迭代法个税计算器在线计算

个税计算器在线计算  时间:2021-05-05  阅读:()
迭代法开方法Newton法改进的牛顿法埃特金方法BUCT计算方法Ch04方程求根的迭代法程勇buctcourse@163.
comhttp://www.
buct.
edu.
cnDept.
ofComputerBeijingUniversityofChemicalTechnologySept.
19,2019YongChengComputingMethodsCh04方程求根的迭代法1/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT提纲1Ch01概论2Ch02插值方法3Ch03数值积分4Ch04方程求根的迭代法5Ch05线性方程组的迭代法6Ch06线性方程组的直接法7Ch07常微分方程的差分法YongChengComputingMethodsCh04方程求根的迭代法2/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT本章提纲迭代法开方法Newton法改进的牛顿法埃特金方法YongChengComputingMethodsCh04方程求根的迭代法3/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT迭代法绪论中已经介绍过算法设计的校正思想.
迭代法是求解方程近似根的一种方法,这种方法的关键是确定迭代函数φ(x)(将方程f(x)=0变换为x=φ(x)),建立迭代格式xk+1=φ(xk),然后从给定的初值x0出发迭代出一系列的近似值x1,x2,xk,直到逼近方程的根x,直到满足精度要求|xk+1xk|0,求开方值√a就是要求解二次方程x2a=0(1)为此可使用校正技术从预报值生成校正值来逐步逼近方程的解.
设给定某个预报值xk,希望借助于某种简单方法确定校正量x,使校正值xk+1=xk+x(2)更好的满足方程,即:x2k+2xkx+(x)2≈a(3)成立.
设校正值x是个小量,舍去高阶小量(x)2后令:x2k+2xkx=aYongChengComputingMethodsCh04方程求根的迭代法6/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT开方公式(续)从中解出x,得:x=ax2k2xk代入上式,即可求出开方公式:xk+1=12(xk+axk)k=1,2,3,···上述演绎过程表明开方法的设计思想是逐步线性化,即将二次方程的求解化归为一次方程求解过程的重复.
YongChengComputingMethodsCh04方程求根的迭代法7/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT开方算法开方算法任给初值x0>0,反复利用迭代公式即可获得满足精度要求的开方值:{x0>0xk+1=12(xk+axk)k=1,2,3,···直到|xk+1xk|0均收敛,即limk→∞xk→√a或表示为迭代误差limk→∞ek=limk→∞|xk√a|→0YongChengComputingMethodsCh04方程求根的迭代法10/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT开方公式的收敛性证明证明:由xk+1=12(xk+axk)可得xk+1√a=12xk(xk√a)2同理xk+1+√a=12xk(xk+√a)2两式相除xk+1√axk+1+√a=(xk√a)2(xk+√a)2=(xk√axk+√a)2YongChengComputingMethodsCh04方程求根的迭代法11/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT开方公式的收敛性证明(续)这样有:xk√axk+√a=(xk1√axk1+√a)2=(xk2√axk2+√a)22(x0√ax0+√a)2k令q=|x0√ax0+√a|,显然当x0>0时,有00;则由迭代公式确定的牛顿迭代法序列{xk}收敛于f(x)在[a,b]上的唯一根x.
YongChengComputingMethodsCh04方程求根的迭代法16/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT牛顿法的收敛性(续)Newton迭代法的收敛性依赖于x0的选取.
YongChengComputingMethodsCh04方程求根的迭代法17/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT牛顿法例子例题:用牛顿法求下面方程的根:f(x)=x3+2x2+10x20=0解:因f′(x)=3x2+4x+10所以迭代公式为xk+1=xkf(xk)f′(xk)=xkx3k+2x2k+10xk203x2k+4xk+10取x0=1,x1=x0x30+2x20+10x0203x20+4x0+10YongChengComputingMethodsCh04方程求根的迭代法18/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT牛顿法例子(续)接上x1=113+2·12+10·1203·12+4·1+10=1.
411764706同理,可求x2,x3,计算结果列于下表.
kxk11.
41176470621.
36933647131.
36880818941.
368808108从计算结果可以看出,牛顿法的收敛速度是很快的,进行了四次迭代就得到了较满意的结果,精度为107.
YongChengComputingMethodsCh04方程求根的迭代法19/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT迭代过程的收敛速度定义:p阶收敛如果迭代误差ek=xxk当k→∞时成立:ek+1epk→c(c=0的常数)则称迭代过程是p阶收敛的.
当p=1时称线性收敛,当p=2时称平方收敛,当1定理Newton迭代法xk+1=xkf(xk)f′(xk)在f(x)=0的单根x临近为平方收敛.
YongChengComputingMethodsCh04方程求根的迭代法20/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCTNewton迭代法分析Newton迭代法优缺点:Newton迭代法逻辑结构简单、收敛速度很快(平方收敛),但它通常依赖初值x0的选取,如果初值x0选择不当,将导致迭代发散或产生无限循环;此外,每一步迭代都需要计算导数值f′(x),有时计算f′(x)是不方便的.
