examination水星mr804

水星mr804  时间:2021-05-19  阅读:()
RESEARCHOpenAccessMolecularanalysisoftheSydneyrockoyster(Saccostreaglomerata)CO2stressresponseNicoleG.
Ertl1,2,WayneA.
O'Connor1,3,AaronN.
Wiegand1andAbigailElizur1*AbstractBackground:Humanactivitieshaveledtoasubstantialincreaseincarbondioxide(CO2)emission,withfurtherincreasespredicted.
ARNA-SeqstudyonadultSaccostreaglomeratawascarriedouttoexaminethemolecularresponseofthisbivalvespeciestoelevatedpCO2.
Results:Atotalof1626S.
glomeratatranscriptswerefoundtobedifferentiallyexpressedinoystersexposedtoelevatedpCO2whencomparedtocontroloysters.
Thesetranscriptscoverarangeoffunctions,fromimmunity(e.
g.
patternrecognitionreceptors,antimicrobialpeptides),torespiration(e.
g.
antioxidants,mitochondrialrespiratorychainproteins)andbiomineralisation(e.
g.
carbonicanhydrase).
Overall,elevatedlevelsofCO2appeartohaveresultedinaprimingoftheimmunesystemandinproducingcountermeasurestopotentialoxidativestress.
CO2exposurealsoseemstohaveresultedinanincreaseintheexpressionofproteinsinvolvedinproteinsynthesis,whereastranscriptsputativelycodingforproteinswitharoleinciliaandflagellafunctionweredown-regulatedinresponsetothestressor.
Inaddition,whilesomeofthetranscriptsrelatedtobiomineralisationwereup-regulated(e.
g.
carbonicanhydrase2,alkalinephosphatase),asmallgroupwasdown-regulated(e.
g.
perlucin).
Conclusions:ThisstudyhighlightedthecomplexmolecularresponseofthebivalveS.
glomeratatoexpectednear-futureoceanacidificationlevels.
Whilethereareindicationsthattheoysterattemptedtoadapttothestressor,gaugedbyimmunesystemprimingandtheincreaseinproteinsynthesis,someprocessessuchciliafunctionappeartohavebeennegativelyaffectedbytheelevatedlevelsofCO2.
Keywords:Saccostreaglomerata,Sydneyrockoyster,Molluscs,RNA-seq,Stress,Carbondioxide,Immunity,BiomineralisationBackgroundAnthropogenicactivitiessuchasdeforestationandburn-ingoffossilfuelshaveledtoa36%increaseinatmos-phericcarbondioxide(CO2)overthelastfewhundredyears.
Thisisexpectedtofurtherincreasetobetween540to970ppmby2100.
OftheanthropogenicCO2produced,aboutonethirdhasbeentakenupbyoceans,leadingtoa0.
1unitdecreaseintheocean'ssurfacepH,withpredictionsoffurtherpHreductionsof0.
14–0.
35unitsby2100.
Furthermore,CO2uptakeaffectscarbon-atechemistrythroughchangestothesaturationstateof,forinstance,aragoniteandcalcite[1–8].
DuringCO2uptake,water(H2O)interactswithCO2toproducecar-bonicacid(H2CO3)inthefirstinstance,whichthendis-sociatestoformbicarbonate(HCO3-)andcarbonateions(CO32-)that,inthepresenceofcalciumions(Ca2+),eventuallyleadstotheformationofcalciumcarbonate(CaCO3)[5,6].
Calciumcarbonateisanimportantcom-ponentofthebivalveshell,aswellascoralreefsandothermarinecalcifiers,withitsformationanddissol-utionstronglydependentonthecarbonatesaturationstateofthewatercolumn[4,6].
Oceanacidification,thetermthatencompassestheeffectsofCO2uptakebytheocean,canaffectshellformation,shellgrowthandthick-nesswithpotentialflow-oneffectsofreducedprotectionfrompredatorsandsuboptimalenvironments[3,6,9].
Inaddition,oceanacidificationcanpotentiallyaffectthe*Correspondence:AElizur@usc.
edu.
au1UniversityoftheSunshineCoast,SippyDowns,SunshineCoast,QLD,AustraliaFulllistofauthorinformationisavailableattheendofthearticle2016TheAuthor(s).
OpenAccessThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.
0InternationalLicense(http://creativecommons.
org/licenses/by/4.
0/),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.
TheCreativeCommonsPublicDomainDedicationwaiver(http://creativecommons.
org/publicdomain/zero/1.
0/)appliestothedatamadeavailableinthisarticle,unlessotherwisestated.
Ertletal.
ClimateChangeResponses(2016)3:6DOI10.
1186/s40665-016-0019-ymetabolicrateofbenthicinvertebrates,proteinsynthesisandionexchange[1,3].
Anumberofstudiesexaminingtheeffectsofoceanacidificationonmolluscshavebeenundertaken,withresponsesvaryingbetweenspeciesandchangingwithontogeny[9].
Forinstance,withingeneracomparisonoflarvalshellgrowthandcalcificationinCrassostreavirgi-nicaandCrassostreaariakensisinresponsetoelevatedpCO2,showthatwhileC.
ariakensislarvaearenotaf-fected,C.
virginicalarvaedisplayedaslowershellgrowthanddecreasedcalcification[7].
C.
virginicalarvae,aswellaslarvaeoftheclamMercenariomercenariaandArgopectenirradians,alsoshoweddelayedmetamor-phosisanddecreasedlarvalsizeatelevatedCO2.
Inaddition,mortalityratesofM.
mercenariaandA.
irra-dianslarvaewerehigheratelevatedCO2thanambientCO2[10].
AstudyonthemusselMytilusgalloprovincia-lisobservednoeffectonfertilisationinresponsetoele-vatedlevelsofCO2,butfertilisedeggsexposedtoelevatedCO2showeddelayeddevelopmentintoD-veligerlarvaecomparedwiththecontrolfertilisedeggs.
Moreover,themajorityofthefertilisedeggsthateventu-allydevelopedintoD-veligerlarvaeshowedarangeofmorphologicalabnormalities(e.
g.
indentationofshellmargin)andhadalsosmallershells[11].
TheSydneyrockoyster,Saccostreaglomerata,isnativetotheeastcoastofAustralia,whereitisbothecologic-allyandeconomicallyimportant[12].
Duetoitsimport-ance,severalstudieshavealsobeencarriedouttoassessthepotentialeffectsofoceanacidificationonthisspe-cies.
Forinstance,elevatedpCO2hasbeenshowntodecreasefertilisationrateandreducethepercentageofS.
glomeratagametesthatdeveloptoD-veligerstage.
AsobservedinM.
galloprovincialis,S.
glomerataD-veligerlarvaethathadbeenexposedtoelevatedpCO2weresmallerandhadhigherpercentagesofmorphologicalabnormalitiesat24h[13].
Whilemuchoftheoceanacidificationresearchhasconcentratedontheearlylife-stagesofmolluscs,studiesindicatethatnotonlylarvae,butalsojuvenileandadultmolluscscanbeaffectedbyoceanacidification.
Observedeffectsweredecreasedshellstrength,reducedgrowth(lowerdryshellandsoft-tissuemass)andincreasedmetabolicrateinresponsetoelevatedlevelsofCO2[14,15].
Estuaries,thehabitatofmanymolluscssuchasoys-ters,arebelievedtobemorevulnerabletoincreasesinpCO2anditseffectsthantheopenoceanastheyoftenalreadyshowhighlevelsofCO2andaremuchshallower[7,10,16],whichmayaffecttherateinwhichthelocalpHchanges.
Consideringthepoten-tiallysevereandvariedimpactsoceanacidificationcanhaveonallmolluscanlife-stages,itisessentialtogainabetterunderstandingofthemechanismsunder-lyingtheobservedeffectsofoceanacidificationonestuarinebivalves.
Toaddressthisquestion,wecar-riedoutapCO2exposurestudyusingadultS.
glo-merata.
Inthisstudy,S.
glomerata,acclimatedtoelevatedtemperature(28°C)wasexposedtoelevatedtemperatureandelevatedpCO2(1000ppm)andthemo-lecularresponseoftheoysterstothesechallengesana-lysedwithRNA-Seq.
MethodsStressexposureandsamplecollectionCO2andtemperatureAdult,wildS.
glomerata,collectedfromCromartyBay(seawatertemperatureof20.
5±0.
5°Cand423.
36±17.
54μatmCO2),PortStephens(NSW,Australia)wereslowlybroughtupto28°C(1°Cchangeinwatertemperature/day),thenacclimatedtotheelevatedtemperature(28°C)for4days.
Afteracclimation,theoysterswereexposedto1)28°Candambient(385ppmor386.
9μatm)pCO2(control)or2)28°Candelevated(1000ppmor1108.
2μatm)pCO2inthreereplicate750Lheadertankspertreatmentfor4weeks.
Thistimeframewaschosenasoysterswereexpectedtobeaffectedbytheexperimentalconditionwithin4weeks.
Sixoysters(n=2perreplicate)weresampledrandomlyfromeachtreatmentattheendoftheexperiment.
AdditionalsamplesforreferencetranscriptomepreparationInaddition,adult,wildSaccostreaglomeratafromCromartyBay,PortStephens(NSW,Australia),wereexposedtoa)salinityandtemperature(n=24oysters)orb)polycyclicaromatichydrocarbons(PAH)(n=12oysters).
Fulldetailsofexperimentalset-up,oysterhus-bandryandexposureareasdescribedinAdditionalfile1.
OnlytheresultsfromtheCO2andtemperatureex-posurearediscussedinthispaper;however,sequencingreadsfromthesamplesofalltreatments(n=48oysterstotal)wereusedtobuildthereferencetranscriptome.
SamplepreparationandsequencingTissuesusedforRNA-Seqanalysisweregill,mantle,adductormuscle,gonadanddigestive(PAHandCO2experiment)orgill,mantle,adductormuscleanddigest-ive(salinity).
TotalRNAwasextractedfrom25mg(24mgforsalinitysamples)ofpooledtissue(5mgpertissueforCO2andPAHsamples,6mgpertissueforsal-initysamples)fromeachoftheoystersaccordingtothemanufacturer'sguidelines,usingtheDirect-zolRNAMiniPrepkit(ZymoResearchCorporation,USA)includ-ingtheDNaseIdigestionstep.
QualityandquantityoftheextractedRNAweretestedbygelelectrophoresis,bioanalyzer(2100Bioanalyzer,AgilentTechnologies,USA)usingtheRNA6000NanoChipkit(AgilentTech-nologies)andwiththeQuantusTMfluorometer(Promega,Australia).
ERCC(ExternalRNAControlConsortium)Ertletal.
ClimateChangeResponses(2016)3:6Page2of19RNAspike-incontrolmixes(Ambion,Australia)werediluted1:100,then2μlofthedilutedmix1andmix2addedto1μgoftotalRNAofcontrolandtreatedsamples,respectively.
RNA-Seqlibrarieswerethenpreparedfromeachofthesesamples,usingtheTruSeqRNAsampleprepkit-v2(Illumina,Australia)accordingtothekit'sprepar-ationguidelines.
Qualityandquantityofthe48cDNAlibrariesweretestedwiththe2100Bioanalyzer,usingtheHighSensitivityDNAchipkit(AgilentTechnologies)andwiththeQuantusTMfluorometer.
LibrariesweresenttoAGRF(Australia)for100bppaired-endsequencing,wherethe48librarieswererandomlydistributedacrossfourlanesandrunonanIlluminaHiSeq2000sequencer.
ReadprocessinganddenovoreferencetranscriptomeassemblyPaired-endreadqualitywasexaminedpre-andpost-cleanupwithFastQC(http://www.
bioinformatics.
babraham.
ac.
uk/projects/fastqc/).
ReadsweretrimmedforqualitywithTrimmomatic[17],andadaptersequencesandreadswithasizebelow40bpaftercleanupre-moved.
Inaddition,readswereassessedforartefactslikeE.
coli,phiX,humansequences,aswellasforthelevelofribosomalsequences.
Processedreads,alongwithS.
glomerataprocessednon-strandspecificandnon-normalisedreadsfromapreviousIlluminaHiSeq2000sequencingrun(Additionalfile1)wereassembledintotranscripts,usingTrinity[18]withtheinsilicoreadnor-malisationoption.
AssembledtranscriptswerealignedtotheERCCandphiXreferencesequences,usingBLAT[19]andtranscriptsmappingtoeitherreferencesre-movedfromtheS.
glomeratareferencetranscriptomeassemblywithanin-housescript.
TheremovedERCCtranscriptsfunctionedasindicatorsofhowsuccessfultheassemblyofthereferencetranscriptomewasandwerecloselyexaminedintheCLCworkbench(CLCBio,USA,version7.
5).
Inaddition,redundancywasremovedwithcd-hit-est[20],usinga99%cut-off,andcomplete-nessoftheassemblywasexaminedwithCEGMA(CoreEukaryoticGenesMappingApproach)[21].
Inordertoeliminateanypotentialbiasoftheanalysis,ERCCrefer-encesequenceswereaddedtothecleanS.
glomerataref-erencetranscriptomethatwasthenusedasareferenceforthedifferentialgeneexpressionanalysis.
DifferentialgeneexpressionanalysisofCO2samplesTranscriptssignificantlydifferentiallyexpressedbetweencontrolandelevatedCO2samplesweredeterminedwithRSEM[22]andEBSeq[23].
Post-processedreadsofthe12CO2sampleswerealignedtotheS.
glomeratarefer-encetranscriptomewithBowtie[24](Additionalfile2:TableS1),usingaRSEMinternalscript.
ReadcountswereestimatedwithRSEM,afterwhichreadcountdatafortranscriptsthathadreceivedazeroestimatedcountforall12sampleswasremovedfromtheanalysis.
Tran-scriptswithmeancountsof>0acrossallsampleswerethenfurtheranalysedwithEBSeqinR(version3.
1.
1).
Asadenovoassembledreferencetranscriptomewasusedfordifferentialgeneexpressionanalysiswherethegene-isoformrelationshipwasnotknown,mappingambiguityclusterswereproducedwiththeRSEMscriptrsem-generate-ngvector.
Mediannormalisationoftheesti-matedcountdatawascarriedoutinEBSeq,afterwhichEBTestwasrunfor12iterationsuntilconvergencehadbeenreached.
Afalsediscoveryrate(FDR)thresholdof0.
05wasappliedtodetermineisoforms/transcriptssig-nificantlydifferentiallyexpressedbetweencontrolandelevatedCO2samples.
Foldchangevaluesusedthrough-outthetextwerebasedontheposteriorfoldchangevalues.
FunctionalannotationofdifferentiallyexpressedtranscriptsBlastxsimilaritysearcheswerecarriedoutontranscriptsfoundtobesignificantlydifferentiallyexpressedagainsttheNCBInon-redundant(nr)database(downloaded08.
09.
14),usingane-valuecut-offof1e-5withahitnumberthresholdof25.
