迭代法个税计算器在线计算

个税计算器在线计算  时间:2021-05-05  阅读:()
迭代法开方法Newton法改进的牛顿法埃特金方法BUCT计算方法Ch04方程求根的迭代法程勇buctcourse@163.
comhttp://www.
buct.
edu.
cnDept.
ofComputerBeijingUniversityofChemicalTechnologySept.
19,2019YongChengComputingMethodsCh04方程求根的迭代法1/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT提纲1Ch01概论2Ch02插值方法3Ch03数值积分4Ch04方程求根的迭代法5Ch05线性方程组的迭代法6Ch06线性方程组的直接法7Ch07常微分方程的差分法YongChengComputingMethodsCh04方程求根的迭代法2/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT本章提纲迭代法开方法Newton法改进的牛顿法埃特金方法YongChengComputingMethodsCh04方程求根的迭代法3/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT迭代法绪论中已经介绍过算法设计的校正思想.
迭代法是求解方程近似根的一种方法,这种方法的关键是确定迭代函数φ(x)(将方程f(x)=0变换为x=φ(x)),建立迭代格式xk+1=φ(xk),然后从给定的初值x0出发迭代出一系列的近似值x1,x2,xk,直到逼近方程的根x,直到满足精度要求|xk+1xk|0,求开方值√a就是要求解二次方程x2a=0(1)为此可使用校正技术从预报值生成校正值来逐步逼近方程的解.
设给定某个预报值xk,希望借助于某种简单方法确定校正量x,使校正值xk+1=xk+x(2)更好的满足方程,即:x2k+2xkx+(x)2≈a(3)成立.
设校正值x是个小量,舍去高阶小量(x)2后令:x2k+2xkx=aYongChengComputingMethodsCh04方程求根的迭代法6/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT开方公式(续)从中解出x,得:x=ax2k2xk代入上式,即可求出开方公式:xk+1=12(xk+axk)k=1,2,3,···上述演绎过程表明开方法的设计思想是逐步线性化,即将二次方程的求解化归为一次方程求解过程的重复.
YongChengComputingMethodsCh04方程求根的迭代法7/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT开方算法开方算法任给初值x0>0,反复利用迭代公式即可获得满足精度要求的开方值:{x0>0xk+1=12(xk+axk)k=1,2,3,···直到|xk+1xk|0均收敛,即limk→∞xk→√a或表示为迭代误差limk→∞ek=limk→∞|xk√a|→0YongChengComputingMethodsCh04方程求根的迭代法10/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT开方公式的收敛性证明证明:由xk+1=12(xk+axk)可得xk+1√a=12xk(xk√a)2同理xk+1+√a=12xk(xk+√a)2两式相除xk+1√axk+1+√a=(xk√a)2(xk+√a)2=(xk√axk+√a)2YongChengComputingMethodsCh04方程求根的迭代法11/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT开方公式的收敛性证明(续)这样有:xk√axk+√a=(xk1√axk1+√a)2=(xk2√axk2+√a)22(x0√ax0+√a)2k令q=|x0√ax0+√a|,显然当x0>0时,有00;则由迭代公式确定的牛顿迭代法序列{xk}收敛于f(x)在[a,b]上的唯一根x.
YongChengComputingMethodsCh04方程求根的迭代法16/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT牛顿法的收敛性(续)Newton迭代法的收敛性依赖于x0的选取.
YongChengComputingMethodsCh04方程求根的迭代法17/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT牛顿法例子例题:用牛顿法求下面方程的根:f(x)=x3+2x2+10x20=0解:因f′(x)=3x2+4x+10所以迭代公式为xk+1=xkf(xk)f′(xk)=xkx3k+2x2k+10xk203x2k+4xk+10取x0=1,x1=x0x30+2x20+10x0203x20+4x0+10YongChengComputingMethodsCh04方程求根的迭代法18/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT牛顿法例子(续)接上x1=113+2·12+10·1203·12+4·1+10=1.
411764706同理,可求x2,x3,计算结果列于下表.
kxk11.
41176470621.
36933647131.
36880818941.
368808108从计算结果可以看出,牛顿法的收敛速度是很快的,进行了四次迭代就得到了较满意的结果,精度为107.
YongChengComputingMethodsCh04方程求根的迭代法19/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT迭代过程的收敛速度定义:p阶收敛如果迭代误差ek=xxk当k→∞时成立:ek+1epk→c(c=0的常数)则称迭代过程是p阶收敛的.
当p=1时称线性收敛,当p=2时称平方收敛,当1定理Newton迭代法xk+1=xkf(xk)f′(xk)在f(x)=0的单根x临近为平方收敛.
YongChengComputingMethodsCh04方程求根的迭代法20/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCTNewton迭代法分析Newton迭代法优缺点:Newton迭代法逻辑结构简单、收敛速度很快(平方收敛),但它通常依赖初值x0的选取,如果初值x0选择不当,将导致迭代发散或产生无限循环;此外,每一步迭代都需要计算导数值f′(x),有时计算f′(x)是不方便的.
