodelinglife-cycle.
1.
6.
2VisualizationandtheModelingLifeCycleFromtheviewpointofvisualization,themodelinglife-cycletransformsvague,poorlydefinedrepresentationsofaproblemintoanunderstand-able,convincingsolutiontotheproblem.
Duringthemodelinglife-cycle,representationssuchasmathematicalformulations,inputstoalgorithms,programlistings,algorithmoutputs,amongotherscanbeofuse.
Thefieldofoptimizationhasconcentratedmostofitsenergyonmerelyonephaseofthemodelinglife-cycle:algorithmdevelopment.
Themodelinglife-cycle,ontheotherhand,involvesmanyotheractivities.
Represen-tationisacommonthreadunderlyingallthephasesofthemodelinglife-cycle.
Therefore,thestudyofthoserepresentationsshouldhelpimprovethechancesforsuccessinamodelingproject.
Differentrepresentationsarerequiredatdifferentphasesofthemod-elinglife-cycle(Table1.
2).
Inthenextchapter,foreachphaseofthemod-elinglife-cycle,wediscussappropriaterepresentations.
Inthefollowingchapter,wediscusshowthedifferentrepresentationscanbeusedtosup-portvariousaspectsofoptimization.
1.
6.
3SummaryThissectionhaspresentedseveralversionsofthemodelinglife-cycle.
Althoughtheydiffer,theyallbasicallyfollowthesameidea:modelingconsistsofavarietyofdifferenttasks.
Althoughactualmodelingprojectsareusuallyfarmessierthanthecleanpicturepresentedbytheselife-cyclemodels,thetaskslistedinthelife-cyclemodelsdoinfactoccur.
Thechaptersintherestofthispartofthebook(Chapters2-6)discusstheothertwocomponentsofourbasicframework,peopleandformat.
Chapter2discussesmodelsofhumanperceptionandcognition,aswellassomeofthedifferencesamongpeoplethathavebeenidentifiedbycog-nitivepsychologists.
Chapters3-6discussindetailtheories,frameworksandrecommendationsforthevarietyofdifferentrepresentationformatsthatcanbeusedtorepresentcomplexinformation.
PartIIofthebookconsidershowvisualizationcansupporteachphaseofthemodelinglife-cycle.
PartIIIofthebookdiscusseshowdifferentrepresentationformatscanbeusedtosupportoptimization.
23ModelAlgorithmSolutionResultsDevelop-Develop-AnalysisPresenta-mentmenttionTextAlgebraicProgram-StandardNarrativeLanguagesmingOutputLanguagesTablesSpread-MatrixMatrixSummarysheets;ImagesImagesTablesBlockStructuredStaticGraph-VisualPresentationPresentationGraphicsBasedLanguagesGraphicsGraphicsAnimatedorModelingbyAlgorithmAnimatedAlgorithmInteractiveExampleAnimationSensitivityAnimation;GraphicsAnalysisAnimatedSensitivityAnalysisSoundTouchTable1.
2:Thedifferenttypesofrepresentationsthatcanbeusefulindif-ferentphasesofanoptimizationproject24BIBLIOGRAPHYBibliography[1]ColIRA,ColIJH,ThakurG.
Graphsandtables:Afour-factorexperiment.
CommunicationsoftheACM,1994;37(4).
[2]LarkinJH,SimonHA.
Whyadiagramis(sometimes)worthtenthousandwords.
CognitiveScience,1987;1l:65-99.
[3]GlassAL,HolyoakKJ.
Cognition.
NewYork:RandomHouse,2ndedition,1986.
[4]VesseyI.
Cognitivefit:Atheory-basedanalysisofthegraphsversustablesliterature.
DecisionSciences,1991;22:219-241.
[5]VesseyI,GallettaD.
Cognitivefit:Anempiricalstudyofinformationac-quisition.
InformationSystemsResearch,1991;2(1):63-86.
[6]NewellA,SimonHA.
HumanProblemSolving.
EnglewoodCliffs(NJ):Prentice-Hall,Inc.
,1972.
[7]SimonHA.
TheNewScienceofManagementDecision.
NewYork:HarperandRow,1960.
[8]ChurchmanCW,AckoffRL,ArnoffEL.
IntroductiontoOperationsRe-search.
NewYork:JohnWileyandSons,1957.
[9]WillemainTR.
Insightsonmodelingfromadozenexperts.
OperationsResearch,1994;42(2):213-222.
[10]WillemainTR.
Modelformulation:Whatexpertsthinkaboutandwhen.
OperationsResearch,1994;pageforthcoming.

spinservers:10Gbps带宽高配服务器月付89美元起,达拉斯/圣何塞机房

spinservers是一家主营国外服务器租用和Hybrid Dedicated等产品的商家,Majestic Hosting Solutions LLC旗下站点,商家数据中心包括美国达拉斯和圣何塞机房,机器一般10Gbps端口带宽,且硬件配置较高。目前,主机商针对达拉斯机房机器提供优惠码,最低款Dual E5-2630L v2+64G+1.6TB SSD月付89美元起,支持PayPal、支付宝等...

7月RAKsmart独立服务器和站群服务器多款促销 G口不限量更低

如果我们熟悉RAKsmart商家促销活动的应该是清楚的,每个月的活动看似基本上一致。但是有一些新品或者每个月还是有一些各自的特点的。比如七月份爆款I3-2120仅30美金、V4新品上市,活动期间5折、洛杉矶+硅谷+香港+日本站群恢复销售、G口不限流量服务器比六月份折扣力度更低。RAKsmart 商家这个月依旧还是以独立服务器和站群服务器为主。当然也包括有部分的低至1.99美元的VPS主机。第一、I...

HostKvm5.95美元起,香港、韩国可选

HostKvm发布了夏季特别促销活动,针对香港国际/韩国机房VPS主机提供7折优惠码,其他机房全场8折,优惠后2GB内存套餐月付仅5.95美元起。这是一家成立于2013年的国外主机服务商,主要提供基于KVM架构的VPS主机,可选数据中心包括日本、新加坡、韩国、美国、中国香港等多个地区机房,均为国内直连或优化线路,延迟较低,适合建站或者远程办公等。下面分享几款香港VPS和韩国VPS的配置和价格信息。...

windtour为你推荐
lsusbwinrar5adbandroid支持ipadtcpip上的netbios网络连接详细信息上的netbios over tcpip是什么意思?ms17-010win10pybaen.10.的硬币是哪国的再中国至多少钱联通版iphone4s怎样看苹果4S是联通版还是电信版win7关闭135端口win7下怎么关135和8909端口firefoxflash插件火狐浏览器adobe flash player装了不能用ipad无法加入网络为什么我的ipad加入网络没法用fastreport2.5AMD Athlon 2.5+GHZ是什么意思?
亚洲大于500m 电信测速器 香港主机 permitrootlogin 国外网站代理服务器 促正网秒杀 域名转向 web服务器的架设 绍兴电信 联通网站 空间首页登陆 服务器论坛 lamp兄弟连 摩尔庄园注册 国外免费云空间 阿里云邮箱申请 iptables 挂马检测工具 海尔t68驱动 大容量存储方案 更多