Mappingandfunctionalanno-tationofthetranscriptswascarriedoutwithBlast2GO[25],usingstandardparameters(hitadjustedto25).
Inaddition,InterProScansearcheswererunthroughBlas-t2GOwiththeresultsmergedwiththealreadyexistingannotations.
Wheredomain/familyinformationwasavailablefortranscriptswithasequencedescriptionof"—NA—"or"hypotheticalprotein/uncharacterisedpro-tein",andthisinformationofferedanindicationastothepotentialidentityofthetranscript,itwasaddedtotherespectivetranscript.
Furthermore,transcriptsofinterestweremappedtothetissuespecificS.
glomeratatranscripts(Additionalfile1),usingtheCLCGenomicsWorkbenchversion7.
5(CLCBio,USA)withdefaultpa-rameters(minimumlengthfraction:0.
7,similarity:0.
8),todeterminetheirputativetissuedistributioninS.
glomerata.
QPCRanalysisQPCRanalysiswascarriedouttovalidatethedifferentialtranscriptexpressionanalysismethodusedinthisstudy.
Forthis,totalRNAwasextractedfrom25mgofpooledtissue(5mgofeach,gill,mantle,adductormuscle,gonadanddigestive)fromthesixcontrol(28°Cand385ppmpCO2)andsixtreated(28°Cand1000ppmpCO2)oystersusedtopreparethe12CO2RNA-Seqlibrariesofthisstudy.
Inaddition,totalRNAwasalsoisolatedfromawild,non-stressedS.
glomerata(using6mgeachofgill,mantle,adductormuscle,gonadanddigestivetissueoftheoyster)andusedasareferencesampleintheqPCRanalysis.
TheDirect-zolRNAErtletal.
ClimateChangeResponses(2016)3:6Page3of19MiniPrepkit,includingtheDNaseIdigestionstep,wasusedforRNAisolationaccordingtothemanufacturer'sguidelines.
QualityoftheextractedRNAwastestedwiththe2100Bioanalyzer,usingtheRNA6000NanoChipkit,andquantitywiththeQuantusTMfluorometer.
cDNAsynthesiswascarriedoutonthereferencesample(500ngoftotalRNA),aswellasonthecontrolandtreatedsamples(1000ngoftotalRNAeach),usingtheQuantiTectreversetranscriptionkit(Qiagen,Australia)asdescribedinthekit'sguidelines.
Furthermore,nega-tivereversetranscription(-RT)reactionswereper-formedonthreeoutof12samples,whereRNasefreewaterwasusedinsteadofthereversetranscriptasetotestforgenomiccontaminationofthesamplesduringqPCRanalysis.
PrimerdesignandtestingOfthetranscriptsfoundtobesignificantlydifferentiallyexpressedbetweenthesixcontrolandsixCO2treatedS.
glomerata,twotranscripts,showinganestimatedreadcountof>100forthelowestsamplewererandomlychosenforqPCRanalysis.
FourtranscriptspecificprimerpairspertranscriptweredeterminedwithPrimer3Plus(http://primer3plus.
com/cgi-bin/dev/primer3plus.
cgi),withaprimersizeof19–23bp,melttemperatureof60–61°Candlowtonoself-annealing.
PotentialprimerpairsweremappedbacktotheS.
glomeratareferencetranscrip-tomewiththeCLCGenomicsWorkbenchversion7.
5(CLCBio,USA)todetermineprimerpairsthateithera)onlymappedtothetranscriptofinterest,orb)mappedtothetargettranscriptandaverysmallnumberofothertranscriptswithaminimumoftwonucleotidemismatchatthe3′end.
Next,.
bammappingfiles,producedduringthedifferentialtranscriptexpressionanalysiswithBowtie[24]andRSEM[22]werevisualisedintheIntegrativeGenomicsViewer(IGV;https://www.
broadinstitute.
org/igv/)andusedtoexaminepotentialprimerpairsfornu-cleotidemismatchesintheprimersequenceacrosscontrolandCO2treatedsamples.
Primerpairswitha)nonucleo-tidemismatchesacrosseitheroftheprimersequencesinall12samples,orb)amaximumoftwonon-crucial(no3′)nucleotidemismatchesacrosseitheroftheprimersequencesinall12samplesweresynthesisedbySigmaAldrich(Australia)forqPCRanalysis(Table1).
AtemperaturegradientPCRwasperformedtodeter-minethebestprimerannealingtemperatureforeachoftheeightprimerpairs.
TheprimerschosenforuseinthisstudyarepresentedinTable1.
TriplicatePCRreac-tionswerepreparedforeachoftheprimerpairs,using0.
6μLofreferencesampleastemplate,addedto14.
4μLofmastermix,containing1.
5μLof10xPCRreactionbuffer,2mMofMgCl2,200μMofdNTPs,1UofTaq(allreagentsfromFisherScientific,Australia),200nMeachoftherespectiveforwardandreverseprimer,and10.
74μLofRNasefreewater.
Cyclingconditionswereaninitialdenaturationfor1minat95°C,followedby35cyclesofdenaturationfor30sat94°C,annealingfor30sateithera)58.
1°C,b)60.
6°Corc)61.
9°Cwiththetriplicatesdistributedacrossthethreetemperatures,thenextensionfor45sat72°C.
Finalextensionoc-curredat72°Cfor2min,afterwhichgelelectrophoresiswascarriedouton3μLofeachPCRproduct.
FragmentpreparationforqPCRstandardcurvesPCRproductsofaknownlengthwereproducedforthetwotranscriptschosenforqPCRanalysis.
Tektin-2andtektin-4-likePCRproductswereobtainedbyPCRamplifi-cation,usingprimerpairsT2F_2andT2R_4,andT4F_1andT4R_2,respectively.
FourreplicatePCRreactionsweresetupforbothtranscripts,using1μLofreferencesampleastemplate,0.
2μMeachoftherespectiveforwardandreverseprimer,12.
5μLofMyTaqmix(Bioline,Australia)and10.
5μLRNasefreewaterforatotalreac-tionvolumeof25μL.
PCRamplificationconditionswere:a)initialdenaturationfor2minat95°C,followedby35cyclesofb)denaturationfor30sat95°C,c)annealingfor30sat60°C,d)extensionfor2minat72°C,withafinalextensionfor2minat72°C.
GelelectrophoresiswasusedtodeterminesinglebandingofthePCRproducts,afterwhichproductsfortektin-2andtektin-4-likewerepurifiedwiththeQIAquickPCRpurificationkit(Qiagen,Australia)accordingtothekit'sguidelines.
Purifiedproductsofthetwotranscriptswereassessedwithgelelectrophoresisandthefourreplicatesofeachprimerpairpooledtoobtainasinglecleanproductperprimerpair.
ThetwocleanproductswereanalysedontheNanoDrop2000spectrophotometer(ThermoFisherScientific,USA)threetimesandthemeanconcentrationvalueofeachproductusedtodeterminecopynumbersofeachproductwiththecopynumbercalculator(http://cels.
uri.
edu/gsc/cndna.
html).
Table1PrimerpairsforqPCRanalysis.
Thistableonlyshowsthehighestefficiencyprimerpairs,aswellastheprimersusedtoproducethepurifiedPCRproductsforthestandardcurvesTranscriptPrimerIDSequence(5′to3′)Length(bp)tektin-2T2F_1CCACACCCTTCAGCAGTGT19T2R_1GCGATCTTTGCGCGGATTT19T2F_2AGTTCGCCAGGAGAGTCGA19T2R_4CTCCTCTAGAGCCCTCTTCGT21tektin-4-likeT4F_1ACAATGGGGTTCAGGGCTG19T4R_2CGGACGCTGACACACTTGT19T4F_3TGAGAGAATTCGCCACGAG19T4R_3TGTTGCACGGAGTCCATTT19Ertletal.
ClimateChangeResponses(2016)3:6Page4of19PrimervalidationandqPCRanalysisofCO2samplesPrimerefficiencyandspecificityweredeterminedwithqPCR(Table1).
A1in10,10pointserialdilutionwaspreparedfromthe108copynumberstocksolutionofeachofthetwopurifiedPCRproducts.
Theserialdilu-tionswerethenusedasqPCRtemplatestodetermineprimerefficiencyandspecificityforallprimerpairs.
Forthis,200nMeachperforwardandreverseprimerwereaddedto1μLoftemplate,5μLofPlatinumSYBRGreenqPCRSuperMix-UDG(Invitrogen,Australia)and3.
6μLofRNasefreewater.
Reactionswereperformedintriplicate,includingtriplicatenotemplatecontrols(NTCs),usingtheRotor-Gene6000thermalcycler(CorbettResearch,Australia).
Cyclingconditionswereasfollows:initialholdingstepat50°Cfor2min,holdat95°Cfor2min,then40cyclesof95°Cfor15s,60°Cfor15sand72°Cfor25s,withthelaststepsettoacquiretoGreen.
Meltcurveanalysiswasperformedbyincreasingthemeltingtemperatureby1°Cincrementsfrom72°Cto95°C.
TheRotor-Gene6000software,ver-sion1.
7.
87(CorbettResearch,Australia),wasusedforquantificationandmeltcurveanalysis.
Reactioneffi-ciency(E)wascalculatedforeachprimerpairbytheRotor-Gene6000software,usingthefollowingequation:E=[10(-1/M)]-1,whereMstandsfortheslopeofthecurve.
Absolutetranscriptexpressionlevelsoftektin-2andtektin-4-likeweredeterminedwithqPCRinthesixcon-trolandsixCO2treatedS.
glomeratasamples,withreac-tionvolumesandcyclingconditionsasdescribedforprimervalidation.
Reactionswerecarriedoutindupli-cate,includingduplicateNTCsand–RTs,aswellasonepointofthestandardcurveandapositivecontrolintriplicate.
Primerpairsusedfortheindividualtranscriptswere:a)T2F_1andT2R_1(efficiency:0.
9855)andb)T4F_3andT4R_3(efficiency:0.
9698).
StatisticalanalysisofqPCRdataAtwo-samplet-testassumingunequalvariances(Micro-softExcelSoftware)wasusedtodeterminesignificantdifferencesbetweenthetranscriptexpressionlevelsofcontrolandCO2stressedS.
glomerata.
InordertoallowforadirectcomparisonbetweenRNA-SeqandqPCRresults,thesignificancelevelforthet-testwassetatp100)andKOBAS(e-valueof1e-5)usingDIAMOND(v0.
8.
5)[26],andagainsttheHMMER/Pfamproteindatabase(v28.
0,DomainScore>20)[27]usingHMMER3.
1b[28].
Wheremultipleanno-tationswereavailableforasingleopenreadingframe(ORF)ormultipleORFswerepredictedforagiventran-script,thebestmatchingannotation(highestBitScore,loweste-value)orORFwiththebestannotationwerechosen,respectively.
GOenrichmentanalysisUsingTrinotate(v3.
0.
1,https://trinotate.
github.
io/)scripts,theannotationanddifferentialexpressionfileswereloadedintoaSQLitedatabase(v3.
9.
2,http://www.
sqlite.
org/)andaGOenrichmentanalysiscarriedoutusingthe'goseq'Rpackage[29].
Takingthelengthofeachtranscriptintoaccount,GOseqdeterminedGOandCOG/eggNOG(ClustersofOrthologousGroups/evolutionarygenealogyofgenes:Non-supervisedOrtho-logousGroups)termsthatareover-representedamongthetranscriptsdifferentiallyexpressedbetweencontrolS.
glomerataandoystersexposedtoelevatedCO2.
ResultsanddiscussionS.
glomeratareferencetranscriptomeForthisstudy,aS.
glomeratareferencetranscriptomewasproducedandthenusedtoanalysethemolecularresponseofadult,wildS.
glomerataexposedtoelevatedpCO2(1000ppm)andtemperature(28°C),whencom-paredtocontrolS.
glomeratathatwereexposedtoele-vatedtemperatureandambientpCO2(385ppm).
ApCO2concentrationof1000ppmwaschosenbasedonpredictionsfortheyear2100[8].
Inordertoobtainacomprehensivereferencetranscriptome,tissue(gill,mantle,adductormuscle,gonadanddigestive)ofS.
glo-merataexposedtoCO2andtemperature,salinityandtemperature,andPAHwasextractedandnon-strandspecificandnon-normalisedlibraries(n=48)foreachindividualoysterprepared.
LibrariesweresequencedwithIllumina,resultinginatotalof818,834,356paired-endreadswithaGCcontentof42–44%.
AsimilarGCcontenthasalsobeenfoundinothermolluscs[30,31].
Rawreadswereprocessedandtheresultingprocessedreads(98.
7%),alongwiththeprocessednon-strandspe-cificandnon-normalisedreadsofourpriorS.
glomeratastudy(Additionalfile1),assembledintoareferencetranscriptome.
Assemblystatisticsbeforeandafterre-dundancyremovalaresummarisedinTable2.
Com-pletenessofthereferencetranscriptomeassemblywasassessedwithCEGMA[21],aswellasbythesuccessfulassemblyofERCCandphiXsequences.
EventhoughtheCEGMAsoftwarewasoriginallydevelopedtoassessthecompletenessofgenomes,variousstudies[32,33]havealsousedthissoftwaretodeterminethecompletenessoftranscriptomes.
Oftheoriginal92ERCCreferencese-quencesandonephiXsequence,89ERCC'sandoneErtletal.
ClimateChangeResponses(2016)3:6Page5of19phiXsequencewerefoundintheS.
glomeratareferencetranscriptome,withallsequencesclosetofulllength.
TheN50value(836bp)ofthenon-redundantreferencetranscriptomeiscomparabletotheN50'sobservedforothermolluscandenovotranscriptomes[34–36].
Basedontheseresults,theassemblywasconsideredtobeofsuitablequalityforthedifferentialgeneexpressionanalysis.
DifferentialtranscriptexpressionanalysisofCO2samplesEBSeq,anRbasedprogramwasusedtodetermineS.
glomeratatranscriptsdifferentiallyexpressedbetweencontroloysters(exposedtopCO2of385ppmand28°C)andoystersexposedtoelevatedpCO2(1000ppmand28°C).
EBSequsesanempiricalBayesianapproachandwaschoseninthisstudyasittakestheestimationuncer-taintyinherentinisoformexpressionanalysisintocon-sideration[23].
Graphicalresultsofthestandarddiagnosticsonthedifferentialtranscriptexpressionana-lysiswithEBSeqarepresentedinAdditionalfile3:Fig-ureS1,Additionalfile4:FigureS2,Additionalfile5:FigureS3andAdditionalfile6:FigureS4.
Atotalof1626S.
glomeratatranscriptswerefoundtobedifferen-tiallyexpressed(DE)betweencontrolandelevatedpCO2S.
glomerata,usingafalsediscoveryrate(FDR)thresh-oldof0.
05.
FunctionalannotationoftheDEtranscriptswithBlast2GOagainstNCBI'snon-redundantdatabasewithane-valuecut-offof1e-5resultedintheannotationof75.
