第28卷第3期北方交通大学学报v01.
28No.
32Q些堡鱼旦』Q堡垒丛堡坠堡坠堡型』坠塑塾竖竖!
塑!
兰兰』坚;2Q丝文章编号:1000—1506(2004)03—0021—06复域上几个过极限环积分流形的几何结构蒋风光,管克英(北京交通大学理学院,北京100044)摘要:研究了几个多项式自治系统在复域上过其极限环积分流形的复杂的几何结构,得到了在积分流形碰到无穷远奇点后黎曼曲面的4种变化趋向,并且从李群角度上证明了这些系统具有不可积性.
关键词:微分方程解析理论;复平面;极限环;积分流形;李群中图分类号:0174.
52文献标识码:ASeVeralGeometricStructureofIntegralManifoldPassingLimitCycleonComplexD0mainJlANGF吼g—guang,GUANKe一哦ng(SchOcdofSciences,Be巧ingJiamngUniverSity,Be巧ing100044,China)Abstract:Severalpolynomialauton(瑚oussystems,whichhaveatleastonelimitcycle,arestudiedbyusingnumericaleValuationandqualitativemethod.
Theirge.
metricstructuresofsolveingman.
ifoldpassinglimitcycleoncomplexnumberplaneareobtained.
TheyaremorecOmplexthanontherealnuml科plane.
WealSOprovethatthoSeSystemsarenotintegrableinthesenseofLieGroups.
Keywoms:analytictheoryofdifferentialeqation;cOmplexnumberplane;limitcycle;integ础manifold;LieGroups复域定性研究是微分方程理论的一个新的分支.
问题的提出、方法的创造和成果的取得都有着广阔的前景.
众所周知,实变量自治系统的定性方法在希尔伯特第16问题研究中遇到了极大困难,许多数学家开始用复解析理论的方法来定性研究这类问题.
这是因为系统的右方及解都具有很强的解析性.
复解析函数具有局部能决定整体的性质,充分利用解析函数的良好性质经常能够解决常微分方程的某些困难问题.
基于上述指导思想,数学家秦元勋等人在希尔伯特第16问题的研究中取得了一些非常重要的成果,撰写了《常微分方程定义的积分曲面》一书uJ.
Sophus.
Lie将群论应用到微分方程的可积性研究,创造了李群理论,并有基本结果,即二阶多项式自治系统如果接受某个非平凡李群,则可根据该李群对系统积分.
文献[1]证明了方程的可积性与方程是否接受大范围的李群密切相关,并给出结果:若方程存在一孤立极限积分流形且该流形具有自稠密性,则该方程不接受任何非平凡单参数解析李群,方程在该意义下不可积.
因为极限环就是一种拓扑孤立的极限积分流形,所以对于存在极限环的多项式自治系统来说,可以根据复域上过其极限环的积分流形的几何结构,从接受李群角度上,判断它们的可积性.
例如,文献[3]证明了复域上的VanderPol方程的通过实平面上极限环的积分流形具有自稠密性,因此它具有不可积性.
对于一些收稿日期:2003.
10.
09作者简介:蒋风光(1972一),男,山东阳信人,硕士生.
唧mil:fg—jiang@etang.
com管克英(1942一),男,河北安新人,教授,博士生导师.
22北方交通大学学报第28卷1研究方法、相关定义及引理f挚:P(训,z)浮一Ⅲ"'(1)l塞=Q(…)一嚣蹦叭引.
面上的一个带形区域内解析.
此带形区域以实轴为对称轴,宽度为2卢(卢为某确定正数,也可能是无限大).
并且缌(叫(T),z(T))在该带形区域内也是周期的,且周期等于实系统(1)中极限环的周期口,即删(T+a)=硼(T),z(T+口)=z(T).
定义1对于存在唯一极限环的多项式自治系统:集合r={(删(丁),z(丁))f£∈C}表示解流形,用于表示集合11的闭包;集合n={(叫(£+ir),z(£+ir))I£∈R},用t表示c的闭包;集合11:={(叫(£+ir),2(£+ir))I£∈R+},用rj表示11j的闭包;集合r;={(砌(£+ir),z(£+ir))I£∈R一},用ri表示集合rf的闭包.
对于存在多个极限环的多项式自治系统圪表示m个极限环中的第押个.