基于这两点,产生了几种Newton迭代法的变形形式.
1牛顿下山法;2弦截法;3快速弦截法;YongChengComputingMethodsCh04方程求根的迭代法21/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT牛顿法例子一般地说,Newton法的收敛性依赖于初值x0的选取,如果x0偏离解x较远,则Newton法可能发散或产生无限循环.
例题:用Newton求方程x3x1=0在x=1.
5附近的一个根.
解:因f′(x)=3x21可得牛顿迭代公式:xk+1=xkf(xk)f′(xk)=xkx3kxk13x2k1YongChengComputingMethodsCh04方程求根的迭代法22/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT牛顿法例子(续)分别取x0=1.
5和x0=0.
6,计算结果如下表.
kxkxk01.
50.
611.
3478317.
9000021.
3252011.
9468031.
324727.
98551941.
32472由上表可知道,当x0=0.
6时结果偏离所求的根,不收敛(发散)或收敛较慢.
YongChengComputingMethodsCh04方程求根的迭代法23/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCTNewton下山法为了防止迭代发散,通常对迭代过程再附加一项要求,即保证函数值单调下降:|f(xk+1)|<|f(xk)|满足这项要求的算法称下山法.
将Newton法与下山法结合使用,即在下山法保证迭代函数值稳定下降的前提下,用Newton法加快速度,即可得到如下Newton下山法:xk+1=xkλf(xk)f′(xk)其中0<λ<1,称下山因子,在迭代过程中通过适当地选取λ以使下山条件|f(xk+1)|<|f(xk)|满足.
下山因子的选择是个逐步探索的过程,从λ=1开始反复将因子λ的值减半进行试算,一旦单调条件|f(xk+1)|<|f(xk)|满足,则称为"下山成功".
反之,如果在上述过程中找不到使下山条件|f(xk+1)|<|f(xk)|成立的下山因子λ,则称"下山失败",这时需另选初值x0重算.
YongChengComputingMethodsCh04方程求根的迭代法24/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT下山法例子例题:使用下山法求方程f(x)=x3–x–1=0的根,取x0=0.
6.
解:迭代公式如下:xk+1=xkλf(xk)f′(xk)=xkλx3kxk13x2k1牛顿下山法的计算结果:kλxk010.
611251.
14063211.
36681311.
32628411.
32472YongChengComputingMethodsCh04方程求根的迭代法25/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT弦截法牛顿法要计算f′(x),现用f(x)的值近似f′(x):认为切线斜率近似等于割线斜率.
f′(xk)≈f(xk)f(x0)xkx0xk+1=xkf(xk)f(xk)f(x0)(xkx0)迭代函数为:φ(x)=xf(x)f(x)f(x0)(xx0)单点弦截法为线性收敛.
YongChengComputingMethodsCh04方程求根的迭代法26/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT弦截法几何意义YongChengComputingMethodsCh04方程求根的迭代法27/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT快速弦截法快速弦截法也称为两点弦截法.
认为切线斜率近似等于割线斜率.
f′(xk)≈f(xk)f(xk1)xkxk1xk+1=xkf(xk)f(xk)f(xk1)(xkxk1)快速弦截法需要2个初值x0和x1,其收敛阶1.
618.
YongChengComputingMethodsCh04方程求根的迭代法28/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT快速弦截法例子例题:使用Newton法和快速弦截法求方程xex–1=0的根.
解:使用Newton法和快速弦截法,迭代公式分别如下:xk+1=xkf(xk)f′(xk)=xkxkexk1exk+xkexkxk+1=xkf(xk)(xkxk1)f(xk)f(xk1)kxkxk00.
50.
510.
571020.
620.
567160.
56531530.
567140.
56709440.
567140.
567143YongChengComputingMethodsCh04方程求根的迭代法29/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT埃特金迭代公式xk+1=φ(xk)xk+1=φ(xk+1)xk+1=xk+1(xk+1xk+1)2xk+12xk+1+xkYongChengComputingMethodsCh04方程求根的迭代法30/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT本章小结迭代法思想;开方法;Newton法;Newton法的改进;迭代过程的加速;YongChengComputingMethodsCh04方程求根的迭代法31/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT练习题1编程实现开方法.
2编程实现Newton法.
YongChengComputingMethodsCh04方程求根的迭代法32/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT谢谢!
Author:ChengYongAddress:Dept.
ofComputerBeijingUniversityofChemicalTechnologyBeijing,100029,ChinaEmail:buctcourse@163.
comYongChengComputingMethodsCh04方程求根的迭代法33/33