2%oftheDEtranscripts.
Annotationinformationfor73.
9%ofDEtranscriptscouldbeobtainedwhentranscriptsweresearchedagainsttheInterProScandata-basethroughBlast2GO.
OfthefunctionallyannotatedDEtranscripts,GO-termsassociatedwithcellularandmetabolicprocesses,cellandmembrane,andcatalyticactivityandbindingcontainedthemostDEtranscripts(Fig.
1a,bandc).
WhiletheDEtranscriptspresentonlyasmallsectionoftheS.
glomeratareferencetranscrip-tome,thispatternofGO-termsiscomparabletothemostcommonGO-termsfoundinthetranscriptomesofothermolluscs[37,38].
InadditiontothemainGO-terms,termsassociatedwithresponsetostimulus,im-munesystemprocess,biologicalregulation,signallingandtransporteractivitywerealsoobservedfortheDEtranscripts(Fig.
1a,bandc),indicatingthattheDEtran-scriptsarepotentiallyinvolvedinawiderangeofpro-cessesandfunctions.
GOenrichmentanalysisGOenrichmentanalysisidentifiedarangeofGOandCOG/eggNOGtermsthatwereover-representedineithercontrolorCO2stressedS.
glomerata(Table3).
OftheGOtermsfoundtobeover-representedinthecon-trolgroup,'oxidation-reductionprocess'(biologicalprocess)and'oxidoreductaseactivity'(molecularfunc-tion)werethemostenrichedGOtermintheirrespect-ivecategory.
OtherenrichedGOtermswere'hydrolaseactivity'(8)and'carbohydratemetabolicprocess'(8).
Incomparison,'calciumionbinding'(molecularfunction)and'regulationofapoptoticprocess'(biologicalprocess)werethemostenrichedGOtermsfoundtobeover-rep-resentedinCO2stressedS.
glomerata.
Apoptosisisanim-portantcomponentoftheinnateimmunesystemofmolluscs[39]andanover-representationof'regulationofapoptoticprocess',alongwithanover-representationof'alternativeoxidaseactivity'inCO2stressedoysterscouldsuggestthatpotentiallyprotectivemechanismswerein-ducedinresponsetothestressor.
AnalysisoftheenrichedCOG/eggNOGtermsindicatedanover-representationof,forexample,'collectinsub-familymember12(1),'glutathi-oneS-transferase(2)or'RNAbindingmotifprotein'(2)incontrolS.
glomerata,whereas'alternativeoxidase'(2),'sol-utecarrierfamily17'(3)or'alkalinephosphatase'(2)wereover-representedinCO2stressedoysters.
ImmunityCloserexaminationofthe1626S.
glomeratatranscriptsdifferentiallyexpressedbetweencontrolandCO2stressedoysters,showedmultipletranscripts,potentiallyinvolvedininnateimmunity.
Innateimmuneresponsesaretriggeredbytherecognitionofpathogen-associatedmolecularpatterns(e.
g.
lipopolysaccharides)ordamage-associatedmolecularpatterns(DAMPs)throughpatternrecognitionreceptors(PRRs)[40,41].
DAMPsaremole-culessuchasheatshockproteins,RNA,DNA,galectins,Table2Assemblystatistics.
Statisticsof"totaltranscripts"includesassembledERCCandphiXtranscripts.
AllotherstatisticsareexcludingERCCandphiXtranscriptsReferencetranscriptomeTotaltranscripts(#)718,804N50length(bp)913Meantranscriptlength(bp)620Mintranscriptlength(bp)201Maxtranscriptlength(bp)36,260Non-redundanttranscripts(#)708,463N50length(bp)836Meantranscriptlength(bp)595Mintranscriptlength(bp)201Maxtranscriptlength(bp)36,260ntranscripts1000bp93,805CEGMACompleteproteins(%)93.
15Partialproteins(%)98.
79Ertletal.
ClimateChangeResponses(2016)3:6Page6of19defensinsandannexins,thatarereleasedfromstressed(e.
g.
hypoxia),injuredornecroticcells[42,43].
ManyoftheseDAMPshavebeenfoundtobedifferentiallyexpressedinS.
glomerataexposedtoelevatedCO2(Additionalfile7:TableS2).
Forinstance,S.
glomerataDEtranscriptsoftheheatshockHsp20familywereup-regulatedinresponsetoelevatedCO2,whilesixoutofeightHsp70transcriptswere4-foldandhigherdown-regulated.
Asidefromheatshockproteins,twooutoffourannexinswerealsoup-regulated(2-foldandhigher)Fig.
1GOanalysisofS.
glomerataDEtranscripts.
GO-termsweredeterminedwithBlast2GO,usingdefaultparameters.
Level2GO-termsareassociatedwith(a)biologicalprocess,(b)cellularcomponentand(c)molecularfunctionaredepictedErtletal.
ClimateChangeResponses(2016)3:6Page7of19inCO2challengedoysters.
Thiscorrelateswiththeresultsoftheenrichmentanalysis,whereannexinA7wasshowntobeover-representedinS.
glomerataexposedtoelevatedCO2(Table3).
Inaddition,theanti-microbialpeptidemantledefensinwas4-foldandhigherup-regulatedandgalectins,whichalsofunctionasaPRR,hadonetranscript4-foldandhigherupandonetranscript4-foldandhigherdown-regulatedinchallengedoysters.
OtherPRRsfoundtobedifferentiallyexpressedinS.
glomerataweregram-negativebacteriabindingproteins(GNBPs),scavengerreceptors(SRs),fibrinogen-relatedproteins(tenascins,fibrinogencdomain-containingproteinsandfibroleukins),c-typelectins,collec-tins,peptidoglycanrecognitionproteins(PGRPs),c-typemannosereceptors/macrophagemannosereceptorsandC1qdomaincontainingproteins(Additionalfile7:Table3GOtermssignificantlyover-representedamongthetranscriptsdifferentiallyexpressedbetweencontrolandCO2stressedoysters.
ThistableincludesGO(GO_BP=Biologicalprocess,GO_MF=Molecularfunction),COG(ClustersofOrthologousGroups)andeggNOG(evolutionarygenealogyofgenes:Non-supervisedOrthologousGroups)termsthatwerefoundtobesignificantlyover-representedamongthetranscriptsdifferentiallyexpressedinS.
glomerataexposedtoelevatedlevelsofCO2whencomparedtocontroloystersCategoryTermCountp-valueover-representedinGO_BPOxidation-reductionprocess150.
0013controlCarbohydratemetabolicprocess80.
0019controlRegulationofapoptoticprocess50.
0077elevatedCO2GO_MFOxidoreductaseactivity70.
0096controlCopperionbinding61.
00E-04controlO-glycosylhydrolaseactivity50.
0024controlCarbon-nitrogenhydrolaseactivity30.
0065controlPeptidyl-dipeptidaseactivity20.
001controlCationbinding20.
0017controlCalciumionbinding149.
00E-04elevatedCO2Alternativeoxidaseactivity22.
00E-04elevatedCO2Calcium-dependentphospholipidbinding20.
0056elevatedCO2COGEndonucleaseIVplaysaroleinDNArepair10.
0084controlAlkalinephosphatase20.
0044elevatedCO2Homocysteines-methyltransferase10.
0049elevatedCO2eggNOGGlutathioneS-transferase23.
00E-04controlActivatingsignalcointegrator1complexsubunit25.
00E-04controlLeucine-richrepeatextensin-likeprotein27.
00E-04controlNiemann-Pickdisease27.
00E-04controlAngiotensinIconvertingenzymepeptidyl-dipeptidaseA20.
001controlRNAbindingmotifprotein20.
0019controlWDrepeatdomain83oppositestrand10.
0044controlChromosome5openreadingframe6310.
0053controlKiaa152410.
0056controlCollectinsub-familymember1210.
0085controlSolutecarrierfamily1730.
0013elevatedCO2Alternativeoxidase21.
00E-04elevatedCO2K06254agrin22.
00E-04elevatedCO2Hydrolasefamily20.
0015elevatedCO2AnnexinA720.
0019elevatedCO2Ribosomalproteinl2110.
0092elevatedCO2Familywithsequencesimilarity21010.
0092elevatedCO2Follistatin10.
0096elevatedCO2Ertletal.
ClimateChangeResponses(2016)3:6Page8of19TableS2).
Overall,slightlymorePRRs(53.
8%)wereup-regulatedinresponsetoelevatedCO2thandown-regulated,with,forinstance,GNBPtranscripts2-foldandhigherdown-regulatedandfouroutofsixcollectins4-foldandhigherup-regulated.
ThissuggeststhatprolongedCO2exposureinducedtheinnateimmunedefencesystemofS.
glomerata,likelyduetotheactionofthemostlyup-regulatedDAMPsthatwerealsodetectedinthisstudy.
Inaddition,SRswhichwerefoundtobe4-foldandhigherup-regulatedinresponsetoCO2,arealsolinkedtophago-cytosis[44].
AsidefromSRs,othermoleculesassociatedwithphagocytosis,suchasantimicrobialpeptides(bacteri-cidalpermeabilityincreasingproteinandmantledefensin)andlysozymewerealsoobservedtobe4-foldandhigherup-regulatedinS.
glomerataexposedtoelevatedCO2(Additionalfile7:TableS2).
Phagocytosisisamechanismoftheinnateimmunesystemthatrecognisesandremovesdeadcells,foreignbodies(e.
g.
bacteria)andenvironmentaldebris[44,45],anditsinductioninCO2stressedS.
glo-meratamightbeapreventivemechanismoraresponsetodamageatthecellularlevel.
Asimilarexpressionpatternhasalsobeenobservedininvertebratesexposedtodiffer-enttypesofstress.
Forinstance,theimpactofinjuryontheimmuneresponsesofHydrawasanalysedandshowedanup-regulationofantimicrobialpeptides(hydramacinandarminin),alectin(L-rhamnosebindinglectinCSL3)thatfunctionsasaPRRandsmallheatshockproteinsinresponsetoinjury[46].
TheauthorssuggestedthatthesmallheatshockproteinsmightactascytoprotectorsagainstROS(reactiveoxygenspecies)andinjurystress,whiletheHydraantimicrobialpeptidescouldhaveadd-itionalrolesinfunctionssuchasregeneration[46].
Expos-ureofC.
virginicatoelevatedlevelsofCO2(800and2000μatm)for4weeksinturnshoweddecreasedHsp70mRNAlevelsandanincreaseinhaemocytelysozymeac-tivityinresponsetothestressor[47].
Incontrast,Hsp70geneexpressionofthecoralDesmophyllumdianthustoelevatedpCO2(997μatm)for8monthswasstronglyup-regulated,alongwiththegeneexpressionofmannose-bindingC-typelectin[48].
Allograftinflammatoryfactor1-like,anotherS.
glomerataDEtranscriptthatwasfoundtobe2-foldandhigherup-regulatedinCO2stressedoys-ters(Additionalfile7:TableS2)hasbeenshowntobein-ducedbybacterialchallenge,tissueinjuryandshelldamageinthepearloysterPinctadamartensii,suggestingaroleininnateimmunity[49].
TheseresultsindicatethatstressorssuchaspCO2andtissueinjuryappeartoresultinasimilarinductionoftheaffectedani-mal'simmunesystem,ashasbeenseenintheS.
glo-merataexposedtoelevatedpCO2ofthisstudy.
Thismightbeapre-emptivestrategytoprotecttheoysterfrompotentialinfectionduringstressexposureoratissueprotectivemeasureinresponsetopotentialdamageatthecellularleveldueto4weeksofcontinuouspCO2challenge.
Whilenoapparenttissuedamageorinfectionwasobservedthroughouttheex-perimentandduringsamplecollection,damageatthecellularlevelcouldstillhaveoccurred,ashasbeenimpliedbytheincreaseinDAMPsinCO2challengedS.
glomerata.
Furthermore,consideringthepresenceofpotentiallyopportunisticbacteriaintheoyster'snaturalhabitat[50,51],non-specificprimingoftheinnateimmunesystemmightprotectstressedS.
glo-meratafromsuchinvadingopportunisticbacteria.
ThatstresscanaffectthecompositionofthebacterialcommunityinoystershasalreadybeenshowninastudyinS.
glomerata,whereindividualsinfectedwiththeprotozoanparamyxeanparasite,Marteiliasydneyi,showedadifferentbacterialcommunityintheirdi-gestiveglandthannon-infectedS.
glomerata[51].
Interestingly,onetranscriptputativelycodingforamacrophage-expressedgene1(MPEG1)proteinandmultiplelaccasetranscriptswerefoundtobe2-foldandhigherdown-regulatedinthepCO2stressedS.
glomerata(Additionalfile7:TableS2).
MPEG1ofthediskabaloneHaliotisdiscusdiscusshowedantibacterialactivityagainstGram-positiveand–negativebacteriaandwasup-regulatedinresponsetobacteriaandviralhemorrhagicsepticaemiavirus[52].
Similarly,alaccaseofthespongeSuberitesdomunculawasup-regulatedinresponsetobacteriallipopolysaccharideandalsoshowedantibacterialactivitywhenthelaccasemedi-atorABTS[2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid)]waspresent[53].
Consideringthefunc-tionofMPEG1andlaccaseintheseinvertebratesandtheirdown-regulationintheS.
glomerataexposedtoelevatedpCO2,itispossiblethata)bothareonlyin-ducedasadirectresponsetospecificinvadingpatho-gens,orb)protectionfrompotentialinfectionmightnotbetheprimaryreasonfortheup-regulationoftheotherimmunefactors(e.
g.
antimicrobialpeptidesandPRRs)inS.
glomerata.
OtherDEtranscriptsobservedtobedifferentiallyexpressedinCO2challengedS.
glomerataareputativelyinvolvedinapoptosis.
Caspase,whichhasaroleincelldeathsignalling[54],was2-foldandhigherdown-regulatedinS.
glomerataexposedtoelevatedpCO2,whileanti-apoptotictranscriptssuchasBcl-2,Fasapop-toticinhibitorymolecule(FAIM)andsometranscriptsoftheinhibitorofapoptosisprotein(IAP)familywereup-regulatedinresponsetoelevatedpCO2(Additionalfile7:TableS2).
FAIMwasshowntoprotectavarietyofcelltypessuchashepatocytesfromcelldeath[55],andBcl-2suppressedirradiation-inducedapoptosisintrans-geniczebrafish[56].
SimilartoFAIM,IAPscanprotectdifferentcelltypes(e.
g.
neurons,macrophages)fromstressinducedapoptosis[57].
Inourstudy,twooutoffiveIAPtranscriptswere4-foldandhigherup-regulatedErtletal.
ClimateChangeResponses(2016)3:6Page9of19inCO2stressedS.
glomerata,indicatingthata)someapoptoticactivitywasstilloccurringorb)asdifferenttypesofIAPscanhavearangeoffunctionsindifferentcells(reviewedinDubrez-Dalozetal.