基于这两点,产生了几种Newton迭代法的变形形式.
1牛顿下山法;2弦截法;3快速弦截法;YongChengComputingMethodsCh04方程求根的迭代法21/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT牛顿法例子一般地说,Newton法的收敛性依赖于初值x0的选取,如果x0偏离解x较远,则Newton法可能发散或产生无限循环.
例题:用Newton求方程x3x1=0在x=1.
5附近的一个根.
解:因f′(x)=3x21可得牛顿迭代公式:xk+1=xkf(xk)f′(xk)=xkx3kxk13x2k1YongChengComputingMethodsCh04方程求根的迭代法22/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT牛顿法例子(续)分别取x0=1.
5和x0=0.
6,计算结果如下表.
kxkxk01.
50.
611.
3478317.
9000021.
3252011.
9468031.
324727.
98551941.
32472由上表可知道,当x0=0.
6时结果偏离所求的根,不收敛(发散)或收敛较慢.
YongChengComputingMethodsCh04方程求根的迭代法23/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCTNewton下山法为了防止迭代发散,通常对迭代过程再附加一项要求,即保证函数值单调下降:|f(xk+1)|<|f(xk)|满足这项要求的算法称下山法.
将Newton法与下山法结合使用,即在下山法保证迭代函数值稳定下降的前提下,用Newton法加快速度,即可得到如下Newton下山法:xk+1=xkλf(xk)f′(xk)其中0<λ<1,称下山因子,在迭代过程中通过适当地选取λ以使下山条件|f(xk+1)|<|f(xk)|满足.
下山因子的选择是个逐步探索的过程,从λ=1开始反复将因子λ的值减半进行试算,一旦单调条件|f(xk+1)|<|f(xk)|满足,则称为"下山成功".
反之,如果在上述过程中找不到使下山条件|f(xk+1)|<|f(xk)|成立的下山因子λ,则称"下山失败",这时需另选初值x0重算.
YongChengComputingMethodsCh04方程求根的迭代法24/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT下山法例子例题:使用下山法求方程f(x)=x3–x–1=0的根,取x0=0.
6.
解:迭代公式如下:xk+1=xkλf(xk)f′(xk)=xkλx3kxk13x2k1牛顿下山法的计算结果:kλxk010.
611251.
14063211.
36681311.
32628411.
32472YongChengComputingMethodsCh04方程求根的迭代法25/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT弦截法牛顿法要计算f′(x),现用f(x)的值近似f′(x):认为切线斜率近似等于割线斜率.
f′(xk)≈f(xk)f(x0)xkx0xk+1=xkf(xk)f(xk)f(x0)(xkx0)迭代函数为:φ(x)=xf(x)f(x)f(x0)(xx0)单点弦截法为线性收敛.
YongChengComputingMethodsCh04方程求根的迭代法26/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT弦截法几何意义YongChengComputingMethodsCh04方程求根的迭代法27/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT快速弦截法快速弦截法也称为两点弦截法.
认为切线斜率近似等于割线斜率.
f′(xk)≈f(xk)f(xk1)xkxk1xk+1=xkf(xk)f(xk)f(xk1)(xkxk1)快速弦截法需要2个初值x0和x1,其收敛阶1.
618.
YongChengComputingMethodsCh04方程求根的迭代法28/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT快速弦截法例子例题:使用Newton法和快速弦截法求方程xex–1=0的根.
解:使用Newton法和快速弦截法,迭代公式分别如下:xk+1=xkf(xk)f′(xk)=xkxkexk1exk+xkexkxk+1=xkf(xk)(xkxk1)f(xk)f(xk1)kxkxk00.
50.
510.
571020.
620.
567160.
56531530.
567140.
56709440.
567140.
567143YongChengComputingMethodsCh04方程求根的迭代法29/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT埃特金迭代公式xk+1=φ(xk)xk+1=φ(xk+1)xk+1=xk+1(xk+1xk+1)2xk+12xk+1+xkYongChengComputingMethodsCh04方程求根的迭代法30/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT本章小结迭代法思想;开方法;Newton法;Newton法的改进;迭代过程的加速;YongChengComputingMethodsCh04方程求根的迭代法31/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT练习题1编程实现开方法.
2编程实现Newton法.
YongChengComputingMethodsCh04方程求根的迭代法32/33迭代法开方法Newton法改进的牛顿法埃特金方法BUCT谢谢!
Author:ChengYongAddress:Dept.
ofComputerBeijingUniversityofChemicalTechnologyBeijing,100029,ChinaEmail:buctcourse@163.
comYongChengComputingMethodsCh04方程求根的迭代法33/33