什么是BGP国际线路及BGP线路有哪些优势

我们在选择虚拟主机和云服务器的时候,是不是经常有看到有的线路是BGP线路,比如前几天有看到服务商有国际BGP线路和国内BGP线路。这个BGP线路和其他服务线路有什么不同呢?所谓的BGP线路机房,就是在不同的运营商之间通过技术手段时间各个网络的兼容速度最佳,但是IP地址还是一个。正常情况下,我们看到的某个服务商提供的IP地址,在电信和联通移动速度是不同的,有的电信速度不错,有的是移动速度好。但是如果...

新注册NameCheap账户几天后无法登录原因及解决办法

中午的时候有网友联系提到自己前几天看到Namecheap商家开学季促销活动期间有域名促销活动的,于是就信注册NC账户注册域名的。但是今天登录居然无法登录,这个问题比较困恼是不是商家跑路等问题。Namecheap商家跑路的可能性不大,前几天我还在他们家转移域名的。这里简单的记录我帮助他解决如何重新登录Namecheap商家的问题。1、检查邮件让他检查邮件是不是有官方的邮件提示。比如我们新注册账户是需...

蓝竹云挂机宝25元/年,美国西雅图 1核1G 100M 20元

蓝竹云怎么样 蓝竹云好不好蓝竹云是新商家这次给我们带来的 挂机宝25元/年 美国西雅图云服务器 下面是套餐和评测,废话不说直接开干~~蓝竹云官网链接点击打开官网江西上饶挂机宝宿主机配置 2*E5 2696V2 384G 8*1500G SAS RAID10阵列支持Windows sever 2008,Windows sever 2012,Centos 7.6,Debian 10.3,Ubuntu1...

个税计算器在线计算为你推荐
操作http企业ssl证书ssl证书多少钱一年?360邮箱lin.long.an@360.com是什么邮箱宜人贷官网宜信信用贷款上征信吗瑞东集团海澜集团有限公司怎么样?35互联在中国哪家服务商提供的企业邮箱好呢?三五互联股票三五互联是干什么的?oa办公软件价格一套专业版的oa办公系统多少钱?discuz伪静态Discuz! X3.0 到底能不能伪静态?门户怎么伪静态?qq头像上传失败昨天和今天QQ头像上传失败,是怎么回事?
wavecom l5639 mediafire下载工具 la域名 193邮箱 gtt 上海联通宽带测速 国外视频网站有哪些 网购分享 西安服务器托管 linode支付宝 日本代理ip cdn网站加速 摩尔庄园注册 群英网络 国外网页代理 稳定空间 沈阳idc 九零网络 windowsserver2008r2 更多