[57]),itispossiblethatthedifferentexpressionpatternseenislinkedtoseparateanti-apoptoticfunctionsoftheindividualIAPs.
AdiscordantexpressionpatternofIAPswasalsoobservedintheclamRuditapesphilippinarumexposedtoibuprofenforsevendays[58].
Asidefromanti-apoptotictranscripts,thepro-apoptoticinterferonalpha-inducibleprotein27(IFI27)andprogrammedcelldeathprotein7,alongwithTNF(tumornecrosisfactor)ligandsuperfamilymemberandTNFreceptorsuperfamilymemberproteinswerealsodifferentiallyexpressedinS.
glomerataexposedtoelevatedpCO2(Additionalfile7:TableS2).
IFI27thatwas4-foldandhigherup-regulatedinCO2stressedS.
glomerata,haspro-apoptoticfunc-tionsinvertebrates,whichmightbeblockedbythesim-ultaneousexpressionofBcl-2[59].
WhilesparseresearchisavailableonIFI27,itcouldactsimilarlyinoysters,suggestingthattheconcomitantlyup-regulatedBcl-2couldfunctionasanIFI27mediatorinS.
glomer-ata.
Anotherpro-apoptoticS.
glomerataDEtranscriptwasprogrammedcelldeathprotein7(lessthan4-folddown-regulated),whichwasshowntocauseincreasedcellapoptosisinmicewhenover-expressed[60].
TNFandTNFreceptorsuperfamilymembersthatwerealsoob-servedintheS.
glomerataDEtranscripts(both4-foldandhigherup-regulated),havediversefunctions,suchasrolesinapoptosisandacuteinflammation[61].
TNF-mediatedcelldeathsignallingiscomplex,activatingdifferentcom-ponentsthroughvariedpathwaysandresultingeitherincelldeath(dependentonROSandJNK[JunNH2-terminalkinase]signalling)orcellprotection(activationofnuclearfactorkB)[54].
Similartoourstudy,aTNFreceptorwasfoundtobeup-regulatedinregeneratingtissueofHydraafterinjury[46].
WhileCO2exposedS.
glomeratahadnoobviousinjuries,itispossiblethattheincreasedTNFandTNFreceptorexpressionintheoystersalsohadacellpro-tectivefunction.
Overall,itappearsthatapoptosiswasde-creasedinS.
glomeratasubjectedto1000ppmpCO2for4weeks,potentiallytoprotectitscellsfromtheCO2apop-toticstimuli.
Comparabletoourstudy,brineshrimps(Artemiasinica)exposedtoelevatedpCO2for14daysup-regulatedtheanti-apoptoticfactorApoptosisinhibitor5,withtheauthorssuggestingthatthismightbeamechan-ismtodealwiththetoxiceffectofthisstressor[62].
An-otherstudy,assessingmoleculardifferencesbetweendroughtintolerant(Pyganodongrandis)andtolerant(Uni-omerustetralasmus)freshwatermusselsshowedoverallaninductionofapoptosisinintolerantmusselsandaninhib-itionofapoptosisindroughttolerantmussels,suggestingthatapoptosisinhibitionmightbeanimportantmecha-nismsindroughttoleranceofU.
tetralasmus[63].
Insummary,primingoftheinnateimmunesystemandsup-pressingcellapoptosisappeartobetwomechanismsbywhichS.
glomerataexposedtoelevatedpCO2copewithpotentiallydetrimentaleffectsofoceanacidification.
RespirationandantioxidantdefenceS.
glomeratatranscriptspotentiallyinvolvedinantioxi-dantdefence,ROSproductionandrespirationwerealsoobservedamongtheDEtranscripts(Additionalfile7:TableS2).
Dualoxidase,whichislinkedtophagocytosisandtheproductionofROS[64],wasfoundtobe4-foldandhigherdown-regulatedintheelevatedtreatmentwhencomparedtocontroloysters(Additionalfile7:TableS2),suggestingthatCO2stressedoystersaimtolimittheirROSproductiontoprotectthemselvesfromoxidativestress.
ThisdiffersfromtheexpressionpatternseenforS.
glomeratatranscriptswhicharepartofthemitochondrialrespiratorychain,whereNADHdehydro-genase[ubiquinone]iron-sulfurprotein2(complexIprotein),cytochromeb-c1complexsubunit7(complexIIIprotein)andalternativeoxidasewere4-foldandhigherup-regulatedandcytochromecoxidasesubunit5Amitochondrial(complexIVprotein)4-foldandhigherdown-regulatedintheelevatedtreatmentwhencomparedtocontroloysters(Additionalfile7:TableS2).
Both,complexIandcomplexIIIareconsideredtobethemajorsourcesofROSproductioninthemitochon-drialrespiratorychain[65,66],suggestingthatup-regulationofmitochondrialrespirationinCO2chal-lengedS.
glomeratawouldleadtoanincreaseinROSproduction,elevatingtheriskofoxidativedamagetothetissuesoftheoysters.
However,thisappearstobecoun-teractedbytwomeasuresintheS.
glomerataexposedtotheelevatedCO2treatment.
Firstly,alternativeoxidase(Additionalfile7:TableS2),locatedintheinnermito-chondrialmembrane,allowstheanimaltocircumventcomplexIIIbytransferringelectronsfromcoenzymeQtooxygenandthereforelimitstheamountofROSpro-ducedduringcellularrespiration[66,67].
Secondly,ROSoriginatingfromcomplexIarethoughttoberemovedbymitochondrialmatrixantioxidantssuchasglutathi-oneperoxidaseandcatalase[65].
InS.
glomerataex-posedtoelevatedpCO2,bothcatalase(4-foldandhigher)andglutathioneperoxidase(2-fold)wereup-regulated(Additionalfile7:TableS2)whencomparedtocontroloysters,potentiallyprotectingtheanimalfromROSproducedbycomplexI.
Whiletranscriptscodingfortheantioxidantsperoxiredoxinandglutatredoxinwere4-foldandhigherdown-regulatedinCO2chal-lengedS.
glomerata,nearlyhalf(twooutoffive)ofthetranscriptscodingforglutathioneS-transferasewere2-foldandhigherup-regulatedinS.
glomerataexposedtoelevatedpCO2for4weeks(Additionalfile7:TableS2).
OftheantioxidantsfoundintheDEtranscriptsofS.
Ertletal.
ClimateChangeResponses(2016)3:6Page10of19glomerata,catalase(CAT),glutathioneperoxidase(GPX),peroxiredoxinandglutaredoxinareabletore-movetheROShydrogenperoxide(H2O2),withGPXalsofunctioningintheremovaloforganichydroperox-ides(e.
g.
fattyacidandphospholipidhydroperoxides)[68,69].
GlutathioneS-transferases,ontheotherhand,areactiveagainstsecondarymetabolites(e.
g.
epoxides,hydroperoxidesandunsaturatedaldehydes),thusoffer-ingprotectionfromtheeffectsofoxidativestress[69,70].
Ferritin,whichisinvolvedinhydroxylradicalscav-enging[71],wasalsofoundtobe2to4-foldup-regulatedinS.
glomerataexposedtoelevatedpCO2(Additionalfile7:TableS2).
Up-regulationofCAT,GPX,ferritinandglutathione-S-transferasetranscripts,aswellastranscriptsinvolvedincellularrespirationintheCO2challengedS.
glomeratasuggestthattheele-vatedCO2treatmentledtooxidativestress,whichS.
glo-merataattemptedtocounteractbyup-regulatingarangeofantioxidantsthatactonavarietyofsubstrates.
Furthermore,S.
glomerataincreasedtheexpressionofalternativeoxidasetopotentiallyreduceproductionofROSfromcellularrespiration(mainlycomplexIII),anddecreasedexpressionofdualoxidasewhosemainfunc-tionistheproductionofROS.
Asimilarpatternofex-pressionhasbeenobservedinCrassostreagigasexposedtohypoxiaandinC.
virginicaexposedtoelevatedpCO2[67,71,72].
Alternativeoxidaseandpyruvatekinase,an-otherS.
glomeratatranscriptfoundtobe4-foldandhigherdown-regulatedinpCO2exposedS.
glomerata(Additionalfile7:TableS2)ofourstudy,weremeasuredinC.
gigasremovedfromwaterfor3h,thenre-immersedintoeithernormoxicorhypoxicwater[71].
TheyshowedanincreaseinalternativeoxidasemRNAlevelsinC.
gigasre-immersedintonormoxicwater,andahigherlevelofpyruvatekinasemRNAlevelsinoystersundernormoxicconditionswhencomparedtooystersinhypoxicwater[71].
Theauthorssuggestedthatthein-creaseinalternativeoxidasewaslinkedtoincreasedoxy-genconsumptionandwouldprotecttheoysterfromtheresultingROSproduction[71].
Similarly,alternativeoxi-dasemRNAlevelsinthegillsanddigestiveglandofC.
gigasexposedto12hand24hofhypoxiawereshowntobeup-regulatedwhencomparedtonormoxiccondi-tions,suggestingthathypoxiacouldcausechangestotherespiratoryfunctionofmitochondriainC.
gigas[67].
Furthermore,comparabletotheS.
glomerataDEtran-scripts,avariedantioxidantdefenceresponsewasob-servedinC.
virginica(oneperoxiredoxinproteindown-regulated,threeperoxiredoxinsup-regulated)inre-sponseto2weeksofelevatedCO2exposure[72],andthespidercrabHyasaraneusinresponsetodifferentconcentrations(390μatm,1120μatmand1960μatm)ofCO2for10weeks,whereperoxiredoxinandascorbateperoxidasewereup-regulatedandthioredoxinandthioredoxinperoxidasedown-regulatedincrabsexposedto1120μatmofCO2[73].
Moreover,GPXwasup-regulatedinH.
araneusexposedto1960μatmofCO2,whilesuperoxidedismutaseandthioredoxinweredown-regulatedunderthesameCO2conditions[73].
Thesere-sultsindicatethatstressorslikehypoxiaandpCO2canaffectarangeofgenesthatfunctioninROSprotection,withthespecificantioxidantresponsepotentiallyinflu-encedbytheconcentrationofCO2thattheinvertebratesareexposedto.
ThishasalsobeenobservedintheS.
glo-merataofourstudy,showingthatS.
glomerataexposedto1000ppmofpCO2appeartoemployarangeofmechanisms(e.
g.
antioxidants,alternativeoxidase)tocopewithoxidativestress,potentiallycausedbyexpos-uretoelevatedCO2.
BiomineralisationandcytoskeletonBivalveshellsconsistofanouterlayer(periostracum)madeupofconchiolin,aprismaticlayer(ostracum)andalamellarlayer(hypostracum)whichisfoundclosesttothebivalvebody.
Thelayersbelowtheperiostracumconsistofcalciumcarbonatecrystalsdepositedinanor-ganicmatrix(proteins,glycoproteins,polysaccharidesandlipids),withthelamellarlayercontainingaragoniteandcalcite[74–78].
SeveralstudieshavebeencarriedoutinmolluscssuchasthemusselMytilusedulis,thepearloystersPinctadamargaritiferaandPinctadamax-ima,theclamLaternulaellipticaandtheseasnailPa-tellavulgatatodeterminegenespotentiallyassociatedwithshellformation[78–82].
Someofthemanygenessuggestedtobeinvolvedinbiomineralisationaretyro-sinase,chitinase,chitinsynthase,calponin,carbonicanhydrase,perlucin,nacrein-like,silk-like,perlustrin,lustrin,follistatin,sarcoplasmiccalciumbindingandcal-modulin[79–81].
Inourstudy,threeS.
glomeratacar-bonicanhydrasetranscriptswerefoundtobedifferentiallyexpressed,withtwocarbonicanhydrase2transcripts4-foldandhigherup-regulatedandcarbonicanhydrase15-like4-foldandhigherdown-regulated(Fig.
2).
Carbonicanhydrase,whichcatalysesthereac-tionofCO2tobicarbonate(HCO3-)[81],hasbeenexam-inedindifferentinvertebratesandshowedvaryingresponsestoelevatedlevelsofCO2.
InM.
edulis(2monthsexposure)carbonicanhydrasewasshowntobenotsignificantlyaffectedbyelevatedpCO2[83],whileanovelcarbonicanhydraseofHyriopsiscumingii(2weeksexposure)wassignificantlydown-regulatedinelevatedpCO2[84].
Incontrast,carbonicanhydrasewasfoundtobeup-regulatedinjuvenileC.
gigas(28daysexposure)[85],inthecoralD.
dianthus(8monthsexposure)[48]andinthecrabHyasaraneus(10weeksexposure)[73]exposedtoelevatedpCO2.
TheseresultssuggestthatcarbonicanhydraseexpressioninresponsetoCO2stressisnotconsistentacrossmarinespeciesandexposureErtletal.
ClimateChangeResponses(2016)3:6Page11of19times,emphasisingthenecessitytodeterminethere-sponseofindividualmarineanimalstopotentialfuturechangesinpCO2.
Furthermore,thedifferentexpressionpatternobservedforthetwotypesofcarbonicanhydraseintheS.
glomerataofthisstudyindicatesthattheremightalsobesomevariationwithinaspecies.
Ascar-bonicanhydrasesalsohaverolesinprocessessuchasrespiration,iontransportorpHhomeostasis[84,86],itispossiblethatthedifferenceinexpressionseeninourS.
glomeratastudywasduetodifferentrolesofthetwotypesofcarbonicanhydrase.
Metabolismofchitin,abiopolymerthathasbeende-tectedinmolluscanshells,involveschitinsynthase,chi-tindeacetylaseandchitinase[79,87,88],whichhaveallbeenfoundtobedifferentiallyexpressedintheS.
glo-merataofthisstudy(Fig.
2).
Chitinsynthase(synthesiseschitin)andchitinase(degradeschitin)were2-foldandhigherdown-regulatedinresponsetoelevatedCO2,whereaschitindeacetylase(modifieschitin)waslessthan2-foldup-regulated,suggestingthatoystersexposedto1000ppmpCO2protectthechitinshellcomponentfromdegradationandconcentrateonchitinmodificationinsteadofchitinsynthesis.
Additionalworkisneededtodeterminetheeffect(detrimentalorbeneficial)ofchitinmodificationonS.
glomeratashells.
AsimilarpatternofexpressionhasbeenshowninM.
edulis,whereelevatedlevelsofCO2exposureresultedinadecreaseinchiti-nase;however,chitinsynthaseshowednoresponsetohighCO2levels[83].
DEtranscriptsputativelycodingforfollistatin,silklikeprotein,perlucin,alkalinephosphatase,sarcoplasmiccalcium-bindingprotein(onetranscript2-foldandhigherup-,onetranscript4-foldandhigherdown-regulated),calmodulinandcalmodulin-like,whichhavealsobeenassociatedwithbiomineralisationinmol-luscs[79–81,89],werealsofoundinS.
glomerataexposedtoelevatedpCO2(Fig.
2).