与豫相对应的4个集合分别表示为r{骗、r{毖)、r{端、r{琥,它们的闭包分别表示为蕊、了嚼、可瓣、可森.
定义2厂(ro)=粤嵴IW(£+iro)I,g(ro)=m警Iz(£+iro)I,l铂I≤J9(注:根据引理2这些极值的确存在而且可以达到).
引理3【3J当01.
41沿£的正半轴和负半轴继续延拓且不碰到奇点时,解流形(硼(T),z(T))分别趋向有限远奇点A2(2,1.
8)和有限远奇点02(0,0).
(2)对于极限环磋,带形区域为D={T=£+irI£∈R,{rI0.
310,£一+.
.
时继续延拓,发现解流形缠绕到开始的柱面结构.
例如11{3;击120=r{5弦.
350\r{3;击350.
当r>0.
310,£一~oo时继续进行解析延拓,解流形到达无限远奇点A37(一1,0).
(2)对于极限环y;,解析延拓所得解流形(硼(T),名(£))在带形区域D={丁=£+irI£∈R,lrI0.
610,£一一o.
时继续延拓,解流形趋向无限远奇点A37(一1,0);当£一+∞时,解流形"共轭"地缠绕到过极限环y5的解流形开始形成的柱面结构.
例如r{3温2鸫=碍ii±嘶18\11㈤:0618.
(注:等式左边集合是对应于极限环y5,右边集合对应极限环镌).
r=o.
356与r=一o.
611分别位于虚轴的正半轴和负半轴上,不防称之为"共轭"式缠绕.
(3)对于极限环),;,解析延拓所得解流形(叫(T),z(T))在带形区域D={T=£+irJ£∈R,lrl<0.
610}内先形成一个连通到无穷远的柱面结构.
在r=0.
610、£=一0.
320或2.
69时,碰到无穷远奇点B37(0,0),柱面结构破坏,解流形以无穷远奇点为临界奇点,无穷次分层.
数值计算的结果见表2.
表2极限环碡的数值计算结果1抽.
2№l乜ofn1玎n商calevall塌tj∞ab.
utlirnitq,de绣解流形f—-一∞£_+o.
趋向无穷远奇点与限环钙相同A37(一1,o)一翦蘸246=司瓶\r{封!
o.
625定理3从接受李群的角度上,系统(7)不具有可积性.
证明微分方程的变换群理论给出了以下事实[5]:若系统(7)接受如下的(局部)单参数李群{2咒m一'i'(8)z=驴(砌,z,s)…7式中,s∈J(J是实轴上关于原点对称的某开区间),2§!
!
垄奎望奎兰兰塑竺翌兰f孥:e(叫,z)擘一Ⅲ一7(9)此外,在11淄、11㈤、r㈢上必须恒为o,因为它们都是拓扑孤立集合.
所以可得,(垂(叫o,名o))=0和,(西(训.
,z.
))=0,即,("),"∈c的零点有凝聚点,根据对.
厂(")的解析|生要求,只能有.
厂(")三0.
从接受李群的角度上,系统(7)只接受平凡李群,从而不具有可积性.
3结论多项式自治系统过极限环的解流形在复平面上进行解析延拓,解流形(叫(T),z(T))在一条带形区域内先形成一个连通到无穷远奇点的柱面结构.
在本文研究的几个具体例子中,解流形碰到无穷远奇点后,柱面结构破坏,以无穷远奇点为临界奇点,黎曼曲面开始分层.
当沿£的正向或负向继续延拓时,至少出现了以下4种可能走向:①每一层等距缠绕到解流行解析延拓形成的柱面结构.
②每一层共轭式缠绕过另一极限环的解流行解析延拓形成的柱面结构.
③每一层趋向有限远奇点.
④每一层趋向无限远奇点.
同时根据所得的解流形的几何结构,从接受李群的角度,证明了系统(2)和系统(7)不具可积睦.
参考文献:[1]秦元勋.
常微分方程定义的积分曲面[M].
西安:西北大学出版社,1985.
123—127.
QtmYl如n—xun.
Imegralsurfao葛DefinedbyodimryDiffer一∞tial脚i∞[M].
)(iall:NmhwestUnive商tyPress,1985.
123—127.
(inCKnese)[2]管克英,成如翼.
复域上二阶多项式系统大范围首次积分及其所接受的Lje变换群[J].
南京大学学报,1993,数学半年刊:229—235.