Spinservers:美国独立服务器(圣何塞),$111/月

spinservers是Majestic Hosting Solutions,LLC旗下站点,主营美国独立服务器租用和Hybrid Dedicated等,spinservers这次提供的大硬盘、大内存服务器很多人很喜欢。TheServerStore自1994年以来,它是一家成熟的企业 IT 设备供应商,专门从事二手服务器和工作站业务,在德克萨斯州拥有40,000 平方英尺的仓库,库存中始终有数千台...

织梦DEDECMS即将授权收费和维权模式 站长应对的几个方法

这两天在站长群里看到不少有使用DEDECMS织梦程序的朋友比较着急,因为前两天有看到来自DEDECMS,我们熟悉的织梦程序官方发布的公告,将会在10月25日开始全面商业用途的使用DEDECMS内容管理程序的会采用授权收费模式,如果我们有在个人或者企业商业用途的,需要联系且得到授权才可以使用,否则后面会通过维权的方式。对于这个事情,我们可能有些站长经历过,比如字体、图片的版权。以及有一些国内的CMS...

Virtono:€23.7/年,KVM-2GB/25GB/2TB/洛杉矶&达拉斯&纽约&罗马尼亚等

Virtono最近推出了夏季促销活动,为月付、季付、半年付等提供9折优惠码,年付已直接5折,而且下单后在LET回复订单号还能获得双倍内存,不限制付款周期。这是一家成立于2014年的国外VPS主机商,提供VPS和服务器租用等产品,商家支持PayPal、信用卡、支付宝等国内外付款方式,可选数据中心包括罗马尼亚、美国洛杉矶、达拉斯、迈阿密、英国和德国等。下面列出几款VPS主机配置信息,请留意,下列配置中...

个税计算器在线计算为你推荐
登录sns建企业网站建立一个企业网站要多少钱美要求解锁iPhoneiphone美版解锁硬解大概需要多少钱啊大飞资讯新闻资讯包括什么内容?爱优网为什么优酷土豆等视频网站那么多人上传视频申请400电话申请400电话需要什么条件商务软件电子商务平台有哪些图文模块微信公众号底部推荐阅读,图文模块是怎么实现的localsettings我电脑里面没有这个Local Settings怎么办?微博通微博通登陆手机号和绑定号码不一样
到期域名查询 二级域名申请 softlayer vultr美国与日本 java主机 2014年感恩节 cloudstack 优惠码 mediafire下载工具 紫田 typecho 圣诞促销 nerds 100m独享 linux服务器维护 umax120 常州联通宽带 中国电信宽带测速器 四川电信商城 空间登录首页 更多