Whileperlucinandcalmodu-linwere4-foldandhigherdown-regulated,silklikeprotein,follistatin,calmodulin-likeandalkalinephos-phatasewereupto4-foldandhigherup-regulatedinCO2stressedS.
glomerata.
Inaddition,theenrich-mentanalysisalsoshowedanover-representationoftheCOG/eggNOGterms'follistatin'and'alkalinephosphatase'inCO2challengedS.
glomerata(Table3),furtherhighlightingtheeffectCO2exposurecouldpotentiallyhaveonbiomineralisation.
Contrarytoourresults,sarcoplasmiccalcium-bindingproteinandsilklikeproteinexpressioninM.
edulisdidnotchangeunderelevatedpCO2[83].
Alkalinephosphataseontheotherhand,wasalsofoundtobeup-regulatedinA.
sinicaexposedtotwolevelsofCO2for7days,butshowedadecreaseinexpressionlevelsatday14[62].
AstudyinPinctadafucataexaminedcalmodulin(roleincalciummetabolism[90])andcalmodulin-likeandtheirpotentialfunctionsinbiomineralisationandfoundthatbothhadaroleinbiomineralisationbutweredifferentlydistributedinthemantletissueoftheoyster[91].
Ingeneral,theseresultssuggestthatele-vatedpCO2levelsmighthaveaffectedtheshellFig.
2HeatmapofS.
glomerataDEtranscriptsinvolvedinbiomineralisation.
HeatmapshowstheposteriorfoldchangevaluesoftheDEtranscriptsinvolvedinbiomineralisation,withtranscriptsdepictedinredup-regulatedandtranscriptsingreendown-regulatedinCO2treatedoysterswhencomparedtocontroloysters.
Fulllistof1626DEtranscripts,whichincludetheabovebiomineralisationtranscripts,wasdeterminedwithBowtie-RSEM-EBSeq,usingaFDRthresholdof0.
05Ertletal.
ClimateChangeResponses(2016)3:6Page12of19compositionofS.
glomeratabycausingadown-regulationofsomeofthebiomineralisationgenes(e.
g.
perlucin),andup-regulationofothers(e.
g.
chitindea-cetylase,calmodulin-like),whichcouldhaveconse-quencesinregardstoshellstrength.
ThiscouldpotentiallyexplainthedecreaseinshellstrengththathasbeenobservedinP.
fucataexposedtolowpH[14],aswellasthesignificantchangesinshellstrengthobservedinC.
gigasexposedtothesameel-evatedCO2conditionsusedwithinourstudy[92].
Also,inaccordwiththemolecularresultsofourstudyinS.
glomerata,researchanalysingtheshellultrastructureofthemusselM.
edulisexposedtopro-jectednear-futureoceanacidificationlevels(550,750and1000μatmpCO2)showedchangesinshellcom-positionandcrystalformation[93].
Whileshellgrowthdidnotappeartobeaffectedbyexposureto1000μatmpCO2,asignificantreductioninaragonitethicknessandasignificantincreaseincalcitethick-nesswasobservedunderthistreatmentcondition[93].
Inaddition,newcalcitecrystalsformedintheshellofM.
edulisexposedtoelevatedoceanacidifica-tionlevelsweredisorientatedandcouldpotentiallyresultinreducedshellstrengthintheexposedmus-sels[93].
OtherS.
glomerataDEtranscriptsfoundareputativeelementsofthecytoskeletonandextracellularmatrix(ECM).
Theeukaryoticcytoskeletonconsistsofmicrotu-bules(α-andβ-tubulin),microfilaments(actin)andintermediatefilaments(proteinsofthekeratinfamily),maintainscellshapeandhasaroleinmotility(e.
g.
movementoforganelles)[94,95].
AmongtheS.
glomer-ataDEtranscripts,onebetatubulinandoneactintran-scriptwerelessthan2-foldup-regulated,whilefouractintranscriptswere4-foldandhigherdown-regulatedinS.
glomerataexposedtoelevatedpCO2(Additionalfile7:TableS2).
SimilartranscriptexpressionhasbeenobservedinH.
araneusinresponsetodifferentlevelsofelevatedpCO2,wherealphaandbetatubulintranscripts,aswellasactintranscriptswereup-regulatedinre-sponsetotheCO2treatment[73].
Inaddition,aβ-actintranscriptanddifferentactinproteinsofD.
dianthusandC.
virginica,respectively,werealsofoundtobeup-regulatedinresponsetoelevatedpCO2[48,72].
Whilethemajorityofactintranscriptsweredown-regulatedinourstudy,onetubulinandoneactintranscriptwereup-regulated,indicatingthattheincreaseinpCO2for4weeksmighthavehadsomeimpactonthecytoskeleton,forcingtheoysterstocompensatebyslightlyincreasingtheexpressionofcytoskeletaltranscripts.
Ithasbeensuggestedthatoxidativestresscouldaffectthecytoskel-eton[73],which,consideringtheincreaseincomplexIandcomplexIIItranscriptsalongwiththeup-regulationofantioxidantdefencemechanismsappearstobesupportedbytheresultsofourS.
glomeratastudy.
Integ-rin,atransmembranereceptorthatconnectstheECMwiththeactincytoskeleton[96,97]was4-foldandhigherup-regulatedinCO2exposedS.
glomerata(Additionalfile7:TableS2).
Asintegrinsarealsoinvolvedintransmittingmechanicalandchemicalinformationtothecytoskeleton[96],itispossiblethattheup-regulationoftheS.
glomer-ataintegrintranscriptisacopingmechanismoftheoystertotheCO2stresstoprotectthecytoskeleton.
Inadditiontocytoskeletalcomponents,transcriptsputativelycodingforECMcomponentswerealsofoundtobedifferentiallyexpressedinS.
glomerataexposedtoelevatedpCO2for4weeks.
TheECMineukaryotes,whichiscomposedofthemacromoleculesglycoproteinsandfibrousproteins,pro-videsaphysicalscaffoldforcellsandhasotherrolessuchastransmittingmechanicalcues[97–99].
Collagens,whicharethemostabundantproteinsoftheECM[97,99],andanaggrecancoreproteinthatisalsoacomponentoftheECM[99]weredifferentiallyexpressedintheS.
glomerataofourstudy(Additionalfile7:TableS2).
Whiletheaggre-cancoreproteintranscriptwas4-foldandhigherdown-regulatedinCO2challengedS.
glomerata,fivecollagentranscriptswere4-foldandhigherup-regulatedandeightwere4-foldandhigherdown-regulatedinresponsetoele-vatedpCO2.
Inaddition,oneADAMTS(adisintegrinandmetalloproteinasewiththrombospondinmotifs)transcriptwasfoundtobelessthan2-folddown-regulatedandtwoTIMPs(metalloproteinaseinhibitors)were4-foldandhigherup-regulatedinS.
glomerataexposedtoelevatedpCO2(Additionalfile7:TableS2).
ADAMTSareafamilyofproteinasesthatfunctioninECMdegradation[98],whereasTIMPsareregulatorsofADAMTSandhavearoleinthecontinuousremodellingoftheECM,whichisimportantinmaintaininghomeostasisduring,forin-stance,injury[97–100].
ThedifferentialexpressionpatternofS.
glomerataECMtranscriptssuggeststhatECMdeg-radationisinhibited,whileasmallnumberofcollagentranscriptsareup-regulatedtopotentiallycounteractanydetrimentaleffectscausedbytheelevatedCO2stressex-posure.
AslightlydifferentresponsewasobservedinC.
virginicaexposedtoelevatedpCO2for2weeks,wherethecytoskeletalcomponentactinwasup-regulatedbutonecollagenproteindown-regulated[72],indicatingthathypercapnanegativelyaffectedtheECMbutinducedactintopotentiallyprotectthecytoskeletonagainstROSinthisoysterspecies.
Interestingly,studiesonTIMPfunctioninoysterssurmisedthatitcouldhaveadditionalroles.
Forinstance,aTIMPinP.
martensiiwasshowntohaveapu-tativeroleinnacreformationassuppressionofTIMPex-pressionresultedindisorderedgrowthoftheoyster'snacre[101].
Similarly,TIMPexpressioninC.
gigaswasup-regulatedinoysterswithdamagedshells[102].
Basedonthesestudies,itispossiblethattheup-regulationofS.
glomerataTIMPsofthisstudycouldalsohavebeeninErtletal.
ClimateChangeResponses(2016)3:6Page13of19responsetoputativedamagecausedbytheprolongedCO2exposureoftheoysters.
ProteinsynthesisNuclearrespiratoryfactor1(NRF-1),whichisanu-cleartranscriptionfactorthatisinvolvedinthetran-scriptionalexpressionofmitochondrialrespiratorychaincomponentsandothermitochondrion-relatedgenes[103],hasbeenfoundtobeup-regulated(lessthan2-fold)inS.
glomeratainresponsetoelevatedconcentrationsofCO2(Additionalfile7:TableS2).
BasedonthefunctionofNRF-1invertebrates,itsup-regulationinS.
glomeratacouldpotentiallybelinkedtotheup-regulationofmitochondrialrespira-torychaincomponents,whichwasalsoobservedinthisstudy,indicatingthatmaintenanceoftherespira-toryapparatuswasofimportancetotheCO2chal-lengedS.
glomerata.
ComparabletoNRF-1,transcripts,putativelycodingforribosomalproteins,werefoundtobe2-foldandhigherup-regulated(sevenoutofeighttranscripts)inS.
glomerataafterCO2exposure(Additionalfile7:TableS2).
Ribosomalproteinshavearoleinproteinsynthesis[104]andsimilartoourstudy,wereup-regulatedinD.
dianthusandC.
virginicafollowingCO2exposure[48,72],showingthatproteinsynthesiswasnotonlyaffectedbyCO2inourS.
glomeratastudybutalsoinothermarineorganisms.
AsidefromribosomalproteinsandNRF-1,transcriptsbelongingtothefamilyofmRNAhelicasesandRNA-bindingproteinswerealsodiffer-entiallyexpressedinCO2challengedS.
glomerata(Additionalfile7:TableS2).
Ofthesetranscripts,threeareputativelycodingforeukaryotictranslationinitiationfactors(eIFs),witheIF4A2,eIF4BandeIF3hlessthan2-foldup-regulatedintheelevatedCO2treatment.
Ineukaryotes,eIF4andeIF3areinvolvedintranslationinitiation,wheretheyunwindsecondarystructuresinthemRNA5′untranslatedregion[105].
Similarly,heterogeneousnuclearribonucleoproteins(hnRNPs)areRNA-bindingproteinswithfunctionsinthenucleusandcytoplasmofthecells[106]thatweremostlylessthan2-foldup-regulatedintheS.
glomerataofthisstudy.
TherolesofhnRNPsrangefromtranscriptiontomRNAtransport,splicing,3′-endprocessingandmRNAstability[106],showingthathnRNPsareanimportantgroupoftranscrip-tionalregulationproteins.
InP.
fucata,ahnRNPwasclonedandshowntobeexpressedinthegonad,gillandvisceraoftheoyster,withitslocalisationinsidethecellrestrictedtothenucleus[107].
Increasingtheexpressionoftranscriptsputativelycodingforpro-teinsinvolvedinproteinsynthesiswouldallowCO2stressedS.
glomeratatoexpressmoleculesthatmightmakethemmoreresilienttothestressor.
Inaddition,aslightlyhigherpercentageofthetotal1626DEtranscriptswereup-regulated(53.
3%)thandown-regulated,whichmightmakeitnecessarytoincreasethenumberofproteinsinvolvedintranslationandpost-translationalprocessing.
CiliaryfunctionInbivalves,ciliaarefoundonavarietyoftissuessuchasgill,mantleorstomach,withimportantfunctionsin,forinstance,filtration,respirationandpseudofecesexpul-sion[108–111].
MultipleS.
glomerataDEtranscriptspu-tativelyinvolvedinciliaformationorfunction(e.
g.
tektin,CCDC65,CCDC176)werefoundtobelessthan4-folddown-regulatedinoystersexposedtoelevatedpCO2for4weeks(Fig.
3).
TheseRNA-SeqresultswereconfirmedwithqPCR,whichshowedthatboth,tektin-2andtektin-4-likeweresignificantlydown-regulatedinS.
glomerataexposedtoelevatedpCO2for4weeks(Fig.
4).
Tektinsareafamilyofproteinsthathavebeenobservedineukaryoticorganismssuchasmammals,insectsandseaurchinsandinawiderangeoftissues(e.
g.
testis,brain),andarevitalcomponentsofciliaandflagella[112].
Similarly,analysisoftheputativetissuedistribu-tionofthetektintranscriptsfoundtobedifferentiallyexpressedinourstudyshowedthattheywereexpressedinthehaemolymph,gill,mantle,adductormuscle,di-gestivesystemandgonadofS.
glomerata(mappingdatanotshown).
Comparabletotheresultsofourstudy,tek-tinhasalsobeenfoundtobedown-regulatedinC.
gigaslarvaeexposedtoapHofabout7.
5for6days[113].
Inaddition,anotherstudyinC.
gigasshowedthattwoformsoftektinwerepresentinthespermatozoaoftheoyster[114].
Correspondingly,CCDC135(coiled-coildomain-containingproteinlobohomolog),aflagellarprotein,hasbeenshowntolocalizeinthetestisandalongthespermflagellumoftheflyDrosophilamelano-gaster,withsomespermmotilitydefectsseeninthesin-gleanddoublemutants[115].
Anothercoiled-coildomaincontainingprotein(CCDC65)wasdetectedinthehumanspermtailandtheciliaofairwayepithelialcells,withamutationorsilencingoftheproteinnega-tivelyaffectingciliamotility[116].
Basedonthesestud-iesandtheimportanceoftheflagellumforspermmovement,down-regulationoftektin,CCDC135andCCDC65intheS.
glomerataofourstudycouldmeanapotentialimpairmentofspermmotilityintheaffectedoysters.
Whilesomeresearchhasexaminedspermmo-tility,contradictoryresultshavebeenobtainedinthesestudies,withC.
gigasspermexposedtoelevatedCO2for48hshowingadecreaseinmotilityandStrongylocentro-tusnudussperm(20minexposure)notaffectedbyele-vatedCO2[117,118].
AlthoughknowledgeregardingtheeffectofincreasedpCO2ongametesisimportant,exposureoftheadultbeforeitreachesgravidstagecouldErtletal.
ClimateChangeResponses(2016)3:6Page14of19alreadypotentiallyimpactonthegametesbeforetheyarereleasedintothewatercolumn.
OtherS.
glomerataDEtranscriptsputativelyinvolvedinciliafunctionandformationareCCDC176(coiled-coildomain-containingprotein176),CC2D2A(coiled-coilandc2domain-containingprotein2A),CEP131(5-azacytidine-inducedprotein1)andbardet-biedlsyn-dromeproteins(Fig.
3).
AstudyofCCDC176inXen-opuslaevisshowedanup-regulationofthegeneduringtheformationofmotileciliaandaninvolvementinthealignmentandmaintenanceofciliaorientation[119].