Q娜Ke-ying,ChengRu+yi.
GlobalFirstImegratimandAdrTlitted"e(硒upofSeoand(khPcdym删aI跏t锄in(hnpl.
【亡b盱1ain[J].
Ja】nlalofN删ingUnive商ty,Mathe—H蚍ic8l&qua_terly,1993.
229—235.
(inQ妇ese)[3]李山林.
、r飙d日POI方程在复域上极限集的复杂性[D].
北京航空航天大学,1993.
"‰lin.
酬e菇tyofVand瞳PdEquat硫's"ITlitSeti11theCCmpk&maill[J].
BeihangU"瑚时,1993.
(inChinese)[4]管克英.
复定性理论研究的某些进展[A].
常微分方程理论及其应用[c].
北京:科学出版社,1992.
46—52.
GuanK}ying.
S.
meDe、,eIo∞嘲tsintheQJalit撕veInves—ti髓tiotlt0(ⅫnaryDi‰ialEquati∞sintheCmlpl.
(【hnain[A].
PI∞∞dinp∞the田敝qandA)pli国ti∞sd(捌胁aryDiff锄tialEquati∞s[C].
Bdjing:Sd∞oePress,1992.
46—52.
(inCKne∞)[5][前苏联]B·B·戈鲁别夫.
微分方程妥析理论讲义[M].
叶彦潜译.
北京:高等教育出版社,1985.
V.
V.
G)lub哪.
Lectur墨onAnalvticT}瞰州ofDiff日即tialEquations[M].
№8.
C舯I脚in舯d,GOs,Izd.
Td出.
t时.
1it.
(1950),(R嘤sjon).
(ina血1ese)[6]刘元高,刘耀儒.
Mlthllad∞4.
0实用教程[M].
北京:国防工业出版社,2000.
LluYuan_g∞,UuYa肛m.
Nbthematica4.
O胁icalCbⅡ鬻ofStudy[M].
蹦jing:№_6∞alDEf∞ceIndllstryPress.
2000.
(in(=hinese)
ucloud:全球大促活动降价了!这次云服务器全网最低价,也算是让利用户了,UCloud商家调低了之前的促销活动价格,并且新增了1核1G内存配置快杰型云服务器,价格是47元/年(也可选2元首月),这是全网同配置最便宜的云服务器了!UCloud全球大促活动促销机型有快杰型云服务器和通用型云服务器,促销机房国内海外都有,覆盖全球20个城市,具体有北京、上海、广州、香港、 台北、日本东京、越南胡志明市、...
Krypt这两天发布了ION平台9月份优惠信息,提供一款特选套餐年付120美元(原价$162/年),开设在洛杉矶或者圣何塞机房,支持Windows或者Linux操作系统。ion.kryptcloud.com是Krypt机房上线的云主机平台,主要提供基于KVM架构云主机产品,相对于KT主站云服务器要便宜很多,产品可选洛杉矶、圣何塞或者新加坡等地机房。洛杉矶机房CPU:2 cores内存:2GB硬盘:...
特网云特网云为您提供高速、稳定、安全、弹性的云计算服务计算、存储、监控、安全,完善的云产品满足您的一切所需,深耕云计算领域10余年;我们拥有前沿的核心技术,始终致力于为政府机构、企业组织和个人开发者提供稳定、安全、可靠、高性价比的云计算产品与服务。官方网站:https://www.56dr.com/ 10年老品牌 值得信赖 有需要的请联系======================特网云美国高防御...
广安一越野车坠河为你推荐
googlepr值怎样提高谷歌PR值美要求解锁iPhone怎么用爱思手机助手解锁苹果手机?什么是支付宝支付宝是什么意思?360arp防火墙在哪360的9.6版本ARP防火墙在哪?ipad代理苹果官网购买ipad要几天小型汽车网上自主编号申请机动车自主选号有几种办法电子商务世界电子商务都有什么内容3g手机有哪些3G手机???400电话查询如何辨别400电话的真伪?图文模块微信公众号底部推荐阅读,图文模块是怎么实现的
济南域名注册 深圳域名空间 山东vps 赵容 踢楼 狗爹 php探针 adroit raid10 dnspod 什么是web服务器 国外免费云空间 789电视剧网 重庆联通服务器托管 石家庄服务器 免费的加速器 连连支付 德国代理ip 在线tracert 遨游论坛 更多