TheauthorsalsoobservedthatmisalignmentoftheciliainX.
laevisappearedtohavenegativelyaffectedtheflowgeneratedbythebeatingcilia[119].
Bardet-biedlsyn-drome(BBS)genesplayaroleinintraflagellartrans-portandciliaryfunction,withBBS2,BBS4andBBS6observedtoaffectflagellaformationofsperminmiceandBBS2andBBS4-BBS8lossinzebrafishwasasso-ciatedwithmaintenanceorsurvivalofciliaofKupf-fer'svesicle[120].
CEP131andCC2D2A,ontheotherFig.
3HeatmapofS.
glomerataDEtranscriptsinvolvedinciliaformationandfunction.
HeatmapshowstheposteriorfoldchangevaluesoftheDEtranscriptsinvolvedinciliaformationandfunction,withtranscriptsdepictedinredup-regulatedandtranscriptsingreendown-regulatedinCO2treatedoysterswhencomparedtocontroloysters.
Fulllistof1626DEtranscripts,whichincludetheabovebiomineralisationtranscripts,wasdeterminedwithBowtie-RSEM-EBSeq,usingaFDRthresholdof0.
05Fig.
4QPCRresultsofdifferentialtranscriptexpressionanalysis.
Transcriptexpressionlevels(mean±SD)oftektin-2andtektin-4-likewereanalysedwithqPCRincontrol(n=6)andCO2stressed(n=6)S.
glomerata,andsignificantdifferencesexaminedwithatwo-samplet-testassumingunequalvariances(p<0.
05)Ertletal.
ClimateChangeResponses(2016)3:6Page15of19hand,havebothbeenimplicatedinciliogenesisinvertebrates[121,122].
Whileresearchontheeffectsofstressonbivalveciliarymotilityappearstobesparse,studiesinM.
edulisshowedadecreaseincil-iaryactivityinresponsetogammaradiationandlossofciliainmusselsexposedtoenvironmentalpollution[123,124].
Overall,themolecularresponseofCO2stressedS.
glomerataofourstudysuggestthatelevatedpCO2couldalsonegativelyaffectciliafunctioninoysters,potentiallyresultinginimpairmentstotheoyster'sabilitytogenerateflowforfiltrationandspermmovement.
ConclusionsRNA-SeqexaminationofthemolecularresponseofadultS.
glomerataexposedtoexpectednear-futureoceanacidificationlevelsfor4weeksshowedthatoverallslightlymoreoftheDEtranscriptswereup-regulatedthandown-regulated.
TheexpressionpatternssuggestthatS.
glomerataprotectsitselffromthestressorbyprim-ingitsimmunesystem,suppressingcellapoptosisandadjustingantioxidantdefencemechanismstocompensateforwhatappearstobeanincreaseinmitochondrialres-pirationanditsrespectiveleakageofROS.
Asidefromthisprotectivemechanism,thatissimilartowhathasbeenseeninresponsetoinjuryandpathogensinothermarineorganisms,transcriptsassociatedwithmaintenanceandrepairwerealsoup-regulatedinS.
glomerata.
Thesetran-scriptshaveputativerolesintranslationandpost-translationalprocessingandwerelikelyincreasedtocovertheelevatedexpressionofprotectivemoleculessuchasantioxidantsandotherimmunerelatedproteins.
Contrarytothis,prolongedexposuretoelevatedCO2seemstohavenegativelyaffectedstructuralproteins(e.
g.
actin)andpro-teinsputativelyinvolvedinciliaandflagellafunction.
Ciliaareimportantstructureswithmanyfunctions,suchasfa-cilitatingfilteringandparticletransportintothestomach.
ThedecreaseintheexpressionoftranscriptsimplicatedinciliaandflagellafunctionsuggeststhatincreasedpCO2mightimpairprocessesintheoysterthatrelyontheirop-timalaction,suchasfeedingorspermmotility,whichinthelong-termcouldbelife-threatening.
Whilesomeoceanacidificationstudieshavebeencarriedoutinregardstoitseffectonspermmotility,thesestudiesonlyassessedhowaveryshortexposuretoelevatedpCO2impactsthereleasedsperm,ignoringthatprojectednear-futureoceanacidifica-tionlevelscouldalsopotentiallyaffectspermproductionandmaturation,whichcouldhavedownstreameffectsonitsmotilityandsuccessinfertilizinganegg.
Expressionpatternsoftranscriptsputativelyinvolvedinbiominerali-sation,suggestthatcontinuousexposureofS.
glomeratatoelevatedCO2resultedinachangeoftheshellcompos-itionwithpotentialdownstreameffectsonshellstrength.
Incontrasttolarvaethatquitelikelyhavetoextendmoreenergyintotheinitialformationoftheshell,adultsonlyneedtomaintainandslowlygrowtheirshells.
AsourstudyassessedtheeffectsofelevatedCO2onadultS.
glo-merata,theincreaseinbiomineralisationtranscriptex-pressionseenmightbesufficienttomaintainanadequatelevelofbiomineralisation.
Insummary,thisstudydetailedthecomplexmolecularresponseofS.
glomeratatopro-jectednear-futurelevelsofoceanacidification.
However,tofullyelucidatethemolecularandphysiologicalresponseofbivalvestofutureoceanacidificationlevels,long-termstudiesneedtobecarriedoutthatincluderecoverype-riodstoassessthepotentialofbivalvestoreverseanydet-rimentaleffectsofoceanacidification.
AdditionalfilesAdditionalfile1:Detailedmethodsofexperimentalexposuretrialsandprevioussequencing.
(DOCX23kb)Additionalfile2:TableS1.
Bowtiealignmentstatistics.
Tableshowsthenumberofrawreadsandreadssurvivingtheprocessing,withthetotalalignmentpercentagebasedonthepost-processedreadsaligningtotheS.
glomeratareferencetranscriptome,usingBowtie.
(DOCX12kb)Additionalfile3:FigureS1.
VarianceversusmeanplotforeachNggroup(C1).
Thisplotshowsthemean-variancerelationship(usingpoly-nomialregression)foreachisoform(Ng)groupofcondition1(controlsam-ples).
MappingambiguityclusterswereproducedwithRSEM(rsem-generate-ngvector),whiletheplotwasvisualisedinRusingEBSeq'sPolyFitPlotfunction.
(PDF260kb)Additionalfile4:FigureS2.
VarianceversusmeanplotforeachNggroup(C2).
Thisplotshowsthemean-variancerelationship(usingpolynomialregression)foreachisoform(Ng)groupofcondition2(elevatedCO2samples).
MappingambiguityclusterswereproducedwithRSEM(rsem-generate-ngvector),whiletheplotwasvisualisedinRusingEBSeq'sPolyFitPlotfunction.
(PDF268kb)Additionalfile5:FigureS3.
Quantile-quantileplot.
QQ-plotsshowthefittedBetapriordistributionswithineachconditionandeachIggroup(uncertaintygroup)andwerevisualisedinRusingEBSeq'sQQPfunction.
(PDF337kb)Additionalfile6:FigureS4.
Densityplot.
PlotshowsthepriordistributionfitwithineachconditionandeachIggroup,visualisedinRusingEBSeq'sDenNHistfunction.
(PDF38kb)Additionalfile7:TableS2.
S.
glomerataDEtranscripts.
Listof1626DEtranscriptsdeterminedwithBowtie-RSEM-EBSeq,usingaFDRthresholdof0.
05.
SequencedescriptionsarebasedonblasthomologysearchesagainsttheNCBInrdatabase(e-valuecut-off:10-5,hitnumberthreshold:25),andonInterProScandomain/familyinformation.
Posteriorfoldchange(FC)wasbasedonthenormaliseddata,whereasrealFCwasbasedontherawdata.
C1standsforcontrol,C2fortreatmentcondition.
(XLSX124kb)AbbreviationsA.
irradians:Argopectenirradians;A.
sinica:Artemiasinica;ABTS2:2'-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid);ADAMTS:Adisintegrinandmetalloproteinasewiththrombospondinmotifs;AGRF:AustralianGenomeResearchFacility;BBS:Bardet-biedlsyndrome;C.
ariakensis:Crassostreaariakensis;C.
gigas:Crassostreagigas;C.
virginica:Crassostreavirginica;CAT:Catalase;CC2D2A:Coiled-coilandc2domain-containingprotein2A;CCDC:Coiled-coildomaincontainingprotein;CCDC135:Coiled-coildomain-containingproteinlobohomolog;CEGMA:CoreEukaryoticGenesMappingApproach;CEP131:5-azacytidine-inducedprotein1;D.
dianthus:Desmophyllumdianthus;DAMPs:Damage-associatedmolecularpatterns;DE:Differentiallyexpressed;ECM:Extracellularmatrix;eIFs:Eukaryotictranslationinitiationfactors;ERCC:ExternalRNAControlConsortium;FAIM:Fasapoptoticinhibitorymolecule;FDR:Falsediscoveryrate;GNBPs:Gram-negativebacteriabindingproteins;GPX:GlutathioneErtletal.
ClimateChangeResponses(2016)3:6Page16of19peroxidase;H.
araneus:Hyasaraneus;hnRNPs:Heterogeneousnuclearribonucleoproteins;Hsp:Heatshockprotein;IAP:Inhibitorofapoptosisprotein;IFI27:Interferonalpha-inducibleprotein27;IGV:Integrativegenomicsviewer;JNK:JunNH2-terminalkinase;M.
edulis:Mytilusedulis;M.
galloprovincialis:Mytilusgalloprovincialis;M.
mercenaria:Mercenariomercenaria;MPEG1:Macrophage-expressedgene1;NCBI:NationalCenterforBiotechnologyInformation;nr:Non-redundant;NRF-1:Nuclearrespiratoryfactor1;NSW:NewSouthWales;NTCs:Notemplatecontrols;P.
fucata:Pinctadafucata;PAH:Polycyclicaromatichydrocarbon;PGRPs:Peptidoglycanrecognitionproteins;PRRs:Patternrecognitionreceptors;qPCR:Quantitativepolymerasechainreaction;ROS:Reactiveoxygenspecies;-RTs:Negativereversetranscriptions;S.
glomerata:Saccostreaglomerata;SRA:Sequencereadarchive;SRs:Scavengerreceptors;TIMPs:Metalloproteinaseinhibitors;TNF:Tumornecrosisfactor;U.
tetralasmus:Uniomerustetralasmus;X.
laevis:XenopuslaevisAcknowledgementsWewouldliketothankthefollowingpeopleandorganisations:MrJohnWrightforgivingusaccesstohisCO2andtemperatureexperimentsforthesamples;MrStephanO'Connor,MrKyleJohnstonandtherestoftheDPIhatcheryteamfortheirhelpandadvicewithoysterhusbandry;DrDavidSchoemanforstatisticaladviceandwritingtheRbasedscriptusedtoproducetheheatmaps;DrIdoBarforcarryingouttheGOenrichmentanalysis;CSIROforapostgraduatestudentshipforNGE;theNationalComputationalInfrastructureSpecialisedfacilityinBioinformatics(Barrine@UQ)forBarrinesupport.
FundingTheprojectwasfundedbytheFisheriesResearch&DevelopmentCorporation(FRDC–http://frdc.
com.
au/),theAustralianSeafoodCooperativeResearchCentre(CRC–http://www.
seafoodcrc.
com/)(2011/718toNGE,AEandWAO),andtheUniversityoftheSunshineCoast,Australia.
NGEwassupportedbyanAustralianSeafoodCRCandUniversityoftheSunshineCoastscholarship,aswellasascholarshipfromQueenslandEducationandTrainingInternational(QETI).
Thefundingpartieshadnoroleinstudydesign,datacollection,analysisandinterpretationofdata,decisiontopublish,orpreparationofthemanuscript.
AvailabilityofdataandmaterialsTherawCO2readssupportingtheconclusionsofthisarticleareavailablefromthesequencereadarchiveandcanbeaccessedundertheSRAstudyaccessionnumberSRP055052.
Authors'contributionsNGE:designedthestudy,collectedsamplesfromthestressexperiments,carriedoutallrelevantlaboratoryandbioinformaticswork,aswellasthedifferentialgeneexpressionanalysis,draftedmanuscript.
WAO:designedstudy,advisedonallexperiments,providedoystersandnecessaryequipmentforexperiments,reviewedmanuscript.
ANW:wrotethein-housescriptusedtoremoveERCCandphiXtranscriptsfromthetranscriptomeandadvisedonlinuxbasederrors.
AE:designedstudy,reviewedmanuscript.
Allauthorshavereadandacceptedthemanuscript.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authordetails1UniversityoftheSunshineCoast,SippyDowns,SunshineCoast,QLD,Australia.
2AustralianSeafoodCooperativeResearchCentre,BedfordPark,SA,Australia.
3DepartmentofPrimaryIndustries,TaylorsBeach,NSW,Australia.
Received:18May2016Accepted:27July2016References1.
HarleyCDG,HughesAR,HultgrenKM,MinerBG,SorteCJB,ThornberCS,etal.
Theimpactsofclimatechangeincoastalmarinesystems.
EcolLett.
2006;9:228–41.
2.
PoloczanskaES,BrownCJ,SydemanWJ,KiesslingW,SchoemanDS,MoorePJ,etal.
Globalimprintofclimatechangeonmarinelife.
NatClimChang.
2013;3:919–25.
3.
PrzeslawskiR,AhyongS,ByrneM,WrheidesG,HutchingsP.
Beyondcoralsandfish:theeffectsofclimatechangeonnoncoralbenthicinvertebratesoftropicalreefs.
GlobChangBiol.
2008;14:2773–95.
4.
ZeebeRE,ZachosJC,CaldeiraK,TyrrellT.
Carbonemissionsandacidification.
Science.
2008;321:51–2.
5.
LeeS-W,ParkS-B,JeongS-K,LimK-S,LeeS-H,TrachtenbergMC.
Oncarbondioxidestoragebasedonbiomineralizationstrategies.
Micron.
2010;41:273–82.
6.
DoneySC,FabryVJ,FeelyRA,KeypasJA.
Oceanacidification:theotherCO2problem.
AnnRevMarSci.
2009;1:169–92.
7.
MillerAW,ReynoldsAC,SobrinoC,RiedelGF.
ShellfishfaceuncertainfutureinhighCO2world:Influenceofacidificationonoysterlarvaecalcificationandgrowthinestuaries.
PLoSONE.
2009;4(5):e5661.
8.
IPCC.
Climatechange2007:thephysicalsciencebasis.
Cambridge:CambridgeUniversityPress;2007.
9.
GazeauF,ParkerLM,ComeauS,GattusoJ-P,O'ConnorWA,MartinS,etal.
Impactsofoceanacidificationonmarineshelledmolluscs.
MarBiol.
2013;160:2207–45.
10.
TalmageSC,GoblerCJ.
Theeffectsofelevatedcarbondioxideconcentrationsonthemetamorphosis,size,andsurvivaloflarvalhardclams(Mercenariamercenaria),bayscallops(Argopectenirradians),andEasternoysters(Crassostreavirginica).
LimnolOceanogr.
2009;54(6):2072–80.
11.
KuriharaH,KatoS,IshimatsuA.
EffectsofincreasedseawaterpCO2onearlydevelopmentoftheoysterCrassostreagigas.
AquatBiol.
2007;1:91–8.
12.
O'ConnorW,DoveMC.
ThechangingfaceofoystercultureinNewSouthWales,Australia.
JShellfishRes.
2009;28(4):803–11.
13.
ParkerLM,RossPM,O'ConnorWA.
TheeffectofoceanacidificationandtemperatureonthefertilizationandembryonicdevelopmentoftheSydneyrockoysterSaccostreaglomerata(Gould1850).
GlobChangBiol.
2009;15:2123–36.
14.
WelladsenHM,SouthgatePC,HeimannK.
Theeffectsofexposuretonear-futurelevelsofoceanacidificationonshellcharacteristicsofPinctadafucata(Bivalvia:Pteriidae).
MolluscanRes.
2010;30(3):125–30.
15.
BeniashE,IvaninaA,LiebNS,KurochkinI,SokolovaIM.
ElevatedlevelofcarbondioxideaffectsmetabolismandshellformationinoystersCrassostreavirginica.
MarEcolProgSer.
2010;419:95–108.
16.
LannigG,EilersS,PrtnerHO,SokolovaIM,BockC.
Impactofoceanacidificationonenergymetabolismofoyster,Crassostreagigas-changesinmetabolicpathwaysandthermalresponse.
MarDrugs.
2010;8:2318–39.
17.
BolgerAM,LohseM,UsadelB.
Trimmomatic:aflexibletrimmerforIlluminasequencedata.
Bioinformatics.
2014;30(15):2114–20.
18.
GrabherrMG,HaasBJ,YassourM,LevinJZ,ThompsonDA,AmitI,etal.
Full-lengthtranscriptomeassemblyfromRNA-seqdatawithoutareferencegenome.
NatureBiotechnolgy.
2011;29:644–52.
19.
KentWJ.
BLAT-theBLAST-likealignmenttool.
GenomeRes.
2002;12:656–64.
20.
LiW,GodzikA.
Cd-hit:afastprogramforclusteringandcomparinglargesetsofproteinornucleotidesequences.
Bioinformatics.
2006;22(13):1658–9.
21.
ParraG,BradnamK,KorfI.
CEGMA:apipelinetoaccuratelyannotatecoregenesineukaryoticgenomes.
Bioinformatics.
2007;23(9):1061–7.
22.
LiB,DeweyCN.
RSEM:accuratetranscriptquantificationfromRNA-Seqdatawithorwithoutareferencegenome.
BMCBioinformatics.
2011;12:323.
23.
LengN,DawsonJA,ThomsonJA,RuottiV,RissmanAI,SmitsBMG,etal.
EBSeq:anempiricalBayeshierarchicalmodelforinterferenceinRNA-Seqexperiments.
Bioinformatics.
2013;29(8):1035–43.
24.
LangmeadB,TrapnellC,PopM,SalzbergSL.
Ultrafastandmemory-efficientalignmentofshortDNAsequencestothehumangenome.
GenomeBiol.
2009;10:R25.
25.
ConesaA,GtzS,García-GómezJM,TerolJ,TalónM,RoblesM.
Blast2GO:auniversaltoolforannotation,visualizationandanalysisinfunctionalgenomicsresearch.
Bioinformatics.
2005;21(18):3674–6.
26.
BuchfinkB,XieC,HusonDH.
FastandsensitiveproteinalignmentusingDIAMOND.
NatMethods.
2015;12(1):59–60.
27.
FinnRD,BatemanA,ClementsJ,CoggillP,EberhardtRY,EddySR,etal.
Pfam:theproteinfamiliesdatabase.
NucleicAcidsRes.
2014;42:D222–D30.
28.
EddySR.
AcceleratedprofileHMMsearches.
PLoSComputBiol.
2011;7(10):e1002195.
29.
YoungMD,WakefieldMJ,SmythGK,OshlackA.
GeneontologyanalysisforRNA-seq:accountingforselectionbias.
GenomeBiol.
2010;11(2):R14.
30.
CantacessiC,PrasopdeeS,SotilloJ,MulvennaJ,TesanaS,LoukasA.
Comingoutoftheshell:buildingthemolecularinfrastructureforresearchonparasite-harbouringsnails.
PLoSNeglTropDis.
2013;7(9):e2284.
31.
DengY,LeiQ,TianQ,XieS,DuX,LiJetal.
Denovoassembly,geneannotation,andsimplesequencerepeatmarkerdevelopmentusingErtletal.
ClimateChangeResponses(2016)3:6Page17of19Illuminapaired-endtranscriptomesequencesinthepearloysterPinctadamaxima.
BiosciBiotechnolBiochem.
2014;78(10):1685–92.
32.
NakasugiK,CrowhurstRN,BallyJ,WoodCC,HellensRP,WaterhousePM.
DenovotranscriptomesequenceassemblyandanalysisofRNAsilencinggenesofNicotianabenthamiana.
PLoSONE.
2013;8(3):e59534.
33.
HuH,BandyopadhyayPK,OliveraBM,YandellM.
CharacterizationoftheConusbullatusgenomeanditsvenom-ducttranscriptome.
BMCGenomics.
2011;12:60.
34.
WitPD,PalumbiSR.
Transcriptome-widepolymorphismsofredabalone(Haliotisrufescens)revealpatternsofgeneflowandlocaladaptation.
MolEcol.
2013;22:2884–97.
35.
WangS,HouR,BaoZ,DuH,HeY,SuH,etal.
TranscriptomesequencingofZhikongscallop(Chlamysfarreri)andcomparativetranscriptomicanalysiswithYessoscallop(Patinopectenyessoensis).
PLoSONE.
2013;8(5):e63927.
36.
GerdolM,MoroGD,ManfrinC,MilandriA,RiccardiE,BeranA,etal.
RNAsequencinganddenovoassemblyofthedigestiveglandtranscriptomeinMytilusgalloprovincialisfedwithtoxinogenicandnon-toxicstrainsofAlexandriumminutum.
BMCResNotes.
2014;7:722.
37.
ZhangL,LiL,ZhuY,ZhangG,GuoX.
TranscriptomeanalysisrevealsarichgenesetrelatedtoinnateimmunityintheEasternoyster(Crassostreavirginica).
MarBiotechnol.
2014;16(1):17–33.
38.
HuanP,WangH,LiuB.
TranscriptomicanalysisoftheclamMeretrixmeretrixondifferentlarvalstages.
MarBiotechnol.
2012;14(1):69–78.
39.
SokolovaIM.
Apoptosisinmolluscanimmunedefense.
InvertebrateSurvivJ.
2009;6:49–58.
40.
LeeMS,KimY-J.
Signalingpathwaysdownstreamofpattern-recognitionreceptorsandtheircrosstalk.
AnnuRevBiochem.
2007;76:447–80.
41.
O'NeillLAJ,GolenbockD,BowieAG.
Thehistoryoftoll-likereceptors-redefininginnateimmunity.
NatRevImmunol.
2013;13:453–60.
42.
BooneBA,LotzeMT.
Targetingdamage-associatedmolecularpatternmolecules(DAMPs)andDAMPreceptorsinmelanoma.
In:ThurinM,MarincolaFM,editors.
Moleculardiagnosticsformelanoma:methodsinmolecularbiology,vol.
1102.
NewYork:HumanaPress;2014.
p.
537–52.
43.
VosP,LazarjaniHA,PonceletD,FaasMM.
Polymersincellencapsulationfromanenvelopedcellperspective.
AdvDrugDelivRev.
2014;67-68:15–34.
44.
UnderhillDM,GoodridgeHS.
Informationprocessingduringphagocytosis.
NatRevImmunol.
2012;12(7):492–502.
45.
FlannaganRS,JaumouilléV,GrinsteinS.
Thecellbiologyofphagocytosis.
AnnuRevPathol.
2012;7:61–98.
46.
WengerY,BuzgariuW,ReiterS,GalliotB.
Injury-inducedimmuneresponsesinHydra.
SeminImmunol.
2014;26:277–94.
47.
IvaninaAV,HawkinsC,SokolovaIM.
ImmunomodulationbytheinteractiveeffectsofcadmiumandhypercapniainmarinebivalvesCrassostreavirginicaandMercenariamercenaria.
FishShellfishImmunol.
2014;37:299–312.
48.
Carreiro-SilvaM,CerqueiraT,GodinhoA,CaetanoM,SantosRS,BettencourtR.
Molecularmechanismsunderlyingthephysiologicalresponsesofthecold-watercoralDesmophyllumdianthustooceanacidification.
CoralReefs.
2014;33:465–76.
49.
LiJ,ChenJ,ZhangY,YuZ.
Expressionofallograftinflammatoryfactor-1(AIF-1)inresponsetobacterialchallengeandtissueinjuryinthepearloyster,Pinctadamartensii.
FishShellfishImmunol.
2013;34:365–71.
50.
LabreucheY,LambertC,SoudantP,BouloV,HuvetA,NicolasJ-L.
CellularandmolecularhemocyteresponseofthePacificoyster,Crassostreagigas,followingbacterialinfectionwithVibrioaestuarianusstrain01/32.
MicrobesInfect.
2006;8(12-13):2715–24.
51.
GreenTJ,BarnesAC.
BacterialdiversityofthedigestiveglandofSydneyrockoysters,Saccostreaglomeratainfectedwiththeparamyxeanparasite,Marteiliasydneyi.
JApplMicrobiol.
2010;109:613–22.
52.
BathigeSDNK,UmasuthanN,WhangI,LimB-S,WonSH,LeeJ.
Antibacterialactivityandimmuneresponsesofamolluscanmacrophageexpressedgene-1fromdiskabalone,Haliotisdiscusdiscus.
FishShellfishImmunol.
2014;39:263–72.
53.
LiQ,WangX,KorzhevM,SchrderHC,LinkT,TahirMN,etal.
PotentialbiologicalroleoflaccasefromthespongeSuberitesdomunculaasanantibacterialdefensecomponent.
BiochimBiophysActa.
1850;2015:118–28.
54.
AshePC,BerryMD.
Apoptoticsignalingcascades.
ProgNeuropsychopharmacolBiolPsychiatry.
2003;27:199–214.
55.
HuoJ,XuS,LinB,ChngW-J,LamK-P.
FasapoptosisinhibitorymoleculeisupregulatedbyIGF-1signalingandmodulatesAktactivationandIRF4expressioninmultiplemyeloma.
Leukemia.
2013;27:1165–71.
56.
LangenauDM,JetteC,BerghmansS,PalomeroT,KankiJP,KutokJL,etal.
Suppressionofapoptosisbybcl-2overexpressioninlymphoidcellsoftransgeniczebrafish.
Blood.
2005;105(8):3278–85.
57.
Dubrez-DalozL,DupouxA,CartierJ.
IAPs:morethanjustinhibitorsofapoptosisproteins.
CellCycle.
2008;7(8):1036–46.
58.
MilanM,PaulettoM,PatarnelloT,BargelloniL,MarinMG,MatozzoV.
GenetranscriptionandbiomarkerresponsesintheclamRuditapesphilippinarumafterexposuretoiboprofen.
AquatToxicol.
2013;126:17–29.
59.
CheriyathV,LeamanDW,BordenEC.
EmergingrolesofFAM14familymembers(G1P3/ISG6-16andISG12/IFI27)ininnateimmunityandcancer.
JInterferonCytokineRes.
2011;31(1):173–81.
60.
Nagaoka-YasudaR,MatsuoN,PerkinsB,Limbaeck-StokinK,MayfordM.
AnRNAi-basedgeneticscreenforoxidativestressresistancerevealsretinolsaturaseasamediatorofstressresistance.
FreeRadicBiolMed.
2007;43:781–8.
61.
LocksleyRM,KilleenN,LenardoMJ.
TheTNFandTNFreceptorsuperfamilies:integratingmammalianbiology.
Cell.
2001;104:487–501.
62.
ZhengC-q,JeswinJ,ShenK-l,LablcheM,WangK-j.
DetrimentaleffectofCO2-drivenseawateracidificationonacrustaceanbrineshrimp,Artemiasinica.
FishShellfishImmunol.
2015;43:181–90.
63.
LuoY,LiC,LandisAG,WangG,StoeckelJ,PeatmanE.
Transcriptomicprofilingofdifferentialresponsestodroughtintwofreshwatermusselspecies,thegiantfloaterPyganodongrandisandthepondhornUniomerustetralasmus.
PLoSONE.
2014;9(2):e89481.
64.
BedardK,KrauseK-H.
TheNOXfamilyofROS-generatingNADPHoxidases:physiologyandpathophysiology.
PhysiolRev.
2007;87(1):245–313.
65.
ChenQ,VazquezEJ,MoghaddasS,HoppelCL,LesnefskyEJ.
Productionofreactiveoxygenspeciesbymitochondria.
JBiolChem.
2003;278(38):36027–31.
66.
MunroD,PichaudN,PaquinF,KemeidV,BlierPU.
Lowhydrogenperoxideproductioninmitochondriaofthelong-livedArcticaislandica:underlyingmechanismsforslowaging.
AgingCell.
2013;12:584–92.
67.
SussarelluR,DudognonT,FabiouxC,SoudantP,MoragaD,KraffeE.
Rapidmitochondrialadjustmentsinresponsetoshort-termhypoxiaandre-oxigenationinthePacificoyster,Crassostreagigas.
JExpBiol.
2013;216:1561–9.
68.
MatésJM,Pérez-GómezC.
CastroINd.
Antioxidantenzymesandhumandiseases.
ClinBiochem.
1999;32(8):595–603.
69.
BirbenE,SahinerUM,SackesenC,ErzurumS,KalayciO.
Oxidativestressandantioxidantdefense.
WorldAllergyOrganJ.
2012;5(1):9–19.
70.
HayesJD,McLellanLI.
Glutathioneandglutathione-dependentenzymesrepresentaco-ordinatedregulateddefenceagainstoxidativestress.
FreeRadicRes.
1999;31(4):273–300.
71.
SussarelluR,FabiouxC,SanchezMC,GocNL,LambertC,SoudantP,etal.
Molecularandcellularresponsetoshort-termoxygenvariationsinthePacificoysterCrassostreagigas.
JExpMarBiolEcol.
2012;412:87–95.
72.
TomanekL,ZuzowMJ,IvaninaAV,BeniashE,SokolovaIM.
ProteomicresponsetoelevatedPCO2levelsineasternoysters,Crassostreavirginica:evidenceforoxidativestress.
JExpBiol.
2011;214:1836–44.
73.
HarmsL,FrickenhausS,SchifferM,MarkFC,StorchD,HeldC,etal.
GeneexpressionprofilingingillsofthegreatspidercrabHyasaraneusinresponsetooceanacidificationandwarming.
BMCGenomics.
2014;15:789.
74.
HealyJM.
Themollusca.
In:AndersonDT,editor.
Invertebratezoology.
2nded.
Victoria,Australia:OxfordUniversityPress;2001.
p.
120–71.
75.
RuppertEE,FoxRS,BarnesRD.
Invertebratezoology:afunctionalevolutionaryapproach.
7thed.
UnitedStates:ThomsonBrooks/Cole;2004.
76.
LucasJ.
Bivalves.
In:LucasJS,SouthgatePC,editors.
Aquaculture:farmingaquaticanimalsandplants.
Oxford:FishingNewsBooks;2003.
p.
443–66.
77.
GoslingE.
Bivalvemolluscs:biology,ecologyandculture.
Oxford:FishingNewsBooks;2003.
78.
WernerGDA,GemmelP,GrosserS,HamerR,ShimeldSM.
AnalysisofadeeptranscriptomefromthemantletissueofPatellavulgataLinnaeus(mollusca:gastropoda:patellidae)revealscandidatebiomineralisinggenes.
MarBiotechnol.
2013;15:230–43.
79.
JoubertC,PiquemalD,MarieB,ManchonL,PierratF,Zanella-CléonI,etal.
TranscriptomeandproteomeanalysisofPinctadamargaritiferacalcifyingmantleandshell:focusonbiomineralization.
BMCGenomics.
2010;11:613.
80.
FreerA,BridgettS,JiangJ,CusackM.
BiomineralproteinsfromMytilusedulismantletissuetranscriptome.
MarBiotechnol.
2014;16:34–45.
81.
ClarkMS,ThorneMAS,VieiraFA,CardosoJCR,PowerDM,PeckLS.
InsightsintoshelldepositionintheAntarcticbivalveLaternulaelliptica:geneErtletal.
ClimateChangeResponses(2016)3:6Page18of19discoveryinthemantletranscriptomeusing454pyrosequencing.
BMCGenomics.
2010;11:362.
82.
GardnerLD,MillsD,WiegandA,LeavesleyD,ElizurA.
SpatialanalysisofbiomineralizationassociatedgeneexpressionfromthemantleorganofthepearloysterPinctadamaxima.
BMCGenomics.
2011;12:455.
83.
HüningAK,MelznerF,ThomsenJ,GutowskaMA,KrmerL,FrickenhausS,etal.
ImpactsofseawateracidificationonmantlegeneexpressionpatternsoftheBalticSeabluemussel:implicationsforshellformationandenergymetabolism.
MarBiol.
2013;160(8):1845–61.
84.
RenG,WangY,QinJ,TangJ,ZhengX,LiY.
CharacterizationofanovelcarbonicanhydrasefromfreshwaterpearlmusselHyriopsiscumingiiandtheexpressionprofileofitstranscriptinresponsetoenvironmentalconditions.
Gene.
2014;546:56–62.
85.
WeiL,WangQ,NingX,MuC,WangC,CaoR,etal.
CombinedmetabolomeandproteomeanalysisofthemantletissuefromPacificoysterCrassostreagigasexposedtoelevatedpCO2.
CompBiochemPhysiolPartDGenomicsProteomics.
2015;13:16–23.
86.
HenryRP.
Multiplerolesofcarbonicanhydraseincellulartransportandmetabolism.
AnnuRevPhysiol.
1996;58(1):523–38.
87.
BaiZ,ZhengH,LinJ,WangG,LiJ.
ComparativeanalysisofthetranscriptomeintissuessecretingpurpleandwhitenacreinthepearlmusselHyriopsiscumingii.
PLoSONE.
2013;8(1):e53617.
88.
TetreauG,CaoX,ChenY-R,MuthukrishnanS,HaoboJ,BlissardGWetal.
OverviewofchitinmetabolismenzymesinManducasexta:identification,domainorganization,phylogeneticanalysisandgeneexpression.
InsectBiochemMolBiol.
2015;62:114–26.
89.
XiaoR,XieL-P,LinJ-Y,LiC-H,ChenQ-X,ZhouH-M,etal.
PurificationandenzymaticcharacterizationofalkalinephosphatasefromPinctadafucata.
JMolCatalBEnzym.
2002;17:65–74.
90.
LiS,XieL,ZhangC,ZhangY,GuM,ZhangR.
Cloningandexpressionofapivotalcalciummetabolismregulator:calmodulininvolvedinshellformationfrompearloyster(Pinctadafucata).
CompBiochemPhysiolBBiochemMolBiol.
2004;138:235–43.
91.
FangZ,YanZ,LiS,WangQ,CaoW,XuG,etal.
Localizationofcalmodulinandcalmodulin-likeproteinandtheirfunctionsinbiomineralizationinP.
fucata.
ProgNatSci.
2008;18:405–12.
92.
WrightJM,ParkerLM,O'ConnorWA,WilliamsM,KubeP,RossPM.
PopulationsofPacificoystersCrassostreagigasrespondvariablytoelevatedCO2andpredationbyMorulamarginalba.
BiolBull.
2014;226:269–81.
93.
FitzerSC,PhoenixVR,CusackM,KamenosNA.
Oceanacidificationimpactsmusselcontrolonbiomineralisation.
SciRep.
2014;4:6218.
94.
LiangP,MacRaeTH.
Molecularchaperonesandthecytoskeleton.
JCellSci.
1997;110:1431–40.
95.
JanmeyPA.
Thecyotskeletonandcellsignaling:componentlocalizationandmechanicalcoupling.
PhysiolRev.
1998;78(3):763–81.
96.
MorseEM,BrahmeNN,CalderwoodDA.
Integrincytoplasmictailinteractions.
Biochemistry(Mosc).
2014;53(5):810–20.
97.
FrantzC,StewartKM,WeaverVM.
Theextracellularmatrixataglance.
JCellSci.
2010;123:4195–200.
98.
BrownBN,BadylakSF.
Extracellularmatrixandaninductivescaffoldforfunctionaltissuereconstruction.
TranslRes.
2014;163(4):268–85.
99.
MouwJK,OuG,WeaverVM.
Extracellularmatrixassembly:amutiscaledeconstruction.
NatRevMolCellBiol.
2014;15:771–85.
100.
MurphyG.
Tissueinhibitorsofmetalloproteinases.
BMCGenomeBiology.
2011;12:233.
101.
YanF,JiaoY,DengY,DuX,HuangR,WangQ,etal.
TissueinhibitorofmetalloproteinasegenefrompearloysterPinctadamartensiiparticipatesinnacreformation.
BiochemBiophysResCommun.
2014;450:300–5.
102.
MontagnaniC,RouxFL,BertheF,EscoubasJ-M.
Cg-TIMP,aninducibletissueinhibitorofmetalloproteinasefromthePacificoysterCrassostreagigaswithapotentialroleinwoundhealinganddefensemechanisms.
FEBSLett.
2001;500(1-2):64–70.
103.
HuoL,ScarpullaRC.
MitochondrialDNAinstabilityandperi-implantationlethalityassociatedwithtargeteddisruptionofnuclearrespiratoryfactor1inmice.
MolCellBiol.
2001;21(2):644–54.
104.
KorobeinikovaAV,GarberMB,GongadzeGM.
Ribosomalproteins:structure,function,andevolution.
Biochemistry(Mosc).
2012;77(6):562–74.
105.
ParsyanA,SvitkinY,ShahbazianD,GkogkasC,LaskoP,MerrickWC,etal.
mRNAhelicases:thetacticiansoftranslationalcontrol.
NatRevMolCellBiol.
2011;12:235–45.
106.
KrecicAM,SwansonMS.
hnRNPcomplexes:composition,structure,andfunction.
CurrOpinCellBiol.
1999;11:363–71.
107.
XiongX,FengQ,XieL,ZhangR.
Cloningandcharacterizationofaheterogeneousnuclearribonucleoproteinhomologfrompearloyster,Pinctadafucata.
ActaBiochimBiophysSin.
2007;39(12):955–63.
108.
BeningerPG,VeniotA.
Theoysterprovestherule:mechanismsofpseudofecestransportandrejectiononthemantleofCrassostreavirginicaandC.
gigas.
MarEcolProgSer.
1999;190:179–88.
109.
MillarRH.
Notesonthemechanismoffoodmovementinthegutofthelarvaloyster,Ostreaedulis.
QJMicroscSci.
1955;96(4):539–44.
110.
WardTJ.
EffectofcadmiumonparticleclearancebytheSydneyrockoyster,Saccostreacommercialis(I.
&R.
).
MarFreshwRes.
1982;33(4):711–5.
111.
MicallefS,TylerPA.
EffectofmercuryandseleniumonthegillfunctionofMytilusedulis.
MarPollutBull.
1990;21(6):288–92.
112.
AmosLA.
Thetektinfamilyofmicrotubule-stabilizingproteins.
GenomeBiol.
2008;9(7):229.
113.
DineshramR,WongKKW,XiaoS,YuZ,QianPY,ThiyagarajanV.
AnalysisofPacificoysterlarvalproteomeanditsresponsetohigh-CO2.
MarPollutBull.
2012;64:2160–7.
114.
KingtongS,KellnerK,BernayB,GouxD,SourdaineP,BerthelinCH.
ProteomicidentificationofproteinassociatedtomaturespermatozoainthePacificoysterCrassostreagigas.
JProteomics.
2013;82:81–91.
115.
YangY,CochranDA,GarganoMD,KingI,SamhatNK,BurgerBP,etal.
RegulationofflagellarmotilitybytheconservedflagellarproteinCG34110/Ccdc135/FAP50.
MolBiolCell.
2011;22:976–87.
116.
HoraniA,BrodySL,FerkolTW,ShoseyovD,WassermanMG,Ta-shmaA,etal.
CCDC65mutationcausesprimaryciliarydyskinesiawithnormalultrastructureandhyperkineticcilia.
PLoSONE.
2013;8(8):e72299.
117.
BarrosP,SobralP,RangeP,ChícharoL,MatiasD.
Effectsofsea-wateracidificationonfertilizationandlarvaldevelopmentoftheoysterCrassostreagigas.
JExpMarBiolEcol.
2013;440:200–6.
118.
SungC-G,KimTW,ParkY-G,KangS-G,InabaK,ShibaK,etal.
Speciesandgamete-specificfertilizationsuccessoftwoseaurchinsundernearfuturelevelsofpCO2.
JMarSyst.
2014;137:67–73.
119.
ChienY-H,WernerME,StubbsJ,JoensMS,LiJ,ChienS,etal.
Bbof1isrequiredtomaintainciliaorientation.
Development.
2013;140:3468–77.
120.
YenH-J,TayehMK,MullinsRF,StoneEM,SheffieldVC,SlusarskiDC.
Bardet-BiedlsyndromegenesareimportantinretrogradeintracellulartraffickingandKuppfer'svesicleciliafunction.
HumMolGenet.
2006;15(5):667–77.
121.
WilkinsonCJ,CarlM,HarrisWA.
Cep70andCep131contributetociliogenesisinzebrafishembryos.
BMCCellBiol.
2009;10:17.
122.
VeleriS,ManjunathSH,FarissRN,May-SimeraH,BrooksM,FoskettTA,etal.
Ciliopathy-associatedgeneCc2d2apromotesassemblyofsubdistalappendagesonthemothercentrioleduringciliabiogenesis.
NatCommun.
2014;5:4207.
123.
CappelloT,MauceriA,CorsaroC,MaisanoM,ParrinoV,ParoGL,etal.
ImpactofenvironmentalpollutiononcagedmusselsMytilusgalloprovincialisusingNMR-basedmetabolomics.
MarPollutBull.
2013;77:132–9.
124.
KarpenkoAA,IvanovskyYA.
EffectofverylowdosesofγradiationonmotilityofgillciliatedepitheliaofMytilusedulis.
RadiatRes.
1993;133:108–10.
Weacceptpre-submissioninquiriesOurselectortoolhelpsyoutondthemostrelevantjournalWeprovideroundtheclockcustomersupportConvenientonlinesubmissionThoroughpeerreviewInclusioninPubMedandallmajorindexingservicesMaximumvisibilityforyourresearchSubmityourmanuscriptatwww.
biomedcentral.
com/submitSubmityournextmanuscripttoBioMedCentralandwewillhelpyouateverystep:Ertletal.
ClimateChangeResponses(2016)3:6Page19of19

欧路云(22元) 新增美国Cera线路VPS主机且可全场8折

欧路云(oulucloud) 商家在前面的文章中也有陆续介绍过几次,这不今天有看到商家新增加美国Cera线路的VPS主机,而且有提供全场八折优惠。按照最低套餐最低配置的折扣,月付VPS主机低至22元,还是比较便宜的。不过我们需要注意的是,欧路云是一家2021年新成立的国人主机商,据说是由深圳和香港的几名大佬创建。如果我们有介意新商家的话,选择的时候谨慎且月付即可,注意数据备份。商家目前主营高防VP...

Atcloud:全场8折优惠,美国/加拿大/英国/法国/德国/新加坡vps,500g大硬盘/2T流量/480G高防vps,$4/月

atcloud怎么样?atcloud刚刚发布了最新的8折优惠码,该商家主要提供常规cloud(VPS)和storage(大硬盘存储)系列VPS,其数据中心分布在美国(俄勒冈、弗吉尼亚)、加拿大、英国、法国、德国、新加坡,所有VPS默认提供480Gbps的超高DDoS防御。Atcloud高防VPS。atcloud.net,2020年成立,主要提供基于KVM虚拟架构的VPS、只能DNS解析、域名、SS...

TNAHosting($5/月)4核/12GB/500GB/15TB/芝加哥机房

TNAHosting是一家成立于2012年的国外主机商,提供VPS主机及独立服务器租用等业务,其中VPS主机基于OpenVZ和KVM架构,数据中心在美国芝加哥机房。目前,商家在LET推出芝加哥机房大硬盘高配VPS套餐,再次刷新了价格底线,基于OpenVZ架构,12GB内存,500GB大硬盘,支持月付仅5美元起。下面列出这款VPS主机配置信息。CPU:4 cores内存:12GB硬盘:500GB月流...

水星mr804为你推荐
爱信艾达株式会社主机route伺服器win7支持ipadnetbios端口netbios ssn是什么意思?win10445端口Win10系统开放端口号怎样查看?联通版iphone4s怎么知道到苹果4s是联通版,还是移动版360chromechrome是什么文件夹?是360急速浏览器吗?但是怎么没有卸载掉?联通iphone4联通iphone4合约迅雷快鸟迅雷快鸟是做什么用的,,,
cc域名 汉邦高科域名申请 阿里云os 西安电信测速 cloudstack 名片模板psd info域名 evssl 万网优惠券 ev证书 panel1 三拼域名 dd444 全站静态化 阿里云浏览器 phpmyadmin配置 免费私人服务器 免费mysql数据库 512mb 东莞服务器托管 更多